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THE NOETHER NUMBER IN INVARIANT THEORY

DAVID L. WEHLAU

Presented by Vlastimil Dlab and Ram Murty, FRSC

Abstract. Let F be any field. Let G be any reductive linear algebraic
group and consider a finite dimensional rational representation V of G.
Then the F-algebra F[V ]G of polynomial invariants for G acting on V is

finitely generated. The Noether Number β(G,V ) is the highest degree of
an element of a minimal homogeneous generating set for F[V ]G. We survey
what is known about Noether Numbers, in particular describing various

upper and lower bounds for them. Both finite and infinite groups and both
characteristic 0 and positive characteristic are considered.

Résumé. Soit F un corps commutatif. Soit G un groupe algébrique
linéaire réductif, et V une représentation rationelle de dimension finie sur
F. Alors F[V ]G, l’anneau des polynômes invariants pour l’action de G sur

V , admet un nombre fini de générateurs. Le nombre de Noether β(G,V )
est le degré maximal d’un membre d’un ensemble minimal de générateurs
homogènes de F[V ]G. Nous faisons une revue des résultats connus sur
les nombres de Noether. En particulier, nous décrivons certaines bornes

supérieures et inférieures pour les nombres de Noether. Nous considérons

à la fois les groupes finis et infinis, sur des corps de charactéristique 0 ou
p > 0.

1. Introduction. The central problem in invariant theory is to find gener-
ators for the ring of invariants of some group representation. Given a particular
action, it is often possible to construct many invariants. However, the question
of when enough invariants have been obtained to generate the full ring of invari-
ants is much more difficult. One solution to this difficulty is to find some upper
bound on the degree of the invariants needed. The highest degree of an invariant
required in a generating set is called the Noether Number of the representation.

Lately there have been many new results bounding the Noether Number for
various representations. Here we will summarize many of these. There are a
number of general references which discuss bounds on the Noether Number. The
excellent book [7] by H. Derksen and G. Kemper covers all aspects of constructive
invariant theory. The two articles [5], [6] by Derksen and the articles [7] by
Derksen and H. Kraft and [51] by the author discuss the characteristic zero
situation for infinite groups. F. Knop [35] has a recent article which examines
finite modular groups over general rings.
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2. Preliminaries. We begin with some definitions. We refer the reader
to [7], [24], [48] for proofs and further details concerning these definitions. A
linear algebraic group defined over a field F is any group G which is isomorphic
to a closed (in the Zariski topology) subgroup of GLt(F) for some t. Important
examples include F under addition, F× under multiplication, GLn(F), SLn(F),
any finite group, and all the classical Lie groups.

Suppose now that F is algebraically closed. A linear algebraic group is con-
nected if it is connected in the topological sense. We write G0 to denote the
connected component of G which contains the multiplicative identity e of G. It
is easy to see that G0 is a normal subgroup of G of finite index.

A Borel subgroup B of G is any maximal solvable connected subgroup of G.
A linear algebraic group is a torus if it is isomorphic to (F×)r for some non-
negative integer r. Two of the central theorems of algebraic group theory are
that all Borel subgroups of G are conjugate and that all maximal tori contained
in G are conjugate.

The radical of G is the connected normal subgroup

Rad(G) =
( ⋂

B is a Borel
subgroup of G

B
)0

.

A linear algebraic group G is reductive if Rad(G) is a torus and is semi-simple
if Rad(G) = {e}. For example all finite groups are both reductive and semi-
simple. The dimension of G is its dimension as an affine subvariety of GLt(F).
Its rank is the dimension of any maximal torus in G.

We consider a linear algebraic group G over an arbitrary field F and a finite
dimensional rational representation ρ : G → GL(V ) defined over F. The term
rational means that ρ is given by polynomial functions on G. A more precise
formulation of this is given in Section 8. Here and below we denote the G-action
by writing h · v for (ρ(h))(v) where h ∈ G, and v ∈ V .

Throughout we will always assume that representations are rational and finite
dimensional. We will use F to denote the underlying field over which G and V
are defined unless specified otherwise. We say the representation is faithful if
ρ is injective and almost faithful if ρ has a finite kernel. We write F[V ] for the
symmetric algebra on V ∗. If {x1, x2, . . . , xn} is a basis for V ∗ then F[V ] is the
polynomial ring in the n indeterminants x1, x2, . . . , xn. This ring is graded by
polynomial degree: F[V ] =

⊕∞
d=0 F[V ]d.

The action of G on V induces a natural action of G on V ∗ given by

(g · f)(v) = f(g−1 · v) for all f ∈ V ∗, v ∈ V and g ∈ G.

