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ABSTRACT. The fixed points of a natural torus action on the Hilbert
schemes of points in C2 are quiver varieties of type Aso. The equivariant
cohomology of the Hilbert schemes and quiver varieties can be given the
structure of bosonic and fermionic Fock spaces respectively. Then the local-
ization theorem, which relates the equivariant cohomology of a space with
that of its fixed point set, yields a geometric realization of the important
boson-fermion correspondence.

RESUME. Les points fixes d’une action canonique d’un tore sur le
schéma de Hilbert de C? sont des variétés de quiver de type Aoo. On
peut donner la cohomologie équivariante des schémas de Hilbert et des
variétés de quiver la structure des éspaces de Fock fermionique et bosonique,
respectivement. Alors, la théoréme de localisation, qui lie la cohomologie
équivariante d’une éspace avec la cohomologie équivariante de son ensemble
des point fixes, nous permet de donner une réalisation géométrique de la
correspondance bosonique-fermionique.

Introduction. Recently there has been substantial interest in geometric
constructions in representation theory. Such constructions translate between
purely algebraic representation theoretic statements and statements involving
geometric objects such as flag varieties, affine Grassmannians, quiver varieties
and Hilbert schemes. This often provides one with new geometric techniques
to examine various topics in representation theory (such as in the proof of the
Kazhdan—Lusztig conjecture) as well as representation theoretic tools to organize
and study the structure of various geometric objects.

In this paper, we will focus on two particular geometric constructions. One
of these involves varieties associated to quivers. Quivers, which are simply di-
rected graphs, and their representations have a long history (see [21]). Lusztig
[14] associated certain varieties to quivers and used these to provide a geometric
realization of half of the universal enveloping algebra (or its quantum analogue)
of Kac—Moody algebras. Then Nakajima [17, 19] modified these quiver vari-
eties and gave a geometric construction of the representations of these algebras.
The underlying vector space of the representation is the homology of the quiver
varieties and the action of the Kac-Moody algebra is given by certain correspon-
dences in products of these varieties. Nakajima’s construction was motivated by
his work with Kronheimer on solutions to the anti-self-dual Yang-Mills equations
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on ALE gravitational instantons [10].

The second geometric construction we consider in this paper was developed
by Nakajima [20] and Grojnowski [7]. It realizes irreducible representations
of infinite-dimensional Heisenberg algebras in the (co)homology of the Hilbert
schemes of points on surfaces. This is very similar to the quiver variety picture.
In fact, one can view the Hilbert schemes as quiver varieties associated to the

so-called Jordan quiver.

These geometric realizations have proven to be very useful. In particular,
they provide us with remarkable bases for the corresponding algebraic objects
(the so-called canonical and semicanonical bases) that have very nice positivity,
integrality and compatibility properties. They also have beautiful connections
to other areas of mathematics such as the theory of crystals. Their discovery
has opened up a fruitful line of research: to extend the geometric viewpoint by
developing geometric constructions of other algebraic results. This approach has
been successful in several areas including Weyl group actions, representations of
the Virasoro algebra, Demazure modules, and Clifford algebras. In the current
paper, we continue along this path and provide a geometric construction of the
so called boson-fermion correspondence.

The boson-fermion correspondence is of fundamental importance in mathe-
matical physics. In physics, the terms boson and fermion refer to particles of
integer and half-integer spin, respectively. Bosonic and fermionic Fock space,
which can be thought of as certain state spaces of bosons and fermions, are
mathematically defined to be representations of an infinite-dimensional Heisen-
berg or oscillator algebra and an infinite-dimensional Clifford algebra (and the
Lie algebra sl or gl.), respectively. The boson-fermion correspondence de-
scribes a precise relationship between these two spaces. It plays an important
role in the theory of vertex operators and the basic representation of affine Lie
algebras (see [3, 5] and references therein).

We will use the constructions discussed above to describe a realization of the
boson-fermion correspondence using the geometry of Hilbert schemes and quiver
varieties. Let X,, denote the Hilbert scheme of n points in C? (see Section 4).
There is a natural torus action on X,, and one can consider the associated equiv-
ariant cohomology on which there is an action of an infinite-dimensional Heisen-
berg algebra. The generators of the algebra act by “adding or removing points”
along the z-axis in C2. This yields the geometric realization of bosonic Fock
space. That of the fermionic Fock space is obtained by considering the quiver
varieties corresponding to the basic representation of sl... In this case the vari-
eties are simply points which, as was shown in [6], can be naturally enumerated
by Young diagrams.

