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THE AVALANCHE PRINCIPLE: FROM JOINT TO
AVERAGED JOINT SPECTRAL RADIUS
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ABSTRACT. The averaged joint spectral radius (AJSR) is defined. By
using the avalanche principle we develop an effective algorithm to compute
the averaged joint spectral radius for a pair of 2 X 2 matrices.

RiESUME. Nous introduisons la notion de rayon spectral moyen d’un en-
semble fini de matrices. En utilisant le principe d’avalanche, nous dévelop-
pons un algorithme efficace pour calculer le rayon spectral moyen d’une
paire de matrices de tailles 2 x 2.

1. Introduction. A joint spectral radius was defined by G-K. Rota and
G. Strang in the 1960’s [RS]. For a long time this interesting quantity was not
investigated in mathematical researches. In the 1990’s Daubechies and Lagarias
and also Coleila and Heil, proved the importance of this object for Markov
chains, random walks and in solving the central equation in wavelet theory: the
dilation equation (alternatively: the refinement equation or the scaling equation).
It was proved that the joint spectral radius can be used as a characteristic of
continuity and Holder continuity of the scaling vector (for more information
about a multiresolution analysis see [CH1]). Moreover, it was shown that the
joint spectral radius is an effective instrument in subdivision scheme analysis
[CCS], [LL].

Recall that a multiresolutional analysis of L?(R) is an increasing sequence of
closed subspaces

L VocCcVicVogcVicVCee

with ;o7 V; = {0} and ;¢ V; dense in L?(R), and such that
(i)  f(z)eV;e f(2) € Vi
(ii)  there exists a function p(x) € Vo, called a scaling function, such that the
family {¢(z — k), k € Z} is an orthonormal basis in Vj.

Each multiresolution analysis in wavelet theory (see [D], [W]) determines the

dilation equation:
olx) = Yerpl2r ).
keZ

A scaling function o(x) is a solution of the dilation equation. The coefficients
{ck} are square-summable complex (in general) numbers. The function p(z) is
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a square integrable function that determines a mother wavelet,

d(x) =Y (~DFerpp(22 — k),

keZ

such that the collection {t;(z) = ¥(27x — k)}, ) is an orthogonal basis in
L?(R) (for more information about the scaling equation and mother wavelets,
see [D], [W]). In order to ensure compact support for the wavelet 1), we assume
that the number of nonzero coefficients cy, is finite. Thus, the coefficients {cj }2_,
play a crucial role in the construction of multiresolutional analysis and wavelet
orthonormal bases for the space L?(R). Then the question becomes: how can
one choose the scalars {ck}gzo in such a way that the resulting properties of
the multiresolutional analysis will be good? The problem can be translated into
matrix language. Two matrices T and 77 are associated to the dilation equa-
tion, (Tp)i; = c2j—i—1 , (11)ij = c2j—;, and their interaction, via long products,
determines many of the good (or bad) properties of the scaling function. One of
the effective tools to investigate these long products is the joint spectral radius
of the matrices Ty and T (restricted to a special subspace). The joint spectral
radius can be considered as a generalization of spectral radius of a matrix to a
set of matrices. For a finite set of matrices M C M4(C) we put

II,, = A m%xeM{||A1A2 T AnH}

1y---4dn

DEFINITION 1.1.  The joint spectral radius of the set M is defined by

—~ . 1
A(M) = limsup |IL, | *.

n—oo

Note that the quantity just defined is the generalization of the well-known
spectral radius of a matrix A:

p(A) = lim HAH% = max{|\| : A is an eigenvalue of A € M, (C)}.

THEOREM 1.2. ([CH2, p. 177])  If p(To|lw,T1lw) < 1, then there exists a
continuous scaling function ¢(x) which is Holder continuous with Holder ex-
ponent a for every 0 < a < —logy p(To|lw, Th|lw), where W denotes a special
subspace of CN .

However, it turns out that the joint spectral radius is hard to compute (see
[BT1], [BT2]).

THEOREM 1.3. ([BT2]) Unless P = NP, the joint spectral radius p of two
matrices is not polynomial-time approrimable.

