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Abstract. For the rational extension K = Q
√
−d with d a square

free integer and R the ring of algebraic integers of K, we classify R and
G such that U1(RG) is a hyperbolic group. In particular, the unit group
U1(RK8) is hyperbolic if and only if d > 0 and d ≡ 7 (mod 8). In this

case, the hyperbolic boundary ∂(U1(RK8)) is isomorphic to S2, the two-
dimensional sphere. Thus, U1(RK8) is a hyperbolic group of one end. Also,
for a given division algebra of the quaternions, we construct two types of
units of its Z-orders: Pell’s units and Gauss’ units. Next, we classify the

finite semigroups S such that for all Z-orders Γ of the algebra QS, the unit
group U(Γ) is hyperbolic. Finally, we classify the RA-loops L for which the
unit loop of its integral loop ring does not contain a free abelian subgroup
of rank two.

Résumé. Nous classifions les anneaux d’entiers des extensions quadra-
tiques rationelles, que nous noterons R, tel que le groupe d’unités U(RG)
sur ces anneaux est hyperbolique pour un certain groupe G fixé. En par-

ticulier, le groupe U1(RK8) est hyperbolique si et seulement si d > 0 et
d ≡ 7 (mod 8). Dans ce cas, la frontière hyperbolique ∂(U1(RK8)) est
isomorphe à la sphère S2 de dimension 2. Nous considérons une algèbre

de quaternions qui est aussi une algèbre de division. Pour un Z-ordre de
cette algèbre, nous présentons des constructions de deux types d’unités:
les unités de Gauss et les unités de Pell. Par la suite, nous classifions les
semi-groupes finis S dont l’algébre unitaire QS verifie la propriété suivante:

pour tout Z-ordre Γ de QS le groupe d’unités U(Γ) est hyperbolique. Dans
le même contexte, nous classifions les RA-loops L dont le loop d’unités ne
contient aucun sous-groupe abelien libre de rang 2.

1. Introduction. Hyperbolic groups were first defined and studied by
Gromov [5]. If G is a finitely generated group with a symmetric system of
generators S and G(G,S) is its Cayley graph with the length metric, then G is
said to be hyperbolic if G(G,S) is a hyperbolic metric space.

Gromov showed (the flat plane theorem), that if Γ is a hyperbolic group,
then it does not contain a free abelian group of rank 2, Z2 →֒Γ say. If G is a
finite group such that U1(ZG) is hyperbolic, then QG has at most one simple
epimorphic image that is not a division ring, and it is isomorphic to M2(Q).
This was first proved by Jespers [8], who also classified the finite groups G with
non abelian free normal complement in U1(ZG), the group of normalized units
of ZG.
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Recently, Juriaans, Passi and Prasad [10] have classified the finite groups
G for which the unit group U1(ZG) is hyperbolic. In Section 2, we extend this
result, classifying, for the rational quadratic extensions K = Q(

√
−d), the ring of

algebraic integers R ofK and the finite groups G such that U1(RG) is hyperbolic.
In Section 3, for a division ring H(K), we construct some units of the Z-order

H(R) ⊂ H(K) as follows: for a given Pell equation, each of its solutions over
Z(

√
d) generates units u ∈ U(H(R)) of norm 1, which we define as Pell units.

Furthermore, we construct units u ∈ U(H(R)) of norm −1 which give rise to
what we call Gauss units. Using these units we show that U(RK8) has a free
subgroup of rank 2 when d ≡ 7 (mod 8).

In Section 4, we give the structure of the finite dimensional algebras A over Q
such that for every Z-order Γ ⊂ A, the group U(Γ) is hyperbolic, and we say that
such algebras have the hyperbolic property. We also classify the finite semigroups
S for which the unitary algebra QS has the hyperbolic property; an example of
such an algebra is when U(Γ) is a torsion group. Jespers and Wang [9] classified
the finite semigroups Σ for which U(ZΣ) is finite. Therefore, such semigroup
algebras QΣ are examples of algebras that have the hyperbolic property. We
extend this class of semigroups Σ and describe the finite semigroups S whose
rational semigroup algebra has the hyperbolic property. Finally, we give some
properties of the idempotents of the maximal subgroups of S. In the last section
we classify the RA-loops L, such that, Z2 →֒U(ZL).