We will see that the torus fixed points of the Hilbert schemes are naturally
identified with the sl., quiver varieties. The localization theorem states that
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under certain assumptions the equivariant cohomology of a space with the action
of a torus T is isomorphic to the equivariant cohomology of its T-fixed points.
Thus, the localization theorem yields an isomorphism between the geometric
constructions of the bosonic and fermionic Fock spaces and a geometric boson-
fermion correspondence. We then see that the bosons correspond to “global”
additions of points while the fermions corresponds to “local” operators. That
is, the bosons naturally act on the equivariant cohomology of the entire Hilbert
scheme while the fermions naturally act at its torus fixed points.

We note that in [13] Li, Qin, and Wang found that the multi-point trace
function, a generating function of intersection numbers of equivariant Chern
characters in spaces isomorphic to the Hilbert schemes mentioned above, is re-
lated in a simple way to the characters of the fermionic Fock space when the
equivariant cohomology of these spaces (with the natural geometric structure of
bosonic Fock space) is identified with fermionic Fock space via the boson-fermion
correspondence.

As mentioned above, the geometric constructions of the two representations
considered in this paper are not new. The goal here is rather to examine the
interplay between them. The important step is the identification of the quiver
varieties for sl,, with the torus-fixed points of the Hilbert scheme. We believe
this point of view to be important for two reasons. First of all, it allows one to
identify a fundamental concept in equivariant cohomology, the localization the-
orem, with an important concept in mathematical physics, the boson-fermion
correspondence. Secondly, we expect this idea to lead to other interesting re-
sults. For example, if one considers a finite cyclic subgroup I' of the torus, the
I'-fixed points of the Hilbert scheme can be naturally identified with affine quiver
varieties of type A. Thus, we expect that an extension to this setting of the ideas
presented here will lead to new geometric interpretations of the vertex operator
construction of representations of affine Lie algebras (see [7] for some results in
this direction) and perhaps explicit algebraic descriptions in the vertex operator
framework of the natural bases coming from the geometric picture. We see the
current paper as an important first step in this direction.

The organization of the paper is as follows. In Sections 1 and 2 we review
the boson-fermion correspondence and the localization theorem in equivariant
cohomology. In Section 3 we describe the geometric construction of fermionic
Fock space using quiver varieties and in Section 4 we describe the torus fixed
points of the Hilbert scheme and their identification with quiver varieties. Then
in Section 5 we recall the geometric realization of bosonic Fock space using
Hilbert schemes. Finally, in Section 6 we state the geometric boson-fermion
correspondence.

1. The boson-fermion correspondence. The boson-fermion correspon-
dence is an isomorphism between two representations of an infinite-dimensional
Heisenberg algebra (or the closely related oscillator algebra). These representa-
tions are on the bosonic and fermionic Fock spaces. In this section we recall the
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two representations and the isomorphism between them. For further details we
refer the reader to [9, §§ 14.9-14.10].
Define the oscillator algebra to be the Lie algebra

s:@«:sm@u(

meZ

with commutation relations
(1.1) 5, K] =0, [Sm,Sn] =mbm _nK.

The subalgebra spanned by s,, n # 0, and K is an infinite-dimensional Heisen-
berg algebra. The oscillator algebra has a natural representation on the full
bosonic Fock space

B= C[pl;p?;“';q,q_l]a

a polynomial algebra on indeterminates pi,po,... and g,¢~'. Physically, this
space can be thought of as a certain state space of bosons (particles of integer
spin). The indeterminate py represents a particle in state k. Note that more
than one boson can occupy the same state.

The representation r? of the oscillator algebra s on B is given by

The operators s_,, and s,, can be thought of as creation and annihilation oper-
ators respectively.

We next describe another representation of the oscillator algebra. An infinite
expression of the form

g Ay Nig Ae e
where ig,71,... are integers satisfying
Tg > 101 >0g >+, ip =ip_1 — 1 for n >0,

is called a semi-infinite monomial. Let F be the complex vector space with basis
consisting of all semi-infinite monomials, and let H( -, -) denote the Hermitian
form on F' for which this basis is orthonormal. F' is called the full fermionic
Fock space. Physically, it can be thought of as a certain state space of fermions
(particles of half-integer spin), with the integers appearing in a semi-infinite
monomial labeling the various states. Note that the fermions satisfy the Pauli
exclusion principle: no two particles can occupy the same state. Let

Im)=mAm-—-1Am—2A---
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be the vacuum vector of charge m. We say that a semi-infinite monomial has
charge m if it differs from |m) at only a finite number of places. Thus ¢ =
ig Aig A --- is of charge m if iy = m — k for k > 0. Let F(™) denote the
linear span of all semi-infinite monomials of charge m. Then we have the charge

decomposition
F=rm.

mEZ

We call F(© fermionic Fock space.