The action on V ∗ extends multiplicatively to a degree preserving action of G on
F[V ]. The ring of invariants F[V ]G is the graded subring of F[V ] consisting of
those polynomials which are fixed by every element of G:

F[V ]G :=
{
f ∈ F[V ] | g · f = f for all g ∈ G

}
.
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In his famous address to the International Congress in 1900, the 14th problem
posed by David Hilbert was to determine whether every ring of invariants is
finitely generated. Hilbert had already shown this to be true for SLn(C) and
GLn(C). In 1959, M. Nagata [36] answered Hilbert’s question in the negative by
giving an example of a 32-dimensional representation of a 28-dimensional group
defined over the field of complex numbers C whose ring of invariants is not finitely
generated. For a discussion of Hilbert’s 14th problem and its counterexamples
see the article by Gene Freudenberg [17].

Due to results of Hilbert, H. Weyl, D. Mumford, Nagata and W. Haboush
among others, it has been shown that F[V ]G is always finitely generated if G is
a reductive group. Accordingly we will assume from now on that G is reductive.

We define the Noether Number of V ,

β(G,V ) := min
{
d
∣∣ F[V ]G is generated as a ring by

d⊕
i=0

F[V ]Gi
}

and the Noether Number of G,

β(G) := sup{β(G,V ) | V is a finite dimensional G-representation over F}.

Note that the number β(G) depends upon the underlying field F which will be
understood from the context.

Consider the maximal homogeneous ideal F[V ]G+ :=
⊕∞

d=1 F[V ]Gd ⊂ F[V ]G

and the natural surjection ν : F[V ]G+ → F[V ]G+/(F[V ]G+)
2. The graded Nakayama

Lemma [7, Lemma 3.5.1] implies that a set of homogeneous positive degree in-
variants {f1, f2, . . . , fs} generates F[V ]G if and only if its image {ν(f1), ν(f2), . . . ,
ν(fs)} spans the graded vector space F[V ]G+/(F[V ]G+)

2. Moreover this set of in-
variants minimally generates F[V ]G if and only if its image under ν is a vector
space basis for F[V ]G+/(F[V ]G+)

2. Thus we can characterize β(G,V ) as the maxi-
mum integer d such that

(
F[V ]G+/(F[V ]G+)

2
)
d
6= {0}.

Suppose now that F is any field extension of F and that G and V are defined
over F. Extending F to F, we may replace V by V := V ⊗F F and G ⊂ GLt(F) ⊂
GLt(F) by its toplogical closure G in GLt(F). Clearly, a set of invariants in
F[V ]G+ maps to a basis for F[V ]G+/(F[V ]G+)

2 if and only if this same set maps to a

basis for F[V ]G+/(F[V ]G+)
2. This shows that β(V,G) = β(V ,G). For this reason,

unless stated otherwise, we will not assume that the field F is algebraically closed.
Below, when working over non-algebraically closed fields, we will be considering
a finite group G which topologically may be viewed as a set of discrete points,
and so we will have G = G.

The behaviour of rings of invariants depends greatly upon whether the char-
acteristic of the field F is zero or not. For example, many classical results which
hold in characteristic zero fail over fields of positive characteristic. For finite
groups the key question is whether |G| is a unit. If G is finite we distinguish
two cases: if |G| ∈ F× the group and its (faithful) representations are called
non-modular ; otherwise they are called modular.
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One very important tool, if it exists, is a so-called Reynolds operator. A
Reynolds operator is a G-equivariant projection φ : F[V ] → F[V ]G, i.e., an F-
linear map satisfying the two conditions that φ(g · f) = φ(f) for all g ∈ G,
f ∈ F[V ] and that φ(f) = f for all f ∈ F[V ]G. If a Reynolds operator for V
exists, it is unique.

In characteristic zero, every representation V of a reductive group G has a
Reynolds operator. For finite non-modular groups, averaging over the group is
the Reynolds operator:

φ(f) :=
1

|G|

∑

g∈G

g · f.

G. Kempf [33] showed how bounds on the Noether Numbers for finite groups,
semi-simple groups, and tori may be combined to obtain a bound on the Noether
Number for any reductive group in characteristic 0, as follows. Let V be a rep-
resentation of a reductive group G defined over a field F of characteristic 0.
Suppose that H is a normal subgroup of G and suppose that H is itself re-
ductive. The action of G on V induces an action of G/H on F[V ]H . De-

fine W by W ∗ :=
⊕β(H,V )

d=0 F[V ]Hd . Then W is a finite dimensional rational
representation of the reductive group G/H. Consider the natural surjection
φ : F[W ] → F[V ]H induced by the inclusion of W ∗ into F[V ]H . (Recall that
F[W ] is the symmetric algebra on W ∗.) This map commutes with the action
of G/H. Applying the Reynolds operators for G/H for these representations
gives a surjection φG/H : F[W ]G/H → (F[V ]H)G/H = F[V ]G. From this we see
that β(G,V ) ≤ β(G/H,W ) · β(H,V ). Thus we obtain a bound for the Noether
Number of G acting on V using the two smaller groups H and G/H.

