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THE AVALANCHE PRINCIPLE: FROM JOINT TO

AVERAGED JOINT SPECTRAL RADIUS

D. GOLDSTEIN AND I. GOLDSTEIN

Presented by George Elliott, FRSC

Abstract. The averaged joint spectral radius (AJSR) is defined. By

using the avalanche principle we develop an effective algorithm to compute
the averaged joint spectral radius for a pair of 2× 2 matrices.

Résumé. Nous introduisons la notion de rayon spectral moyen d’un en-
semble fini de matrices. En utilisant le principe d’avalanche, nous dévelop-

pons un algorithme efficace pour calculer le rayon spectral moyen d’une
paire de matrices de tailles 2× 2.

1. Introduction. A joint spectral radius was defined by G-K. Rota and
G. Strang in the 1960’s [RS]. For a long time this interesting quantity was not
investigated in mathematical researches. In the 1990’s Daubechies and Lagarias
and also Coleila and Heil, proved the importance of this object for Markov
chains, random walks and in solving the central equation in wavelet theory: the
dilation equation (alternatively: the refinement equation or the scaling equation).
It was proved that the joint spectral radius can be used as a characteristic of
continuity and Hölder continuity of the scaling vector (for more information
about a multiresolution analysis see [CH1]). Moreover, it was shown that the
joint spectral radius is an effective instrument in subdivision scheme analysis
[CCS], [LL].

Recall that a multiresolutional analysis of L2(R) is an increasing sequence of
closed subspaces

· · ·V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·

with
⋂

j∈Z
Vj = {0} and

⋃
j∈Z

Vj dense in L2(R), and such that

(i) f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1;
(ii) there exists a function ϕ(x) ∈ V0, called a scaling function, such that the

family {ϕ(x− k), k ∈ Z} is an orthonormal basis in V0.

Each multiresolution analysis in wavelet theory (see [D], [W]) determines the
dilation equation:

ϕ(x) =
∑

k∈Z

ckϕ(2x− k).

A scaling function ϕ(x) is a solution of the dilation equation. The coefficients
{ck} are square-summable complex (in general) numbers. The function ϕ(x) is
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a square integrable function that determines a mother wavelet,

ψ(x) =
∑

k∈Z

(−1)kc1−kϕ(2x− k),

such that the collection {ψjk(x) = ψ(2jx − k)}j,k is an orthogonal basis in
L2(R) (for more information about the scaling equation and mother wavelets,
see [D], [W]). In order to ensure compact support for the wavelet ψ, we assume
that the number of nonzero coefficients ck is finite. Thus, the coefficients {ck}

N
k=0

play a crucial role in the construction of multiresolutional analysis and wavelet
orthonormal bases for the space L2(R). Then the question becomes: how can
one choose the scalars {ck}

N
k=0 in such a way that the resulting properties of

the multiresolutional analysis will be good? The problem can be translated into
matrix language. Two matrices T0 and T1 are associated to the dilation equa-
tion, (T0)ij = c2j−i−1 , (T1)ij = c2j−i, and their interaction, via long products,
determines many of the good (or bad) properties of the scaling function. One of
the effective tools to investigate these long products is the joint spectral radius

of the matrices T0 and T1 (restricted to a special subspace). The joint spectral
radius can be considered as a generalization of spectral radius of a matrix to a
set of matrices. For a finite set of matrices M ⊂Md(C) we put

Πn = max
A1,...,An∈M

{‖A1A2 · · ·An‖}.

Definition 1.1. The joint spectral radius of the set M is defined by

ρ̂(M) = lim sup
n→∞

‖Πn‖
1
n .

Note that the quantity just defined is the generalization of the well-known
spectral radius of a matrix A:

ρ(A) = lim ‖A‖
1
n = max{|λ| : λ is an eigenvalue of A ∈Mn(C)}.

Theorem 1.2. ([CH2, p. 177]) If ρ̂(T0|W , T1|W ) < 1, then there exists a

continuous scaling function ϕ(x) which is Hölder continuous with Hölder ex-

ponent α for every 0 ≤ α < − log2 ρ̂(T0|W , T1|W ), where W denotes a special

subspace of CN .

However, it turns out that the joint spectral radius is hard to compute (see
[BT1], [BT2]).

Theorem 1.3. ([BT2]) Unless P = NP , the joint spectral radius ρ̂ of two

matrices is not polynomial-time approximable.

This work is a first step in developing some alternative approach that we
believe will be useful for characterizing the properties of the scaling function and,
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on the other hand, will deal with more typical objects in the probabilistic sense.
The basic tool of our approach is the avalanche principle that was established
by M. Goldstein and W. Schlag [GS]. This principle proved its effectiveness
in studying the Lyapunov exponent which is intimately connected to the joint
spectral radius (see [BT2]).