To any partition A = (A\y > Ay > -+ > 0) we associate a semi-infinite mono-
mial ¢y = ig Aiy A--- of charge m, by letting i = (m — k) + \. This gives
a bijection between the set of all semi-infinite monomials of a fixed charge m
and the set P of all partitions (finite non-increasing sequences of non-negative

integers). We define the energy of vy to be || := >, A;, the size of the partition

A Let F j(m) denote the linear span of all semi-infinite monomials of charge m

and energy j. We then have the energy decomposition

(m) _ (m)
Fom =3 "Fm™.
JEZ
For j € Z, define the wedging and contracting operators 1; and 1} on F' by:

0 if j =i, for some s,
(L)t hig A Nig N Ndgpa A i i > 5 > dgyq.

wm'_om_mm)—{

0 if j # i, for all s,

%(0 1 ) {(_1)52'_0/\2'_1/\,,,/\1'3_1/\is+1/\... lfj:Zs

These can be thought of as creation and annihilation operators. The operator
; creates a particle in state j while the operator ¢} annihilates a particle in
state j. Note that

¢j(F(7n)) C plmt+l) 2/Jj*_(F(m)) c pim=1),
The operators ¢; and ¢ are called free fermions. One can check directly that

¢; and 97 are adjoint with respect to the Hermitian form H(-, -) and that the
following relations hold:

(1.2) Yithj + 5 = 0i5, ik + U0 =0, YiYf + Py = 0.

Thus, the operators ¢; and ] generate a Clifford algebra Cl. It is easily seen
that F' is an irreducible Cl-module and that

Yj|m) =0for j <m, o7|m)=0for j >m.
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Let gl denote the Lie algebra of all complex (infinite) matrices (a;;); jez such
that the number of nonzero a;; is finite, with the usual commutator bracket, and
let

sloo = {a € gl | tra = 0}.

Let E;; € gl,, denote the matrix with (4, j)-entry equal to one and all other
entries equal to zero.
There is an embedding gl., — Cl defined by

r(Eij) = ¥ivj

and this defines a representation r of gl on F'. It is easy to see that each F’ (m)
is stable under the action of gl and thus r restricts to a representation r,, of
gl on F(™) for each m € Z. Note that r(*a) and r(a), for a € g, are adjoint
operators with respect to the Hermitian form H.

One can check that gl_ acts by derivations on F'. That is, for a = (a;;) € gl,,

(1.3) rla)(@o Nir A+ )=(a-dg) Nig A~ +igA(a-ig) A---,

where we view j as the vector with j-th component one and all other components
zero. Thus a - zz >, aiji. One can then use the usual rules of exterior algebra
to express the right-hand side of (1.3) in terms of semi-infinite monomials. Thus
F'is an infinite generalization of the usual exterior algebra. For this reason, r is
often called the infinite wedge representation.

The representations r,, are irreducible. Also,

0 ifi<jori=j>m,
Tm(Eij)|m>—{

|m) if j <m.

Thus, as an sleo-module, F("™) is isomorphic to the irreducible integral represen-
tation L(w,,) of highest weight w,,, where wy, is the fundamental weight defined
by <wm,oz]V> = 0ynj. Here the a}/ are the simple coroots and (-, -) is the usual
pairing between weights and coweights. The representation rg of gl (or sls)
on F© is called the basic representation.

We can define an s-module structure on F™ by introducing the free bosons

Qp = Z¢j¢;+n7 ne Z\{O}a

JEZ
ag =Y oy = > Uiy
7>0 7<0

Note that while the sums involved in the above definitions are infinite, all but
a finite number of them act as zero on any semi-infinite monomial, and so the
operations are well-defined.
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PROPOSITION 1.1. ([9, Proposition 14.9])  The map s, — an, n € Z, K —
Id defines an s-module structure on F(™ | and F"™) is irreducible for all m € Z.

Note that
a0|F<m) =ml

and that o, and a_,, are adjoint operators.
It follows from Proposition 1.1 and a uniqueness property for representations
of s (see [9, Corollary 9.13]) that there is a unique isomorphism of s-modules

o F 5 B,
such that o(|m)) = ¢™. Note that
o(F™)y = B™ .= ¢™C[py, pa, .. .]-

We will denote this restriction of o to F(™) by o,,. Also, we call B posonic
Fock space.