For the general reductive group G acting on the representation V we first
consider the connected normal reductive subgroup G0 and the finite quotient
group G/G0. Then the radical of G0 is a torus T . Furthermore T is normal in
G0 and the quotient G0/T is a connected semi-simple group. Thus we find

β(G,V ) ≤ β(G/G0,W ) · β(G0, V )

≤ β(G/G0,W ) · β(G0/T, U) · β(T, V )

for certain representations W of G/G0 and U of G0/T .

3. Bounds for non-modular representations of finite groups. In
1915, Emmy Noether [37] proved, for a finite group G over the field of complex
numbers C, that β(G) ≤ |G|. An examination of her proof shows that it is valid
for any field of characteristic 0 and also for fields of characteristic p if |G| < p.
In 1926 [38], she proved that the ring of invariants of a modular representation
of a finite group is finitely generated but did not give a bound for β(G,V ).

Here we will prove that β(G) ≤ |G| under the weaker hypothesis that |G|
is invertible in F. This was proved independently by P. Fleischmann [12] and
J. Fogarty [16] in 2000. D. Benson (see [7, p. 109]) simplified Fogarty’s proof
and here we present this simplified version.
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Theorem 3.1. Let V be a vector space and let G be a finite subgroup of
GL(V ). If |G| is invertible in F then β(G,V ) ≤ |G|.

Proof. Put m := |G| and [m] = {1, 2, . . . ,m}. We begin by consider-
ing F[V ]+ :=

∑∞
d=1 F[V ]d, the unique homogeneous maximal ideal of F[V ].

We first show that its m-th power (F[V ]+)
m is a subset of the Hilbert ideal

J := (F[V ]G+)F[V ], the ideal generated by the homogeneous invariants of positive
degree.

To see this take any f1, f2, . . . , fm ∈ F[V ]+. Write G = {g1, g2, . . . , gm},
let g ∈ G and consider the product

∏m
i=1

(
fi − (ggi)(fi)

)
= 0. Expanding this

expression and summing over all g ∈ G gives

∑

A⊆[m]

(−1)m−|A|hA
∏

i∈A

fi = 0,

where hA :=
∑

g∈G

∏
i∈[m]\A g(gifi) ∈ F[V ]G.

The summand corresponding to A = [m] in the above is |G|f1f2 · · · fm. For all
other subsets A, we have hA ∈ F[V ]G+, and thus the summand corresponding to
A lies in the Hilbert ideal J . Therefore f1f2 · · · fm ∈ J and thus (F[V ]+)

m ⊆ J .

By the Hilbert Basis Theorem (Theorem 5.2 below), there exist finitely many
homogeneous invariants h1, h2, . . . , hr ∈ F[V ]G which generate the Hilbert ideal
J . Without loss of generality we may assume that {h1, h2, . . . , hr} is a minimal
such set of invariants. Note that if deg hi > m then hi =

∑n
j=1 hijxj , where each

hij is a homogeneous element of F[V ] = F[x1, x2, . . . , xn] with deg(hij) ≥ m, i.e.,
where hij ∈ (F[V ]+)

m ⊂ J . Since m ≤ deg hij < deg hi, we see that hij lies in

the ideal of F[V ] generated by h1, h2, . . . , ĥi, . . . , hr. Thus if deg hi > m then
hi is not required as a generator of J . Thus our assumption that h1, h2, . . . , hr
minimally generate J implies that deg hi ≤ m for all i = 1, 2, . . . , r.

Consider any invariant f ∈ F[V ]G with deg(f) > m. Since deg(f) > m we
see that f ∈ (F[V ]+)

m ⊆ J and we may write f =
∑r

i=1 kihi where each ki is
a homogeneous element of F[V ]+. Applying the Reynolds operator φ we obtain
f = φ(f) =

∑r
i=1 φ(kihi) =

∑r
i=1 φ(ki)hi. Since φ(ki) ∈ F[V ]G, this expresses

f as a polynomial in homogeneous invariants of degree strictly less than deg(f).
Hence f cannot be part of a homogeneous minimal algebra generating set for
F[V ]G.

The above proof shows that in the non-modular case the Hilbert ideal is
generated by homogeneous elements of degree at most |G|. G. Kemper [7, Con-
jecture 3.8.6 (b)] has made the following conjecture.

Conjecture 3.2. Let V be a representation of a finite group G. The Hilbert
ideal (F[V ]G+)F[V ] is generated by homogeneous elements of degree at most |G|.
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Consider a finite cyclic groupG of order n and let F be a field of characteristic 0
containing a primitive n-th root of unity, ξ. Let σ denote a generator of G. There
are exactly n inequivalent irreducible representations W0,W1, . . . ,Wn−1 of G,
each of which is one-dimensional. The action of G on Wi is given by σ · v = ξiv
for all v ∈Wi.

It is easy to see that F[Wi]
Cn = F[xn/ gcd(i,n)], and thus if i is relatively prime

to n then β(Cn,Wi) = n. Therefore we see that Noether’s bound is sharp for
cyclic groups.

Barbara Schmid [44] proved the following two inequalities for finite groups.

Proposition 3.3. Let G be a finite group defined over a field of character-
istic zero. Let H ≤ G be a subgroup of G.