2. The rings R with U1(RG) hyperbolic. We define the set of square-
free integers to be D = {d ∈ Z \ {−1, 0} : c2 ∤ d for all integers c with c2 6= 1}.
We let K be the quadratic extension Q(

√
−d) and R := IK its ring of algebraic

integers. The cyclic group of order n is denoted by Cn and the quaternion group
of order 8 is denoted K8 := {±1,±i,±j,±k}.

If G is a finite abelian group, then the unit group U1(RG) is a hyperbolic
group if and only if its free rank is at most 1. In [13], it is shown that it is
sufficient to consider the cyclic groups of order 2, 3, 4, 5, 6 or 8. Thus, for the
abelian groups G of [10, Theorem 3] which classify the finite groups G such that
U1(ZG) is a hyperbolic group, the free rank of U1(RG) is calculated. When G is
one of the non-abelian groups of [10, Theorem 3], we show that in case U1(RG)
is hyperbolic, K is an imaginary quadratic extension and G = K8. To prove the
converse, we use a geometric approach.

Definition 2.1. Let K be an algebraic number field and R its ring of al-
gebraic integers. For a, b ∈ K, we denote by H(K) = (a,b

K
) the generalized

quaternion algebra, i.e., H(K) is the K-algebra

H(K) = K
[

i, j : i2 = a, j2 = b,−ji = ij =: k
]

.

The set {1, i, j, k} is a K-basis of H(K). If a, b ∈ R, then

H(R) = R
[

i, j : i2 = a, j2 = b,−ji = ij =: k
]

.
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The norm of x = x1 + xii+ xjj + xkk ∈ H(K) is η(x) = x21 − ax2i − bx2j + abx2k.

In what follows, we consider H(K) = K[i, j : i2 = −1, j2 = −1,−ji = ij =: k].

Definition 2.2. ([11]) The least natural number s for which the equation

−1 = a21 + a22 + · · ·+ a2s, aj ∈ K, 1 ≤ j ≤ s

is soluble is called the stufe of K, denoted s(K). When this equation admits no
solution, we set s := ∞ and K is called formally real.

Rajwade [11] proved that if the quadratic extension Q(
√
−d), d ∈ D ∩Z+ has

s(K) = 4, then d ≡ 7 (mod 8). Using this we prove in [13] that the quaternion
algebra H(K) over K is a division ring if and only if d ≡ 7 (mod 8), and as
a corollary we obtain that if d 6≡ 7 (mod 8), then U(RK8) is not hyperbolic.
Defining a proper action of the group SL1(H(R)) := {x ∈ H : η(x) = 1} over
the three-dimensional hyperbolic space H, and using a result of Gromov about
the fundamental group of a closed n-dimension riemannian manifold of constant
negative sectional curvature, we prove that if d ≡ 7 (mod 8), then the group
U(RK8) is hyperbolic.

Theorem 2.3. ([13, Theorem 1.7.5]) Let R be the ring of algebraic integers
of a rational quadratic extension K = Q(

√
−d), d ∈ D. The unit group U1(RG)

is hyperbolic if and only if G is one of the groups listed below and R (or K) is
determined by the respective value of d.

(i) G ∈ {C2, C3} and any d.
(ii) G is an abelian group of exponent dividing n, for n = 2 and d > 0, or

n = 6 and d = 3, or n = 4 and d = 1.
(iii) G = C4 and d > 0.
(iv) G = C8 and d = 1.
(v) G = K8 and s(K) = 4, that is, d > 0 and d ≡ 7 (mod 8).