For a partition A € P, we recall the definition of the Schur polynomial Sy.
First, one defines the elementary Schur polynomials S,, by

Sp=0forn<0, Sy=1,

1 m m
Sy = Z o 1m0 for > 0.
pEn

Here, p F n means that p is a partition of size n. Recall that m;(u) is the
number of parts of p equal to ¢. Then for A = (A < A2 < ---) € P define

Sx = det(Sx,+j—i)1<ij<|Al-

Note that to translate to the definition of Schur polynomials in the ring of sym-
metric functions in variables 1, 3, ... (see [15]), one should replace p; with the
i-th power sum.

If o) € FU™ is a semi-infinite monomial, then (see [9, Theorem 14.10))

a(ea) = q™ Sz

The process we have just outlined, constructing bosons in terms of fermions
acting on full fermionic Fock space, is called bosonization. There exists an oppo-
site procedure, fermionization, which consists of constructing fermions in terms
of bosons acting on full bosonic Fock space. This task is somewhat more compli-
cated, involving vertex operator algebras. Since we do not need fermionization
in the current paper, we will not describe the procedure here, but instead refer
the reader to [9, §§ 14.9-14.10].
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2. Equivariant cohomology and localization. In this section, we re-
call the definition of equivariant cohomology and the localization theorem. This
will be our main tool in relating the geometric realizations of the bosonic and
fermionic Fock spaces, thus yielding a geometric boson-fermion correspondence.
We concentrate on the case where the group is the torus, and follow the presen-
tation in [2].

Let T'= C* be the one-dimensional torus. For an algebraic variety X equipped
with a T-action, let Hx(X) denote the equivariant cohomology ring of X with
complex coefficients. We recall the definition. Let BT = CP* and ET be the
tautological bundle on CP*. Set Xy = X xp ET. This is a bundle over BT
with fiber X. Then, by definition,

Hp(X) = H"(X7),

where H*(X7) is the ordinary cohomology of X7.

Recall that we have flat equivariant pullbacks and proper equivariant pushfor-
wards in equivariant cohomology. If pt is the space consisting of a single point
with the trivial T-action, then HJ (pt) = C[t] where ¢ is an element of degree 2.
Thus, by the pullback via M — pt, H(X) has the structure of a C[t]-module.
For a proper T-equivariant morphism f: Y — X of algebraic varieties, we have
a Gysin map fi: H3(Y) — Hp(X). If Y is a T-equivariant codimension-k closed
subvariety of X and ¢: Y — X is the inclusion map, we define

Y] =4(ly) € H%k(X),

where 1y € H2(Y) is the unit in H:(Y)

An equivariant vector bundle is a vector bundle E over X such that the action
of T on X lifts to an action of E which is linear on the fibers. Then Er is a
vector bundle over Xt and the equivariant Chern classes ¢l (E) € H;(X) are
defined to be the ordinary Chern classes c¢x(Er). If E has rank r, then the
top Chern class ¢! (E) is called the equivariant Euler class of E and is denoted
er(F) € Hy(X).

Very important in our discussion will be the localization theorem which we
now describe. Suppose that X is smooth and has a T-action. Then the fixed
point locus X7 is a union of smooth connected components Z;. Let ij: Z; — X
be the inclusion and let IV; denote the normal bundle of Z; in X. Then N; is
an equivariant vector bundle and thus has an equivariant Euler class

er(N;) € Hr(Z;).

The equivariant inclusion i;: Z; — X induces the pullback map i : Hi(X) —
H3(Z;). The Gysin map

ijr: Hp(Z;) — Hp(X)
has the property that for any o € H}(Z;),

ii oij(a) = aUer(Nj).
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Let C(t) be the field of fractions of C[t] and form the localization H}(Z;) @ C(t).
Then e (N;) is invertible in H.(Z;) @ C(t). The following proposition is referred
to as the localization theorem.

PROPOSITION 2.1. ([2, Proposition 9.1.2],[1]) There is an isomorphism

Hi(X) @ C(t) = @ Hi(Z)) ® C(t)

given by o+ (i3 (a)/er(N;));j. The inverse map is given by

(o) — Zij!(%‘)

In particular, for any o € H3(X) ® C(t), we have

3. Geometric realization of fermionic Fock space. In this section we
describe a geometric realization of fermionic Fock space using the quiver varieties
of Nakajima and the results of [6]. We only introduce here the special case of
quiver varieties corresponding to the basic representation L(wyg) of the Lie algebra
sl of type Ao. In this case, the quiver varieties are simply points. However,
the reader should keep in mind the fact that the construction generalizes to
irreducible integrable representations of symmetric Kac-Moody algebras (see
[17, 19]). Note that we use a different stability condition than the one used in
[17, 19] and so our definitions differ slightly from the ones that appear there. One
can translate between the two stability conditions by taking transposes of the
maps appearing in the definitions of the quiver varieties. See [18] for a discussion
of various choices of stability condition. Another difference in our presentation
below is that we use equivariant cohomology rather than ordinary cohomology
(or Borel-Moore homology). Since the varieties involved are points, this change
is minor. However, we will need this formulation to connect the quiver variety
picture to the geometric construction of the bosonic Fock space described later.