(1) β(G) ≤ β(H)[G : H].
(2) If H is normal in G then β(G) ≤ β(H)β(G/H).

Remark 3.4. Although Schmid proved β(G) ≤ β(H)[G :H] under the as-
sumption that G is finite, her proof only requires that H be of finite index in G.

Remark 3.5. Fleischmann [12] proved part (2) of Proposition 3.3 holds un-
der the weaker assumption that G is non-modular.

Remark 3.6. It is not known whether part (1) of Proposition 3.3 always
holds over a field of positive characteristic when G is non-modular. This question
is known as the “Baby Noether gap”.

Using the above inequalities Schmid proved:

Theorem 3.7. Let G be a finite group defined over a field of characteristic
zero. If G is not cyclic then β(G) < |G|.

Sketch of Proof The proof is by induction on |G|. By Proposition 3.3 we see
that if G has either a proper subgroup H < G or a proper quotient G/H which
is not cyclic, then by induction β(G) < |G|. Thus it is only necessary to consider
groups G all of whose proper subquotients are cyclic.

We consider two possibilities: G is abelian or is not abelian. The abelian case
is easily handled and we omit discussing it here.

If G is not abelian and all proper subquotients of G are cyclic then G must be
a semi-direct product of two groups of prime order: G = Cp ⋊Cq where p and q
are two primes with q dividing p− 1. By a careful study of the representations
of such groups, G, Schmid was able to prove that β(G) ≤ pq − q + 1 < |G|.
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The above proof shows the importance of the groups Cp ⋊ Cq for two primes
q < p. The simplest case of such groups are the dihedral groups Cp⋊C2. Schmid
studied this case in detail and obtained the following more general exact result
over C.

Proposition 3.8. β(Dn) = n+1 where Dn is the dihedral group of order 2n.

Schmid also proved β(A4) = 6.

In his Ph.D. thesis [39], Vivek Pawale studied β(Cp⋊Cq) over C, and he made
the following conjecture.

Conjecture 3.9. Let p and q be two primes such that q divides p−1. Then
β(Cp ⋊ Cq) = p+ q − 1 (where the semi-direct product is not direct) over C.

Pawale proved β(Cp ⋊ C3) ≤ p+ 6 and β(C7 ⋊ C3) = 9.

N. Wallach (see [9]) used the action of cyclic subgroups of Σn to prove the
following lower bound which shows that there can be no polynomial upper bound
on β(Σn).

Theorem 3.10. For all n sufficiently large,

β(Σn) ≥ eC
√
n lnn,

where C is a positive constant less than 1.

The work of Schmid has been extended by a number of people.

M. Domokos and P. Hegedūs [10] examined Schmid’s proof by induction and
were able to modify it to show:

Proposition 3.11. Let G be a finite non-cyclic group in characteristic 0.

(1) If |G| is even then β(G) ≤ 3
4 |G|.

(2) If |G| is odd then β(G) ≤ 5
8 |G|.

M. Sezer [45] extended Proposition 3.11 to the non-modular case, i.e., where G
is a finite group, F is a field of positive characteristic p and p does not divide |G|.

R. Shank [46] has observed that Schmid’s induction proof works on any class
of finite groups which is closed under taking subquotients and will yield a bound
coming from the value of β(G) for the minimal groups in such a class. Thus the
fractions in the statement of Proposition 3.11 bounds arise from the fact that
the Klein four group and the semi-direct products Cp⋊Cq are the two base cases
for the induction proofs. It is easy to see that β(C2×C2) = 3 and Domokos and
Hegedūs prove that β(Cp ⋊ Cq) ≤ 5

8pq (for p and q odd primes with Cp ⋊ Cq

non-abelian).
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3.12. Vector invariants. Let V be an n dimensional representation of G. Let
m ∈ N. We denote by mV the nm dimensional representation

mV := V ⊕ V ⊕ · · · ⊕ V︸ ︷︷ ︸
m copies

on which G acts diagonally via g · (v1, v2, . . . , vm) = (g · v1, g · v2, . . . , g · vm).
Invariants lying in F[mV ]G are called vector invariants of V . The classical
procedure, known as polarization, constructs invariants of mV from invariants
of V as follows. Given f ∈ F[V ]G consider the formal expansion

f(t1v1 + t2v2 + · · ·+ tmvm) =
∑

ei∈N1≤i≤m

te11 t
e2
2 · · · temm fe1,e2,...,em(v1, v2, . . . , vm)

where (v1, v2, . . . , vm) is the general point in mV and t1, t2, . . . , tm are formal
variables. The elements fe1,e2,...,em are homogeneous invariants in F[mV ]G called
polarizations of f . Notice that the polarizations of f have the same degree as f .
For more details on polarization see [53].

An important question is to consider the behaviour of β(G,mV ) as a function
of m. The following theorem of H. Weyl [53] does not assume that G is finite.