For a metric space X, let the maps r1, r2 : [0,∞[−→ X be proper, that is,
r−1
i (C) is compact for each compact C ⊆ X. Two rays are equivalent if for each
compact set C ⊂ X there exists N ∈ N, such that ri([N,∞[), i = 1, 2, are in the
same path connected component of X \C. The equivalence class of r is denoted
by end(r); End(X) denotes the set of equivalence classes and |End(X)| is the
number of ends of X. For a finitely generated group Γ and G its Cayley graph,
we define Ends(Γ) := Ends(G) [1, 5].

Corollary 2.4. The group U(RK8) is hyperbolic if and only if d > 0 and
d ≡ 7 (mod 8). Furthermore, the hyperbolic boundary ∂(U(RK8)) ∼= S2, the two
dimensional euclidean sphere, and U(RK8) has one end.

Corollary 2.5. Let d ≡ 7 (mod 8); if u1 · · ·un ∈ U(RK8), then there
exists m ∈ N such that 〈um1 , . . . , umn 〉 is a free group of rank less than or equal
to n.
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3. The Pell and Gauss units. Corrales et al. [2] determined generators

of a subgroup of finite index of U(H(Z( 1+
√
−7

2 ))), whose units all have norm 1.
In our classification we obtain the groups U(RK8) for which R is the ring of alge-
braic integers of Q(

√
−d) such that d > 0, d ≡ 7 (mod 8), and these groups are

commensurable to the groups U(H(R)), that is, they have isomorphic subgroups

of finite index. Thus, it is natural to consider the unit groups U(H(Z( 1+
√
−d

2 ))),
d ∈ D ∩ Z+ when d ≡ 7 (mod 8).

Let R be a ring and G be a group. For a unit u ∈ U(RG), writing u =
∑

g∈G ugg, the set supp(u) := {g ∈ G : ug 6= 0} is called the support of the
unit u. For u = u1 + uii + ujj + ukk ∈ U(H(R)), the set supp(u) is defined
similarly according to the K-basis {1, i, j, k}.

Proposition 3.1. Let u = u1+uii+ujj+ukk ∈ U(H(R)) with norm η(u).
The following conditions hold:

(i) u2 = 2u1u− η(u).
(ii) If d ≡ 7 (mod 8) and η(u) = 1, then u is torsion if and only if u1 ∈

{−1, 0, 1}. Thus, the order o(u) is either o(u) = 4, 2 or 1.
(iii) If d ≡ 7 (mod 8) and η(u) = −1, then o(u) = ∞.

Let L := Q(
√
d) and ξ 6= ψ ∈ {1, i, j, k}. For ǫ = x+ y

√
d ∈ U(IL), we denote

u(ǫ) := y
√
−dξ + xψ ∈ H(K).

Proposition 3.2. Let d ≡ i (mod 4), i ∈ {2, 3} and ξ 6= ψ ∈ {1, i, j, k}.
The following conditions hold:

(i) u(ǫ) ∈ U(H(R)) if and only if ǫ = p+m
√
d ∈ U(IL).

(ii) If 1 /∈ supp(u), then u(ǫ) is torsion.
(iii) If µ, ν ∈ U(IL) and 1 ∈ supp(u(µ)) = supp(u(ν)), then u(µ)u(ν) = u(µν).
(iv) If 1 ∈ supp(u(ǫ)), then 〈u(ǫ)〉 = {u(ǫn), n ∈ Z}.
(v) For d ≡ 3 (mod 4) and F := Q(

√
2d),

u := m
√
−dξ + pψ + (1− p)φ ∈ U(H(R)) ⇔ ǫ = (2p− 1) +m

√
2d ∈ U(IF).

Theorem 3.3. Let H(K) be a division ring. If x+ y
√
d ∈ U(IL), then

u =

{

y
2

√
−d+ (y2

√
−d)i+ ( 1±x

2 )j + ( 1∓x
2 )k if y ≡ 0 (mod 2),

xy
√
−d+ (xy

√
−d)i+ ( 1±(x2+y2d)

2 )j + ( 1∓(x2+y2d)
2 k) if y ≡ 1 (mod 2).

is a unit in H(R).