Theorem 1.4. (Avalanche Principle [GS, Prop. 2.2]) Let A1, A2, . . . , An be

a sequence of unimodular 2× 2 matrices. Suppose that

(i) min1≤j≤n ‖Aj‖ ≥ µ > n,

(ii) max1≤j≤n−1[log ‖Aj+1‖+ log ‖Aj‖ − log ‖Aj+1Aj‖] <
1
2 log µ.

Then
∣∣∣log ‖An · · ·A1‖+

n−1∑

j=2

log ‖Aj‖ −

n−1∑

j=1

log ‖Aj+1Aj‖
∣∣∣ < c

n

µ
.

To define the averaged joint spectral radius we need several auxiliary notions
and results.

Definition 1.5. Let Ωn denote the set of all the words of length n com-
posed from the letters A and B, where A,B ∈Md(C), and let Πn be an element
of Ωn. We put γn(A,B) = 2−n ·

∑
Πn∈Ωn

n−1 log ‖Πn‖.

In the next lemma we adduce some well-known facts about subadditive se-
quences.

Lemma 1.6.

(i) (n+m)γn+m ≤ nγn +mγm, i.e., {nγn}
∞
n=1 is a subadditive sequence.

(ii) γn ≤ logmax{‖A‖, ‖B‖}.
(iii) There exists γ(A,B) = limn→∞ γn = infn γn.

Proof. The first and the second assertions are trivial. The third assertion
is a well-known fact for subadditive sequences, and we omit the proof.

Now we are ready to give the key definition of this paper.

Definition 1.7. Let A,B ∈ Mn(C). An averaged joint spectral radius of
the matrices A and B is ρ̃(A,B) = eγ(A,B).

The next theorem is the main result of the paper, and is proved in Section 3.

Theorem 1.8. Let A,B ∈M2(C). Suppose that

(i) min{‖A‖, ‖B‖} ≥ µ0 > n,

(ii) max[log ‖C1‖+log ‖C2‖− log ‖C2C1‖] <
1
2 log µ0 for any C1, C2 ∈ {A,B}.
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For any natural number n, denote by µ∗(n) the greatest multiple of n which is

smaller than µ(n) = µ
n

2
0 . Then

γµ∗(n) − (2γ2n − γn) < C
n

µ∗(n)
,

where C denotes an absolute constant.

In the next section, we slightly improve Theorem 1.4 in order to study the
hereditary character of the avalanche condition when the length of a product
increases. In Section 3 we will prove Theorem 1.8.

2. Around the avalanche principle: some deterministic develop-

ments. In this section we develop the deterministic contents of the avalanche
principle and explain its self-reproducing character. In our first lemma we show
that the norm growth of long matrix products, satisfying an avalanche condi-
tion, is exponentially fast. It is not a surprising fact, but it is important for our
further calculations.

Lemma 2.1. Let C1, . . . , Cn ∈M2(C), n > 1. Suppose that

(i) all of C1, . . . , Cn are unimodular;

(ii) mini=1,n ‖Ci‖ ≥ µ0 > n;

(iii) the avalanche condition, log ‖Ci‖+ log ‖Cj‖− log ‖CiCj‖ <
1
2 log µ0, holds

for all 1 ≤ i, j ≤ n.

Then

∣∣∣log ‖Cn · · ·C1‖+

n−1∑

j=2

log ‖Cj‖ −

n−1∑

j=1

log ‖Cj+1Cj‖
∣∣∣ < c

n

µ0
,

‖Cn · · ·C1‖ ≥ µ(n) = µ
n

2
0 .

Proof. The first inequality follows immediately from [GS, Prop. 2.2]. To
prove the second inequality, note that

log ‖Cn · · ·C1‖ >

n−1∑

j=1

log ‖Cj+1Cj‖ −

n−1∑

j=2

log ‖Cj‖ − c
n

µ0
.

Set

S =

n−1∑

j=1

log ‖Cj+1Cj‖ −

n−1∑

j=2

log ‖Cj‖.

For even n we have

S =

n/2∑

j=1

log ‖C2jC2j−1‖ −

n/2−1∑

j=1

(log ‖C2j+1‖+ log ‖C2j‖ − log ‖C2j+1C2j‖)

>
3

4
n log µ0 −

n− 2

4
log µ0 =

n+ 1

2
log µ0.
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If n is odd, then

S =

(n−1)/2∑

j=1

log ‖C2j+1C2j‖ −

(n−1)/2∑

j=1

(log ‖C2j‖+ log ‖C2j−1‖ − log ‖C2jC2j−1‖)

+ log ‖C1‖

>
3(n− 1)

4
log µ0 −

n− 1

4
log µ0 + log µ0 =

n+ 1

2
log µ0.

Thus S > n+1
2 log µ0, which implies

log ‖Cn · · ·C1‖ >
n+ 1

2
log µ0 − c

n

µ0

and completes the proof.

Remark. Throughout this paper, µ(n) denotes the quantity µ
n

2
0 . Lemma 2.2

indicates the self-reproducing character of the avalanche principle.