Theorem 3.13. Let V1, V2, . . . , Vs be representations of the reductive group
G defined over a field F of characteristic zero. Put ni := dimVi and take integers
mi ≥ ni for i = 1, 2, . . . , s. Then F[m1 V1 ⊕m2 V2 ⊕ · · · ⊕ms Vs]

G is generated
by the polarizations of a set of generators of F[n1 V1 ⊕ n2 V2 ⊕ · · · ⊕ ns Vs]

G. In
particular

β(G,m1 V1 ⊕m2 V2 ⊕ · · · ⊕ms Vs) = β(G,n1 V1 ⊕ n2 V2 ⊕ · · · ⊕ ns Vs).

A consequence is the following.

Corollary 3.14. Let G be a finite group and let F be a field of character-
istic zero. Let Vreg denote the regular representation of V . Then

β(G) = β(G,Vreg).

Proof. Let V1, V2, . . . , Vs be a complete set of inequivalent indecompos-
able representations of G. (Note that indecomposability and irreduciblility
are equivalent here.) Put ni = dim(Vi) for i = 1, 2, . . . , s. Then Vreg ∼=
n1 V1 ⊕ n2 V2 ⊕ · · · ⊕ ns Vs. Since every representation V of G may be writ-
ten in the form V ∼= m1 V1 ⊕m2 V2 ⊕ · · · ⊕ms Vs for some non-negative integers
m1,m2, . . . ,ms, the result follows.
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4. Bounds for modular representations of finite groups. The be-
haviour of β(G,V ) in the modular setting is in sharp contrast to the character-
istic zero situation. In a article published in 1990, David Richman [41] proved
the following.

Theorem 4.1. Let Fq denote the finite field of order q and let G = SL(V )
where V is an n dimensional vector space over Fq. Suppose that m > n > 1.
Then

β
(
SL(V ),mV

)
≥ (m− n+ 2)(q − 1).

In 1990 (published posthumously in 1996), Richman [42] proved the following
more general result.

Proposition 4.2. Let F be a field of positive characteristic p, let G be a
finite group whose order is divisible by p and let V be any faithful representation
of G. Then

β(G,mV ) ≥
m(p− 1)

p|G|−1 − 1
.

Here we will give a proof of a related but simpler result of Richman’s which
applies over the prime field, i.e., for the case F = Fp. In particular we will show
that for that case

β(G,mV ) ≥
m

dimV − 1
.

Consider an element σ ∈ G of order p. We choose a basis {x1, x2, . . . , xn} for
V ∗ such that the element σ ∈ GL(V ∗) takes Jordan normal form. Since σ has
order p and the only p-th root of unity in characteristic p is 1, we see that (σ−1)xj
is either 0 or xj−1 for all j = 1, 2, . . . , n. Furthermore, we may assume that
(σ−1)xn = xn−1. We construct the analogous basis {xi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}
for (mV )∗. Thus (σ − 1)xi,j is either 0 or xi,j−1 and (σ − 1)xi,n = xi,n−1, for
all i = 1, 2, . . . ,m and for all j = 1, 2 . . . , n.

Lemma 4.3. Let f ∈ Fp[mV ]G. If the coefficient in f of the monomial
xa1

1,nx
a2

2,n · · ·x
am
m,n is not zero then p divides ai for all i = 1, 2, . . . ,m.

Proof. We may assume that a1 ≥ 1. Let u and v be the monomials u :=
xa1

1,nx
a2

2,n · · ·x
am
m,n and v := ux1,n−1/x1,n. Suppose f = · · ·+cu+ · · · where c ∈ Fp

is non-zero. Then 0 = σ(f) − f = · · · + ca1v + · · · . Now it is not hard to see
that u is the unique monomial w ∈ Fp[mV ] such that the coefficient of v in
σ(w)−w is non-zero. Thus the coefficient of v in σ(f)− f is exactly ca1. Since
σ(f)− f = 0 and c 6= 0, we must have that p divides a1. Similarly we see that p
divides ai for all i = 2, 3, . . . ,m.
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We now prove β(G,mV ) ≥ m
dimV−1 .

Proof. Define

f :=
∑

c1∈Fp

∑

c2∈Fp

· · ·
∑

cn∈Fp

m∏

i=1

(c1xi,1 + c2xi,2 + · · ·+ cnxi,n)
p−1.

By construction, f is GL(V )-invariant, hence also G-invariant.

Consider the monomial µ := (
∏n−1

i=1 x
p−1
i,i )(

∏m
i=n x

p−1
i,n ) where we assume

m > n. The coefficient of µ in f is given by

∑

c1∈Fp

∑

c2∈Fp

· · ·
∑

cn∈Fp

m∏

i=1

cp−1
i c(m−n+1)(p−1)

n =
∑

c1∈Fp

∑

c2∈Fp

· · ·
∑

cn∈Fp

1 = (p− 1)n

which is not zero.
Let f1, f2, . . . , fr be a homogeneous minimal generating set for F[mV ]G and

express f as a polynomial in these generating invariants. Then µ = µ1µ2 · · ·µs

where each µk is a monomial occurring in some fi.
Our goal is to show that there exists a j with 1 ≤ j ≤ s such that deg(µk) ≥

m/(n−1). First suppose that some µk ∈ F[x1,n, x2,n, . . . , xm,n]. By the preceding
lemma, this implies that every exponent of µk is divisible by p. But this cannot
happen since µk divides µ.