We observe that ǫ := x + y
√
d ∈ U(IL) if and only if ǫ · ǫ = 1 = x2 − y2d,

x, y ∈ Z, since d ≡ 3 (mod 4) and d is a positive integer. This equation is called
the Pell equation, and it is well known that it has a solution, (see [3, VI.§19]).
According to the definition of the unit u, as in the last theorem, the solution
of the Pell equation determines the coefficients of u. Also, as in Proposition
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3.2(v), due to the unit u definition, the associated invertible ǫ has {1,
√
2d} as

its integral basis. The units constructed by the proper Pell equation are defined
as follows.

Definition 3.4. The units given above are called Pell units. For l ∈ {2, 3},
a Pell l-unit is a unit whose support has cardinality l, and the unique non-integer
coefficient is of the form m

√
−d.

We note that the set {u ∈ U(H(R)) : u is a Pell unit} is not a group. For
instance, when d ≡ 2 (mod 4) or d ≡ 3 (mod 4) and H(K) is the quaternion
algebra over K, if u is a Pell unit with | supp(u)| = 4, then u2 is not a Pell unit.
We remark, however, that item (iv) of Proposition 3.2 shows that if u is a Pell
2-unit, then all powers of u are Pell 2-units.

Next we construct units u := m
√
−d+ pi+ qj + rk ∈ H(R) ⊂ H(K) of norm

η(u) = −1. Thus p2 + q2 + r2 = m2d− 1 = n is a sum of three integer squares.
Writing n = 4an′ so that 4 ∤ n′ and a ≥ 0, by [12, Theorem 1] (quoted as Gauss’
Theorem), n is a sum of three integer squares if and only if n′ 6≡7 (mod 8). This
leads to the following theorem.

Theorem 3.5. Let H(K) be a division ring. If m ≡ 2 (mod 4), then there
exist integers p, q, r, such that, u = m

√
−d+ pi+ qj + rk ∈ U(H(R)).

Definition 3.6. Let u be unit of H(R) whose support has cardinality l > 1.
If the unique non-integer coefficient of u is of the form m

√
−d where m2 ± 1 is

a sum of three square integers, then we call u a Gauss unit, or a Gauss l-unit.

Proposition 3.7. Let u be a unit of norm η(u) = 1, l ∈ {2, 3}, and H(K)
a division ring. Then u is a Pell l-unit if and only if u is a Gauss l-unit.

Theorem 3.8. Let d ≡ 7 (mod 8). If u, v ∈ U(H(R)) are Gauss 2-units,
and supp(u) ∩ supp(v) = {1}, then there exists m ∈ N such that 〈um, vm〉 is a
free group of rank 2.

4. Semigroup algebras. We will consider A a unitary finitely generated
Q-algebra and denote by S(A), respectively J(A), the semisimple subalgebra,
respectively the Jacobson radical, of A and by E(A) := { E1, . . . , EN}, N ∈ Z+,
the set of the central primitive idempotents of the semisimple algebra S(A). A
classical result of Wedderburn–Malĉev states that A ∼= S(A)⊕J(A), as a vector
space. As a result, we have that A is an artinian algebra and thus its radical is a
nilpotent ideal. We denote T2(Q) :=

(

Q Q
0 Q

)

the algebra of 2× 2 upper triangular
matrices over Q, with the usual matrix multiplication.

Definition 4.1. Let A be a finite dimensional algebra over Q, and let Γ be
a Z-order of A. If Z2 →֒U(Γ), we say A has the hyperbolic property.
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If the algebra A has the hyperbolic property and it is non-semisimple with
radical J , then we prove that J2 = 0. In this condition we can consider J as
vector subspace of A such that there exists j0 ∈ A and J = 〈j0, j20 = 0〉Q, the
space generated by j0 over Q. Furthermore, 1+J ∼= Q as a multiplicative group.
For an idempotent E ∈ E(A), since J = 〈j0〉 is an ideal of A, we have j0 ·E ∈ J .
Thus there exists λ ∈ Q such that j0 · E = λj0. Likewise E · j0 = µj0, µ ∈ Q.
The following proposition shows that the left or right action of {j0} over E(A)
is non-trivial for a unique idempotent Ei ∈ E(A).