Let V = @, ¢z Vi be a finite dimensional complex Z-graded vector space of
graded dimension v = (dim Vj)rez. Then we define M(v) to be the set of all
triples (B1,B_1,0) where © € V and B; and B_; are endomorphisms of the
graded vector space V of degrees 1 and —1, respectively, satisfying

[By,B_1] = BiB_1 — B_1B; = 0.

Now, let
Gy =[] GLW)

kel
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Figure 1: The labels of the boxes of the Young diagram D443 1)-

be the group of grading-preserving automorphisms of V. Then we have a natural
action of Gy on M(v) given by

g (B1,B_1,9) = (¢B1g~*,9B_19" ", g(9)).

We say that a graded subspace S of V' is (By, B_1)-invariant if B1(S) C S
and B_1(S) C S. We say that a point (By, B_1,?) of M(v) is stable if any
(B1, B_1)-invariant graded subspace S of V' containing ¢ is equal to all of V.

We let M(v)® denote the set of all stable points. It is known (see [19,
Lemma 3.10]) that the stabilizer in Gy of any point in M(v)® is trivial, and
we define the quiver variety,

M(v) = M(v)®/Gy.

This is a geometric quotient (it can also be viewed as a symplectic quotient,
although we do not discuss the symplectic structure here). For (By, B_1,7) €
M(v)?®, we denote the corresponding orbit in 9 (v) by [By, B_1, 7).

For a partition A € P, let D) denote the Young diagram corresponding to A.
We view D) as a collection of boxes, with b;, € Dy denoting the box in the j-th
column and k-th row where we start numbering from zero. For example, the
labels of the boxes of the Young diagram D(4 43,1 are as in Figure 1.

We define the residue of a box bj;, to be j — k. Define Vk)‘ to be the C-span
of the boxes in Dy of residue k. Then dim V* = v* where v,i‘ is the number of
boxes in Dy of residue k. Define an element (B3, B}, 7*) of M(v) by

By (bj) = bj+1k: J,k € Lo,
B2, (bj k) = bjki1, j: k € Zxo,
7 = boo,
where b;, = 0 if bjr, & D). We picture (B7, B2,,7*) as in Figure 2.
In was shown in [6] that 9t(v) is empty unless v = v* for some A € P. Also,
M(v*) = [B}, B2,,7] is a single point. This follows from the fact that, in
general, the quiver variety 2(v) associated to a Kac-Moody algebra with sym-

metric Cartan matrix C' is connected (see [19, Theorem 6.2]) and its dimension
is given by (see [19, Corollary 3.12])

dime M(v) =209 — v - Cv.
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-4 -3 -2 -1 0 1 2 3 4 5 6 7 8
o000 H— 00— 00— 00— 00— 00— 00— 00— 00— 06— 00— 0—0 oo

Figure 2: A pictorial representation of (B3, B*,,9") for A = (8,7,7,4). The top
line is the Dynkin graph of type A.. The vertices below represent the boxes
bjr € Dy, while the arrows represent the actions of By and B;. The vector
space Vk)‘ is spanned by the vertices directly beneath the vertex k£ in the Dynkin
diagram and the vector 9 = by is indicated by a hollow vertex.

For C the Cartan matrix of type Ao, (i.e., Cjj = 26;5 — 0;—1,; — d;41,j), one can
see from this formula that dim M (v*) = 0 for A € P. This is, of course, not true
in general. For other types, quiver varieties can have higher dimension.
Let the torus T' = C* act trivially on the quiver varieties. Since the equivariant
cohomology of a point H}.(pt) is C[t], we have the following.
o — A
HA(M(v)) = {(C[t] if v=v*for A e P,

0 otherwise.

For k € I, define the Hecke correspondence B (v) to be the variety of all
(B1,B_1,70,5) (modulo the Gy-action) such that (By, B_1,?) € M(v)® and S is
a (By, B_1)-invariant subspace such that dim S = e* where e* has k-component
equal to one and all other components equal to zero. We consider the Gy-orbit
through (By, B_1,9,S5) as a point in M(v — e¥) x M(v) by factoring by the
subspace S in the first factor. Note that from the explicit description of the
M (v) given above, we see that B (v) is empty unless v = v* for some \ € P
such that there exists a u € P with D, differing from D, by the removal of a
single box of residue k. Then

‘Bk‘(v)\) = ([B¥7 Bﬁla k], [Bi\a Bilv 6/\])
Let w: M(v1) x M(v?) — M(v?) x M(v?!) be the map that interchanges the

two factors. We then define two operators Ej, and Fj, that act on @, H}.(9MM(v))
as follows.