Define

deg′
( m∏

j=1

n∏

i=1

x
ej,i
i,j

)
=

m∑

j=1

n−1∑

i=1

ej,i.

With this notation we know that deg′(µk) ≥ 1 for all k = 1, 2, . . . , s. Put
dk := deg(µk) and d

′
k := deg′(µk) for k = 1, 2, . . . , s.

We claim that there exists an index ℓ with 1 ≤ ℓ ≤ s such that

dℓ
d′ℓ

≥

∑s
k=1 dk∑s
k=1 d

′
k

.

If not, then dℓ
∑s

k=1 d
′
k < d′ℓ

∑s
k=1 dk for all k. Summing these inequalities would

give the contradiction
∑s

ℓ=1 dℓ
∑s

k=1 d
′
k <

∑s
ℓ=1 d

′
ℓ

∑s
k=1 dk.

Now
∑s

k=1 dk = deg(µ) = m(p− 1) and
∑s

k=1 d
′
k = deg′(µ) = (n− 1)(p− 1).

From the definition of ℓ we see

deg(µℓ) = dℓ ≥ d′ℓ
m(p− 1)

(n− 1)(p− 1)
≥

m

n− 1
.

Remark 4.4. The above results of Richman show that β(G) may be infinite
when G is a finite modular group. Indeed the next theorem shows this is always
the case. However, if we content ourselves with finding a so-called separating
subalgebra of invariants rather than the entire ring of invariants, then we know
[7, Corollary 3.9.14] that invariants of degree at most |G| will always suffice.
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H. Derksen and G. Kemper [8] proved that for a group G defined over a field F

of characteristic zero, that β(G) is finite only when G is finite. They conjectured
that this result was true in any characteristic. R. Bryant and G. Kemper [2]
were able to show this is indeed the case, giving the following theorem.

Theorem 4.5. Let G be any linear algebraic group. If β(G) is finite, then
G is a finite group with |G| ∈ F×.

We denote by θ1 the one-dimensional trivial representation of a group G.
This is just the field F equipped with the trivial G-action. Since F[V ⊕ θ1]

G =
F[x1, x2, . . . , xn, z]

G ∼= F[x1, x2, . . . , xn]
G ⊗ F[z] we see that β(G,V ⊕ θ1) =

β(G,V ). Thus when computing β(G,V ) it suffices to consider representations of
G which do not have θ1 as a summand. Such representations are called reduced.

Now we consider the case where G = Z/p the cyclic group of order p where
p is the characteristic of F. For this group there are precisely p inequivalent
indecomposable representations, one of each dimension 1, 2, . . . , p. In a recent
preprint [15], P. Fleischmann, M. Sezer, R. J. Shank and C. F. Woodcock prove
the following exact result.

Theorem 4.6. Let V be a reduced representation, defined over a field F of
characteristic p, of the cyclic group Z/p of order p. Let s be the maximum
dimension of an indecomposable summand of V . (Thus 2 ≤ s ≤ p.) Then

β(Z/p, V ) =





p, if V ∼= V2 or V ∼= 2V2;

(p− 1) dim(V Z/p), if V ∼= mV2 for m ≥ 3;

(p− 1) dim(V Z/p) + 1, if s = 3;

(p− 1) dim(V Z/p) + p− 2, if s ≥ 4.

Derksen and Kemper showed [7, Theorem 3.9.11] how an old result of G. Her-
mann [19] can be used to obtain a bound for any modular representation of a
finite group.

Theorem 4.7. Let V be an n-dimensional modular representation of a finite
group G. Then

β(G,V ) ≤ n(|G| − 1) + (|G|(2
n−1)n+1)(n2

n−1+1).

Recently D. B. Karaguezian and P. Symonds [27], [28] proved that if F is a
finite field and G is finite group then the infinite dimensional G representation
F[V ] contains only finitely many inequivalent indecomposable G subrepresenta-
tions. As a consequence of this they obtained the following improvement for
finite fields.

Theorem 4.8. Let V be an n dimensional representation of a finite group
G defined over the finite field of order q and characteristic p. Then β(G,V ) ≤
qn−1
q−1 (nq − n− 1). Furthermore, if G is a p-group then β(G,V ) ≤ qn−1

q−1 − n.
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E. Dade (see [49, p. 483]) gave a simple useful algorithm for constructing a set
of so-called primary invariants for a finite group. We now describe his algorithm.
Let V be an n-dimensional representation of the finite group G defined over any
infinite field, F. Since F is infinite, the vector space V ∗ cannot be a finite union
of proper subspaces.