Proposition 4.2. Let A be a finite dimensional non-semisimple Q-algebra
with J(A) = 〈j0〉Q and N = |E(A)|. The following conditions hold.

(i) For all x ∈ A, there exist λx, µx ∈ Q such that xj0 = λxj0 and j0x = µxj0.
(ii) If x is an idempotent, then λx, µx ∈ {0, 1}.
(iii) There exist unique E,F ∈ E(A) such that Ej0 6= 0 and j0F 6= 0.
(iv) If E = F , then J is central.
(v) If J is non-central, then, up to an index reordering, we can suppose that

E = E1, F = EN , and E1j0 = j0EN = j0.

This enables us to give a structure for the algebras A with the hyperbolic
property.

Theorem 4.3. Let A be a finite dimensional Q-algebra. If Ai is a simple
epimorphic image of A, denote by Fi a maximal subfield of Ai and Γi ⊂ Ai a
Z-order. The following conditions hold.

(i) The algebra A has the hyperbolic property and is semisimple with no non-
zero nilpotent elements if and only if A =

⊕Ai, where Ai is a division
ring and there exists at most one index i0 such that U(Γi0) is hyperbolic
and infinite.

(ii) The algebra A has the hyperbolic property and is semisimple with nonzero
nilpotent elements if and only if A = (

⊕

Ai)⊕M2(Q).
(iii) The algebra A has the hyperbolic property and is non-semisimple with cen-

tral radical J if and only if A = (
⊕Ai)⊕ J .

(iv) The algebra A has the hyperbolic property and is non-semisimple with non-
central radical if and only if A = (

⊕Ai)⊕ T2(Q).

For each item above, Fi is an imaginary quadratic field and Ai is either an
imaginary quadratic field or a totally definite quaternion algebra. Furthermore,
every simple epimorphic image of A in the direct sum is an ideal of A.

In what follows, S denotes a finite semigroup, QS denotes a unitary semigroup
algebra over Q, M0(G;n, n;P ) denotes the Rees semigroup with structural group
G, and P denotes an n × n sandwich matrix. The groups S3 and D4 are the
dihedral groups of order 6 and 8, respectively, and Q12

∼= C3 ⋊ C4.

Theorem 4.4. The algebra QS has no nonzero nilpotent element and has
the hyperbolic property if and only if S is an inverse semigroup admitting a
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principal series whose principal factors are isomorphic to groups G and K, listed
below, with at most one occurrence of K:

(i) G is an abelian group of exponent dividing 4 or 6;
(ii) G is a Hamiltonian 2-group;
(iii) K ∈ {C5, C8, C12}.

Theorem 4.5. Let QS be an algebra with nonzero nilpotent elements. The
algebra QS is semisimple with the hyperbolic property if and only if S admits
a principal series whose principal factors are isomorphic to groups G and a
semigroup K as listed below, with exactly one occurrence of K.

(i) G is an abelian group of exponent dividing 4 or 6;
(ii) G is a Hamiltonian 2-group;
(iii) K is a group of the set {S3, D4, Q12, C4 ⋊ C4};
(iv) K is one of the Rees semigroups:

M0({1}; 2, 2; Id) =M or M0({1}; 2, 2; ( 1 1
0 1 )) =M12,

which is an ideal of S.

In particular, S is the disjoint union of the groups G and the semigroup K.

We proved that a finite dimensional Q-algebra with the hyperbolic property
has a nice Wedderburn–Malĉev decomposition. We recall the idempotent decom-
position of Proposition 4.2, for a non-semisimple algebra QS with the hyperbolic
condition: 1 =

∑

1<i<N Ei+E, since E = E1+EN . Now let e ∈ QS be any idem-
potent; then e =

∑

1<i<N eEi+eE, where (eEi)
2 = eEi ∈ Ai, a division ring, for

all 1 ≤ i ≤ N − 1. Therefore, eEi ∈ {Ei, 0}, and hence e =
∑

Eil + eE. Giving
a more explicit description of certain idempotents, we shall describe some sub-
semigroups appearing naturally in a finite semigroup whose rational semigroup
algebra has the hyperbolic property.