(3.1) Epe=1t""1 Upll(pgcﬂ [‘Bk(v))}, c € Hi(M(v)),
(3.2) Fre=tUpy [(pie N [w(Br(v + e, w))]), ce Hp(M(v)).
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Here we have used the projection maps
M(vy) <= M(vy) x M(va) L5 M(vy).

Note that the operators Fj and Fj preserve the subspace

H” = @ B (m()).
AEP

We also define

HY = @ HE () = 53 (| ] M),

AFn AFn

Note that since the M(v?*) are all points, we have
HZE(OM(Y) = tF U HE(OM(VY)), k€ Zs0, A €P.

In particular, we see from this that Ej as defined above is indeed an operator
on HY (a priori, it is an operator on H @ C(t)).

THEOREM 3.1.  The operators Ey and Fy, satisfy the relations of the Cheval-
ley generators of sloe and thus define an action of slos on HY. Under this action,
HE is the basic representation. The class [9(0)] is a highest weight vector and
H2P (90 (v?)) is the weight space of weight wo— Y. vpay,, where ay, are the simple
r00ts of sl -

PrOOF.  This follows immediately from the results of [19]. Our modifica-
tions, as noted at the beginning of this section, are minor. [ ]

4. The Hilbert scheme, torus action and fixed points. In this sec-
tion we introduce the Hilbert scheme of n points in C? and recall some results
regarding the fixed points of the natural torus action. We shall see that these
fixed points are naturally identified with the quiver varieties of Section 3. This
precise relationship between the spaces involved in the geometric constructions
of the bosonic and fermionic Fock spaces will allow us to use the localization
theorem to yield a geometric boson-fermion correspondence. For other results
relating quiver varieties and Hilbert schemes, we refer the reader to [8, 11, 23, 25].

Consider the space of n (unordered) points in C2. This is a singular space,
the singularities occurring when points collide. The Hilbert scheme of n points
in C? is a resolution of singularities of this space. It resolves the singularities
by “retaining information about how points collided”. It is thus a very natural
space and has been used to construct representations of infinite dimensional
Heisenberg algebras and Virasoro algebras. We describe here the former.
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Precisely, the Hilbert scheme X, parameterizes O-dimensional closed sub-
schemes of C? of length n. So if # and y are the standard coordinate functions
on C2?,

X, ={I]Iis an ideal of C[z,y|, dimC[z,y]/I = n}.

Consider the action of the one-dimensional torus T'= C* on C? by

z- (xay) = (zx,z_ly), zeT.
The only fixed point is the origin, which we will denote by w.

The T-action on C2 induces a T-action on X,,. The support of a T-fixed point
in X, is u since it must be a fixed point of C2. In order to explicitly describe the
T-fixed points and relate them to the quiver varieties described above, we give

the following alternate description of the Hilbert schemes (see [20, Theorem 1.9]).
(4.1) X, = {(B',B*9)|[B',B* =0, (B',B% ) is stable}/GL(V),

where BY € End(V), & € V = C", and we say that (B!, B2,7) is stable if there
exists no proper subspace S & V such that B/(S) C S for j = 1,2, and ¢ € S.
The action of GL(V) is given by

g-(B',B*9) = (gB'g"",gB% ", g(v)), g€ GL(V).
In this description, the action of T on X, is given by
z-[BY,B* %] = 2B, 27 'B% 9], z¢T.
Here [B!, B, 9] denotes the GL(V)-orbit through (B!, B2 7).
From another description of the Hilbert scheme (see [20, Theorem 3.24]),

one can see that [B', B2, 7] € X,, is a fixed point if and only if there exists a
homomorphism A: T — U(C™) such that

= \(2)"'B'A(2),
2TIB? = M2) T BPA(2),
=A(2) 7 (9).

Thus, if [B!, B2, 7] is a fixed point, we have a weight decomposition of V with
respect to \(z) given by
V=DV
k

where Vi, = {v € V | A(z) - v = 2z Fv}. It follows that the only non-zero
components of B! and B? are

(4.2) B': Vi = Vi,
(4.3) B*: Vi, — Vi,
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and
(4.4) v € V.