Let y1 be any non-zero element of V ∗. For i = 1, . . . , n− 1 choose yi+1 ∈ V ∗

such that yi+1 does not lie in any of the F vector spaces spanned by {g1 · y1,
g2 · y2, . . . , gi · yi} for all g1, g2, . . . , gi ∈ G. Then define fi =

∏
g∈G g · yi. Note

that deg(fi) = |G| for all i = 1, 2, . . . , n. Then the set {f1, f2, . . . , fn} is a
homogeneous system of parameters as defined below (see Section 5). For non-
modular finite groups, applying Theorem 6.6 gives the bound

β(G,V ) ≤ max{|G|, (n− 1)|G|}.

Remark 4.9. Note that if we begin working over a finite field F we may
extend F to an infinite field F̃ and then use Dade’s algorithm to construct
f1, f2, . . . , fn. Then these fi will all lie in F′[V ]G for some finite field F′ with

F ⊆ F′ ⊂ F̃. Also recall that β(G,V ) has the same value considered with respect
to all three of these fields.

H. E. A. Campbell, A. V. Geramita, I. P. Hughes, R. J. Shank and the au-
thor [3] showed that the above bound is valid for modular finite groups if the
ring of invariants satisfies the Gorenstein property.

In 1997, A. Broer [1] generalized these two results by weakening the hypothesis
that V is non-modular to the condition that F[V ]G is Cohen–Macaulay. The
definition of Cohen–Macaulay is given in Section 5 below. Broer’s bound is the
following.

Theorem 4.10. Let V be a representation of a finite group G. If F[V ]G is
Cohen–Macaulay then

β(G,V ) ≤ max{|G|, (dimV − 1)|G|}.

In fact, it has been conjectured by many people that the hypothesis of Cohen–
Macaulayness is not required:

Conjecture 4.11. Let V be a representation of a finite group G. Then

β(G,V ) ≤ max{|G|, (dimV − 1)|G|}.

Kemper has conjectured [7, Conjecture 3.8.6 (a)] the following improvement
of Broer’s result.

Conjecture 4.12. Let V be a representation of a finite group G. If F[V ]G

is Cohen–Macaulay then
β(G,V ) ≤ |G|.
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4.13. Permutation groups. A representation V of G is called a permutation
representation if there is a basis {v1, v2, . . . , vn} of V which is mapped to itself
by all elements g ∈ G. In this case {v1, v2, . . . , vn} is called a permutation basis.

Suppose V is a permutation representation of G with permutation basis
{v1, v2, . . . , vn} and let {x1, x2, . . . , xn} be the dual basis of V ∗. Then G will
permute the xi and also the set of all monomials

{xa1

1 x
a2

2 · · ·xan

n | a1, a2, . . . , an ∈ N}.

Given a monomial m := xa1

1 x
a2

2 · · ·xan
n , let G · m = {g · m | g ∈ G} = {m =

m1,m2, . . . ,mr} be its orbit. We define the orbit sum of m, denoted OG(m) =
O(m), by

O(m) =
∑

α∈G·m
α = m1 +m2 + · · ·+mr.

Note that if V is a permutation representation of G, then the matrices rep-
resenting elements of G with respect to a permutation basis are permutation
matrices. In particular these matrices contain only zeros and ones and thus such
a representation is defined over any field. It is not hard to see that the set of
orbit sums of all the monomials is a vector space basis for the ring of invariants.

The following result of M. Göbel [18] gives an upper bound on β(G,V ) for
any permutation representation V .

Theorem 4.14. Let V be a permutation representation of a finite group G.
Then β(G,V ) ≤ max{

(
dimV

2

)
, dimV }.

Proof. Let {v1, v2, . . . , vn} be a permutation basis of V with dual basis
{x1, x2, . . . , xn}. The permutation group Σn acts on V and V ∗ by permuting
these bases. Then F[V ]G ⊇ F[V ]Σn = F[σ1, σ2, . . . , σn] where σi is the i-th
elementary symmetric function in x1, x2, . . . , xn. We introduce a relation on
the set of G-orbit sums of monomials as follows. Given two distinct orbit sums
OG(m1) and OG(m2) we first write Σn ·m1 = Σn · (x

a1

1 x
a2

2 · · ·xan
n ) and Σn ·m2 =

Σn · (xb11 x
b2
2 · · ·xbnn ) where a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn. Then we

declare OG(m1) < OG(m2) if and only if there is an index j ≥ 0 with a1 = b1,
a2 = b2, . . . , aj = bj and aj+1 < bj+1. If OG(m1) < OG(m2) fails to hold we
write OG(m1) ≥ OG(m2).

Note that in general OG(m) ≤ OG(m
′) and OG(m

′) ≤ OG(m) does not imply
that OG(m) = OG(m

′) (unless G = Σn). However this relation is transitive and
does have has the property that for any monomialm, there are only finitely many
G-orbit sums, OG(m

′) with OG(m
′) < OG(m). Furthermore if m, m′ and m′′

are any three monomials with OG(m
′) < OG(m) then OG(m

′m′′) < OG(mm
′′).