Lemma 2.2. Let C1, . . . , Cn ∈ M2(C) as in Lemma 2.1, and let 2 < k <

n−2. Then log ‖Cn · · ·C1‖−log ‖Cn · · ·Ck+1‖−log ‖Ck · · ·C1‖ < c 2nµ0
+ 1

2 log µ0.

Proof. Let

S1 =

k−1∑

j=1

log ‖Cj+1Cj‖ −

k−1∑

j=2

log ‖Cj‖,

S2 =
n−1∑

j=k+1

log ‖Cj+1Cj‖ −
n−1∑

j=k+2

log ‖Cj‖.

By Lemma 2.1

∣∣log ‖Ck · · ·C1‖ − S1

∣∣ < c
k

µ0
,

∣∣log ‖Cn · · ·Ck+1‖ − S2

∣∣ < c
n− k

µ0
.

Obviously,

n−1∑

j=2

log ‖Cj‖ −

n−1∑

j=1

log ‖Cj+1Cj‖ = −S1 − S2 + log ‖Ck‖

+ log ‖Ck+1‖ − log ‖Ck+1Ck‖.

Hence

∣∣log ‖Cn · · ·C1‖ − S1 − S2 + log ‖Ck‖+ log ‖Ck+1‖ − log ‖Ck+1Ck‖
∣∣ < c

n

µ0
.
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Since

log ‖Ck‖+ log ‖Ck+1‖ − log ‖Ck+1Ck‖ <
1

2
log µ0,

it follows that

∣∣log ‖Cn · · ·C1‖ − S1 − S2

∣∣ < c
n

µ0
+

1

2
log µ0.

Finally,

log ‖Cn · · ·C1‖ − log ‖Ck · · ·C1‖ − log ‖Cn · · ·Ck+1‖ < c
2n

µ0
+

1

2
log µ0,

as claimed.

Remark. Thus, matrices satisfying the avalanche principle generate words
having the same property:

log ‖Cn · · ·C1‖ − log ‖Cn · · ·Ck+1‖ − log ‖Ck · · ·C1‖ <
1

2
log µ(min{k, n− k}),

for sufficiently large µ0.

Theorem 2.3. Let {Ai}
∞
i=1 be a sequence of matrices fromM2(C). Suppose

that

(i) Ai is unimodular for every i ∈ N,

(ii) each pair Ai, Aj satisfies the avalanche principle:

log ‖Ci‖+ log ‖Cj‖ − log ‖CiCj | <
1

2
log µ0,

where µ0 = minn ‖Cn‖ is a sufficiently large positive number.

Then for every n,m ∈ N with 2 < k < n−2 and l = min{k, n−k}, the following

inequalities hold:

‖Am+k · · ·Am+1‖ > µ(k),

log ‖Am+nAm+k+1‖+ log ‖Am+k · · ·Am+1‖ − log ‖Am+n · · ·Am+1‖

<
1

2
log µ(l).

Proof. Apply Lemma 2.2.
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3. The averaged joint spectral radius. Proof of Theorem 1.8. In
this section we prove Theorem 1.8. The theorem provides an effective algorithm
for computing AJSR in the 2× 2 case.

For Πµ∗(n) = Π1Π2 · · ·Πm, where m = µ∗(n)
n , we define fi, a map from Ωµ∗(n)

to Ωn, by fi(Πµ∗(n)) = Πi, i = 1, . . . ,m. Then by combining Theorem 2.3 and
the avalanche principle, we have

γµ∗(n) = 2−µ∗(n)
∑

Ωµ∗(n)

µ∗(n)−1 log ‖Πµ∗(n)‖

=
2−µ∗(n)

µ∗(n)

∑

Ωµ∗(n)

[m−1∑

i=1

log ‖fi+1(Πµ∗(n))fi+1(Πµ∗(n))‖

−

m−1∑

i=1

log ||fi(Πµ∗(n))‖+
cm

µ∗(n)

]

=
2−µ∗(n)

µ∗(n)

m−1∑

i=1

[ ∑

Ωµ∗(n)

log ‖fi+1(Πµ∗(n))fi+1(Πµ∗(n))‖

−
∑

Ωµ∗(n)

log ‖fi(Πµ∗(n))‖+
cm

µ∗(n)

]

=
2−µ∗(n)

µ∗(n)

m−1∑

i=1

[
2µ

∗(n)2nγ2n − 2µ
∗(n)nγn

]
+

cm

(µ∗(n))2

=
1

µ∗(n)

m−1∑

i=1

[2nγ2n − nγn] +
cm

(µ∗(n))2

=
2n(m− 1)γ2n

µ∗(n)
−
n(m− 1)γn
µ∗(n)

+
cm

(µ∗(n))2

=
2(m− 1)γ2n

m
−

(m− 1)γn
m

+
cm

(µ∗(n))2

= 2γ2n − γn +C
n

µ∗(n)
.

This completes the proof of Theorem 1.8.
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