So B! and B? are endomorphisms of the graded vector space V of degrees 1 and
—1, respectively. Conversely, one can see that any triple (B!, B2, 7) satisfying
conditions (4.2)—(4.4) for some A is a T-fixed point. This precisely matches the
description of the points of the A, quiver varieties given in Section 3. We simply
set By = B! and B_; = B2, and then the T-fixed points of the Hilbert scheme
are exactly the quiver varieties of type A... In particular, the fixed point set
consists of isolated points. Recall that the total dimension of the vector space
V appearing in the definition of the quiver variety 9t(v?) is |A|, the size of the
partition A. Thus there is a natural identification

Xy = [me,

AFn

and hence a natural identification

D (1) =",
n

5. Geometric realization of bosonic Fock space. In this section we
describe the geometric realization of bosonic Fock space in the equivariant co-
homology of the Hilbert schemes of points in C2. We refer the reader to [7, 12,
16, 20, 24] for more details.

Let ¥ be the x-axis in C? and recall that u is the origin. As a T-module, we
have T,,3 = 01 where the 6 is the one-dimensional standard T-module. By the
localization theorem,

(5.1) ] = —t[u].

The tangent space of X,, at the T-fixed point M(v?) is T-equivariantly iso-
morphic to (see [20, Proposition 5.8] and [4, 16])

Tfm(v’\)Xn — @ (ehook(b) ® efhook(b))
beDy

where hook(b) is the hook length of the box b. Recall that the hook length of a
box is the number of boxes directly to its right plus the number of boxes directly
below it plus one (for the box itself). For example, suppose b is the indicated
box in the following Young diagram.
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Then hook(b) = 6 (the number of boxes containing bullets plus one for the box
containing b). Thus

(5.2) er(Ton(yy Xn) = (—1)"h(X)*t*",
where
h(A) = ] hook(b).
beDy
Note that [9(v*)] € H"(X,,). Define
= St L

The odd Betti numbers of X,, are equal to zero and H*(X,,) = 0 for k > 2n.
We have
HEF(X,) =t"""UH"(X,), k=>n.

Define -
HY = H{(X,), HP =S
n=0
We now introduce a bilinear form on the equivariant cohomology. Let
v X X,
denote the inclusion of the torus fixed points. Then we have the Gysin map
L H}(Xg;) — Hi(Xp).
We denote the induced map Hi(XT) — Hix(X,)" also by u, where

Hp(Xy)' = Hp(X,,) @ C(t),
Hp(Xn)" = Hi(Xn) @ C(1)

are the localizations. This is an isomorphism by the localization theorem.
Define the bilinear form (-, -) : H5(X,,)" x H3(X,) — C(¢) by

<a7 /6> = (_1)npw!71(0‘ U 6)7
where p: X — pt is the projection to a point. This induces a bilinear form on
H = @D Hi(Xn)"
n=0
For A\, u b n, we have that (see [24, Lemme 2] and [12, Equation 2.21])

(A [u]) = Ox -
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Now, by the localization theorem, the classes [A], A F n, form a linear basis of the
HZ. Thus, the restriction to HZ of the bilinear form (-, -) is non-degenerate.
This induces a non-degenerate bilinear form (-, -) : HZ x H? — C.

We now discuss the action of the oscillator algebra s on the cohomology of
the Hilbert schemes. Define

Yni =1, I2) € Xnti x Xy | I C Iz, Supp(I2/11) = {z}, z € X}
We have the two natural projections
XnJri ‘2 n+i X Xn E’ Xn

The restriction of 71 to X, ; is proper. Thus we can form the linear operator
p_; € EndH' (see [24]) by

poi(a) =mu(myaUE,.]), o€ Hp(X,).

We then define p; € End H' to be the adjoint operator to p_; with respect to the
bilinear form (-, -} on H'. One can show that

pi(a) = (=1)'my (0 x 1), (mfa U [Baii)), o€ Hp(X,)',

where 7} is the natural projection X,:f X Xp_i — Xn_i. We also set pg = 0.

For i > 0, the restriction p_; to H? yields a linear operator in End H?. The
restriction of p; to H is the adjoint operator to p_; with respect to the non-
degenerate bilinear form (-, -) : H? @c HP — C, which is the restriction of the
bilinear form (-, -) on H'. Thus the restriction of p; to H? is an operator in
End H”, again denoted by p;.