This work is a first step in developing some alternative approach that we
believe will be useful for characterizing the properties of the scaling function and,
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on the other hand, will deal with more typical objects in the probabilistic sense.
The basic tool of our approach is the avalanche principle that was established
by M. Goldstein and W. Schlag [GS]. This principle proved its effectiveness
in studying the Lyapunov exponent which is intimately connected to the joint
spectral radius (see [BT2]).

THEOREM 1.4. (Avalanche Principle [GS, Prop. 2.2])  Let Ay, Aa,..., A, be
a sequence of unimodular 2 X 2 matrices. Suppose that
(i) minmicj<n [[45]] = 1> n,
(i) maxi<j<p—1llog || A1l +log | A;|| —log [|A;4+14;] < 5log .
Then

n—1

n—1
n
log [|An -+ Axl| + ) log [ Ajl| = > log [|4;41 4]l < “u
j=2 j=1

To define the averaged joint spectral radius we need several auxiliary notions
and results.

DEFINITION 1.5. Let €, denote the set of all the words of length n com-
posed from the letters A and B, where A, B € M4(C), and let IT,, be an element
of Q.. We put y,(A,B) =27" -3 1~ log ||TL,||.

In the next lemma we adduce some well-known facts about subadditive se-
quences.

LEMMA 1.6.

(1) 4+ M) Vntm < Ny + MY, e, {nyn 152 is a subadditive sequence.
(i) v < logmax{||A[, [|B[}-

(iil) There exists (A, B) = lim,— 00 Y = infy, vp.

PrOOF. The first and the second assertions are trivial. The third assertion
is a well-known fact for subadditive sequences, and we omit the proof. [ ]

Now we are ready to give the key definition of this paper.

DEeFINITION 1.7.  Let A, B € M, (C). An averaged joint spectral radius of
the matrices A and B is p(A, B) = ¢7(A.5),

The next theorem is the main result of the paper, and is proved in Section 3.

THEOREM 1.8. Let A, B € My(C). Suppose that

(i) minf[|A[, |B][} = po > n, 1
(i) max[log||C1]|+log [|C2| —log [[C2Ch||] < 5 log po for any C1, Co € {A, B}.
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For any natural number n, denote by p*(n) the greatest multiple of n which is
smaller than p(n) = pg . Then
n

w*(n)

Yu*(n) — (272n - 'Yn) <C

)

where C denotes an absolute constant.

In the next section, we slightly improve Theorem 1.4 in order to study the
hereditary character of the avalanche condition when the length of a product
increases. In Section 3 we will prove Theorem 1.8.

2. Around the avalanche principle: some deterministic develop-
ments. In this section we develop the deterministic contents of the avalanche
principle and explain its self-reproducing character. In our first lemma we show
that the norm growth of long matrix products, satisfying an avalanche condi-
tion, is exponentially fast. It is not a surprising fact, but it is important for our
further calculations.

LEMMA 2.1.  Let Cy,...,C, € M3(C), n > 1. Suppose that

(i)  all of C4,...,C, are unimodular;
(11) mini:ﬁ HCzH > o >Ny

(ili) the avalanche condition, log ||C;|| +log ||C; | —log ||C;C;|| < 3 log o, holds
forall1 <i,j <n.

Then

n—1 n—1

n
log |G-+~ | + 3 log [ | = D log [ Craa G| < e
j=2 j=1

1Cn -+ Coll = pln) = g -

PROOF.  The first inequality follows immediately from [GS, Prop. 2.2]. To
prove the second inequality, note that

n—1 n—1
n
log |C -+ Call > Y 10g [|CjsaCyll = Y log | Cyl| — e
— — Ho
Jj=1 j=2
Set
n—1 n—1
5= 3 log 10| — 3 log IG5
j=1 j=2
For even n we have
n/2 n/2—1
S = 1og||Cs;Cy1]| = Y (log || Cojyrll +log || Ca; || — log | Caz41Ca]))
j=1 j=1
N T s SV T
4” 0g Ho 1 0g Ho = B) 0g Ho-
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If n is odd, then

(n—1)/2 (n—1)/2
S= > log|[Cojs1Cajll — > (log|Ca;ll +log [[Caj—1]l —log | Ca;Caj 1))
j=1 j=1
+log [|C1|
3(n—1) n—1 n+1
1 log puo — 1 log 110 + log po = 5 log po.