Proposition 4.6. Let S =
⋃

Gi ∪ {θ, j0} be a semigroup. If ei ∈ Gi is
the group identity element of the group Gi, then ei has one of the following
expressions:

∑

Eil + E1 + λj0,
∑

Eil + EN + µj0,
∑

Eil + E1 + EN ,
∑

Eil

with 1 < il < N . Moreover, the last two expressions are central idempotents.

Theorem 4.7. The algebra QS is non-semisimple with the hyperbolic prop-
erty if and only if there exists a unique nonzero nilpotent element j0 ∈ S such
that the subsemigroup I = {θ, j0} is an ideal of S and S \ I admits a principal
series whose principal factors are isomorphic to abelian groups of exponent di-
viding 4 or 6, or a Hamiltonian 2-group. In particular, S/I is the disjoint union



112 S. O. JURIAANS AND A. C. SOUZA FILHO

of its maximal subgroups such that if e1 ∈ G1 and eN ∈ GN are the respective
group identity elements, then e1j0 = j0eN = j0. Writing

e1 =
∑

1<1l<N

E1l + E1 + λj0, λ ∈ Q,

eN =
∑

1<Nl<N

ENl
+ EN + µj0, µ ∈ Q,

then exactly one of the following holds:

(i) e1eN = 0 ⇔ eNe1 = 0 and λ + µ = 0; T2 ∼= {e1, eN , j0, θ} is such that
QT2 ∼= T2(Q).

(ii) If eNe1 6= 0, then e1eN = eNe1 =: e3 and λ+µ = 0; T ′
2 = {e1, eN , e3, j0, θ}

is a subsemigroup of S and QT ′
2
∼= Q⊕Q⊕ T2(Q).

(iii) eNe1 = 0 ⇔ e1eN = j0 ⇔ λ + µ = 1; T̂2 = {e1, eN , j0, θ}, and QT̂2 ∼=
T2(Q).

The semigroups T2, T
′
2 and T̂2 are non isomorphic.

5. The quasi-hyperbolic unit loop U(ZL) of an RA-loop L. A loop L
is a nonempty set, with a closed binary operation · , such that the equation a·b =
c has a unique solution b ∈ L when a, c ∈ L are known, and a unique solution
a ∈ L when b, c ∈ L are known, and with a two-sided identity element 1. We say
that a loop L is quasi-hyperbolic if Z2 →֒L. Defining [x, y, z] := (xy)z − x(yz),
recall that a ring A is alternative if [x, x, y] = [y, x, x] = 0 for every x, y ∈ A. An
RA-loop is a loop whose loop ring RL over some commutative, associative and
unitary ring R of characteristic not equal to 2 is alternative, but not associative.
The basic reference is [4].

In this section we classify the RA-loops L such that the loop of units of ZL,
say U(ZL), is quasi-hyperbolic.

Lemma 5.1. Let L be a finite RA-loop. The loop U(ZL) is quasi-hyperbolic
if and only if U(ZL) is trivial.

For a theoretical group property P, a group G is virtually P if it has a
subgroup of finite index, say H, with property P.

Theorem 5.2. Let L be an RA-loop. Then U(ZL) is quasi-hyperbolic if
and only if

(i) L is a finite loop or a loop whose center is virtually cyclic,
(ii) the torsion subloop T (L) of L is such that if T (L) is a group, then it is an

abelian group of exponent dividing 4 or 6 or a Hamiltonian 2-group whose
subgroups are all normal in L, and

(iii) if T (L) is a loop, then it is a Hamiltonian Moufang 2-loop whose subloops
are all normal in L.

Under these conditions we also have that U1(ZL) = L.
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