PROPOSITION 5.1. ([24, Lemme 1])  The operators py, k € Z, acting on HP
satisfy the following Heisenberg commutation relations:

[Pk, p1] = Kok, 1d.
In particular,

Sk — Pk, ke Zv
K —1d,
defines an action of the oscillator algebra s on HP. Moreover, HP is isomorphic

to the bosonic Fock space B"). The unit 1 € H%(X,) of Hx(Xo) corresponds to
the highest weight vector 1 € B,
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6. A geometric boson-fermion correspondence. We now have all the
tools necessary to describe the geometric construction of the boson-fermion cor-
respondence. We have seen how the quiver varieties used in the geometric real-
ization of fermionic Fock space can be naturally viewed as the set of torus fixed
points of the Hilbert scheme used in the geometric realization of the bosonic
Fock space. We are then in a position to invoke the localization theorem which
gives an isomorphism between the equivariant cohomology of the Hilbert scheme
and its fixed point set thus yielding our geometric version of the boson-fermion
correspondence.

Define a map n: HF — HP by

(_1)"\| —|Al; B 2[A| A
n(e) = T)\)t Mixi(a) e HE|,  a € HPY (MEY).

The factor of (—1)IMN¢=IA/h()), which arises from the equivariant Euler class at
the fixed point, ensures that 7 is an isometry if we endow H’ with the bilinear
form for which the ¢t/ U Lop(vr) form an orthonormal basis. It then follows from

the localization theorem and (5.2) that 7 is an isomorphism with inverse given
by

8 (st ™ia(8), €HE, BemHE.

AFn

( 1
h(X)
For a partition A = (A; > Ao > -+ > ), define

zn = [ [ Vmi(\),

i>1

pr =T,

i>1

pr=p - 1€HE \n.

It follows from Proposition 5.1 and the fact that p_; and p; are adjoint operators
that (px,pu) = 0x,u2a-

THEOREM 6.1.

(i)  There exists an isomorphism ¢: HEP — BO) of s-modules preserving bilinear
forms such that

d(pr) =pa,  ([A]) = Sx.

(ii) There exists an isomorphism of sleo-modules 7: F(O) — HY such that

T(px) = thy 1973(‘,,\).

(iii) We have ¢p onoT = 0y.
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PROOF.  Part (i) is proven in [24, Proposition 2]. Part (ii) follows from a
comparison of the explicit action sl on the indicated bases in both spaces (see
[6, Proposition 5.3]). Part (iii) follows from the fact that both ¢ o o7 and oy
are linear isomorphisms sending a semi-infinite monomial ¢y to S). [ |

We can then define geometric bosons on the geometric fermionic Fock space
as follows. For o € HF,

sp(a) =n"topron(a), K=Id.

This defines a representation of s on HY and H¥ = B() as s-modules.
We can also define an action of sl,, on the geometric bosonic Fock space by
a similar procedure. For € H" and k € Z,

Ep=noEgon '(B),
Fr=noF,on '(B).

We thus see that in terms of the geometry of the Hilbert scheme, the bosons
correspondence to global operators while the fermions correspond to local oper-
ators.

We should also note that the energy decomposition of the fermionic Fock
space has a nice geometric interpretation. It corresponds to grouping the quiver
varieties according to the Hilbert scheme of which they are a fixed point. More

precisely,
T(FY) = Hy = HF"(X7).

Note that we have described the geometric boson-fermion correspondence as
a relationship between the basic representation of sl., on fermionic Fock space
F©) and an irreducible representation of the Heisenberg (or oscillator) algebra.
We could also define the geometric action of the fermions themselves on the
full fermionic Fock space F. To do this we would have to introduce the quiver
varieties corresponding to the irreducible representations L(wy) for k € Z. These
are identical to those for L(wp), except that one shifts the grading on the vector
space V. Then the fermions would be operators between the cohomology of
these different quiver varieties (see [22] for a similar construction of Clifford
algebras). However, the sl action seems to be simpler geometrically and so we
have emphasized its role.

We should also comment on why the particular T-action we have considered
was chosen. There is a natural action of the two-dimensional torus T2 = (C*)?2
on C? given by

(21,22) - (x,y) = (217, 22y), (21,22) € T°

and this induces a T2 action on the Hilbert scheme X,,. The T-action that we
have considered arises from the embedding T' — T? given by z — (z,271). A
more general embedding of T into T2 can certainly be considered. This was
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examined in [12, 16] and one finds that the fixed point contributions to the
equivariant cohomology correspond to Jack polynomials which generalize the
Schur polynomials above. Furthermore, one could consider the entire 72 action
and one would obtain polynomials with an enlarged coefficient ring containing
a parameter which specialize to the Jack polynomials. However, in these more
general settings, one loses the natural identification of the quiver varieties of type
Ao with the set of fixed points. Under the embedding z +— (z, z71), the grading
on the vector space V in the definition of the quiver variety appears naturally
as described in Section 4.
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