Thus S > "T'H log j1p, which implies

n+

1 n
log po — c—
Ho

and completes the proof. [ ]

REMARK. Throughout this paper, p(n) denotes the quantity uog . Lemma 2.2
indicates the self-reproducing character of the avalanche principle.

LEMMA 2.2, Let Cy,...,C, € M3(C) as in Lemma 2.1, and let 2 < k <
n—2. Thenlog||Cy -~ Ci||=log ||Cy -+ Cpyr || ~log [|Ck - - - Ci| < e22+ 5 log po.

ProOoOF. Let

k—1 k—1
S1 =Y log|C;11Csl = Y log |Gy,
Jj=1 j=2

n—1 n—1
Sy =Y logllCi1Cyll = > logl|Cyll.

j=k+1 j=k+2
By Lemma 2.1
k n—k
log [Cr---Cul = $1| < e, |log|Cp-+- Cppal = ] < e——.
Ko Ho
Obviously,
n—1 n—1
> log |l = > log[|Cy41.Cy| = =S — S + log [|Cik|
j=2 j=1
+ log || C+1]| — log [|Cr11Cl|-
Hence

n
[log ||Cy, - -+ C1|| = S1 — Sz +1og ||Cr || + log |Crr1 || — log |Crr1 Crll| < C%~
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Since

1
log ||Cy || + log [|Cr11]| —log [|Cry1Cr| < 5 log po,

it follows that
n 1
}IOg”Cn <Oy =51 = 52| < c— + - log po.
o 2
Finally,
2n 1
log [|Cy -+ Ch|| = log [|[C -+ - Ch|| = log [|[C - - - Cpa || < o + 5 log po,
as claimed. [ ]

REMARK. Thus, matrices satisfying the avalanche principle generate words
having the same property:

1 .
log||Cy -+ Ch]| = log ||Cy, - - - Crga|| — log ||Ck - - - Ch|| < B log p(min{k,n — k}),
for sufficiently large ug.

THEOREM 2.3.  Let {A;}32, be a sequence of matrices from Ma(C). Suppose
that

(i)  A; is unimodular for every i € N,
(ii) each pair A;, A; satisfies the avalanche principle:

1
log ||C; || + log [|C;]| — log [|CiCy| < 5 log po,

where po = min, ||Cy is a sufficiently large positive number.

Then for every n,m € N with 2 < k < n—2 and | = min{k, n — k}, the following
inequalities hold:

lAmik - Amsrll > p(k),
log [|AptnAmiis1]| +10g [Apmsr - Amgi]| = 10g || Amgn - Al
1
<3 log p(1).

PrROOF.  Apply Lemma 2.2. [ |
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3. The averaged joint spectral radius. Proof of Theorem 1.8. In
this section we prove Theorem 1.8. The theorem provides an effective algorithm
for computing AJSR in the 2 x 2 case.

For IT,,+ () = I 11 - - - II,,,, where m = “*T(L”), we define f;, a map from Q- ()
to Qy, by fi(Il,«()) = I, i = 1,...,m. Then by combining Theorem 2.3 and
the avalanche principle, we have

Y (n) _2 w(n) Z 1Og||Hu *(n) ”
Qux (n)
9—n"(n) m-1
= — > [ZIOg||fi+1(Hu*(n))fi—&-l(nu*(n))”
pwr(n) Que(ny i=1

m—1
cm
_ ; 10g || £i(TL- (o)) | + f*(n)}

, log || fis1 (W () fi1 (L )|
(1% (n) 1[92 & Il i1 (W () ) Ji1 (e ()

n*(n)

5 108 1) + -]

Qpx (n)

= 2nfy2n _ 9K *(n )n'Yn 4+ —
g ] (n*(n))?

(n*(n))?
(m =112, n(m—1)ym 4 _cm
p(n) p*(n) (w*(n))?
_2(m =1y (m—1)y, cm
m m (1*(n))?

9 n
= 2%2n — In - .
p*(n)

This completes the proof of Theorem 1.8. ]
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