A G-orbit sum OG(x
a1

1 x
a2

2 · · ·xan
n ) is called special if {a1, a2, . . . , an} = {0, 1,

2, . . . , r} for some positive integer r. Here we must have 1 ≤ r ≤ n− 1. We will
show that the set of special G-orbit sums, together with the set of elementary
symmetric functions σ1, σ2, . . . , σn, generate F[V ]G. This clearly implies the
theorem.
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We will show that every orbit sum can be written as a polynomial in the
elementary symmetric functions and the special G-orbit sums. Assume, by way
of contradiction, that OG(m) is some minimal G-orbit sum which does not lie
in the ring generated by the special G-orbit sums together with the elementary
symmetric functions. Write m = xb11 x

b2
2 · · ·xbnn .

If m′ is any monomial which is divisible by σn = x1x2 · · ·xn then OG(m
′) =

σnOG(m
′/σn) and thus OG(m

′) can only lie in a minimal generating set for
F[V ]G if m′ = σn. Since OG(m) 6= σn we must have some bi = 0.

Since OG(m) is a non-special orbit sum there must exist positive integers t
and r = max{bj | 1 ≤ j ≤ n} such that {t+1, t+2, . . . , r} ⊂ {b1, b2, . . . , bn} and
t /∈ {b1, b2, . . . , bn}. Let

cj :=

{
bj , if bj ≤ t;

bj − 1, if bj > t.

Define m′ := xc11 x
c2
2 · · ·xcnn and s := |{j | bj > t}| = deg(m)− deg(m′). Expand-

ing σsOG(m
′) as an integer linear combination of G-orbit sums, we have

σsOG(m
′) = OG(m) +

ℓ∑

i=1

kiOG(mi)

for some some monomials mi and positive integers ki. By the definition of t, we
see that OG(mi) < OG(m) for all 1 ≤ i ≤ ℓ. Also it is clear that OG(m

′) <
OG(m). By the minimality of OG(m), each of the orbit sums OG(mi) and
OG(m

′) lies in the ring generated by the special G-orbit sums together with the
elementary symmetric functions. This contradiction completes the proof of the
theorem.

In contrast to Göbel’s theorem, Kemper [29] found the following lower bound
for a permutation representation.

Theorem 4.15. Let F be a field of characteristic p and let V be a faithful
modular permutation representation of the finite group G. Suppose G contains
an element of order pk for some k ∈ N. Then

β(G,mV ) ≥ m(pk − 1).

About the same time, Fleischmann [11] obtained the following exact result.

Theorem 4.16. Let G = Σn be the symmetric group on n = pk letters acting
naturally by permuting a basis of the n-dimensional representation V over the
field Fq of order q = pr. Then

β(Σn,mV ) = max{n,m(n− 1)}.
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5. Infinite groups in characteristic zero. In the 1870’s Camille Jordan
[25], [26] obtained the following bound for G = SL2(C). For a modern discussion
of this result see the article [54] by J. Weyman.

Theorem 5.1. Let V be a representation of SL2(C). Suppose that when
V is decomposed into a direct sum of irreducible sub-representations that all
irreducible components of V have dimension ≤ t+1. Then β

(
SL2(C), V

)
≤ 2t6.

In 1890 [20] and 1893 [21], David Hilbert published two of the most important
and influential papers in modern algebra. In the 1890 paper, Hilbert proved the
Hilbert Basis Theorem which we now state.

Theorem 5.2. (Hilbert Basis Theorem) Every generating set for an ideal
in the polynomial ring F[x1, x2, . . . , xn] contains a finite generating set.

Using this theorem Hilbert showed that F[V ]G is finitely generated for G =
SLn(C) and G = GLn(C). Here we give Hilbert’s proof of this fact for more
general G.

Theorem 5.3. Suppose V is representation of the group G which has a
Reynolds operator ρ. Then F[V ]G is a finitely generated F-algebra.

Proof. Let J denote the Hilbert ideal J := (F[V ]G+)F[V ]. By the Hilbert
Basis Theorem, there exist homogeneous invariants h1, h2, . . . , hr ∈ F[V ]G+ which
generate J . Suppose that f ∈ F[V ]G is homogeneous of degree d. We will show
by induction on d that f ∈ F[h1, . . . , hr]. This is clear for d = 0. For general d,
since f ∈ J , we may write f =

∑r
i=1 kihi where ki ∈ F[V ] is homogeneous with

deg(ki) < d for i = 1, 2, . . . , r. Applying the Reynolds operator gives

f = ρ(f) =
r∑

i=1

ρ(ki)hi.

By induction, ρ(ki) ∈ F[h1, h2, . . . , hr] for i = 1, 2, . . . , r and therefore f ∈
F[h1, h2, . . . , hr].

Although this proof does show that F[V ]G is finitely generated, it is not a
constructive proof and for this reason Hilbert’s 1890 paper occasioned much
criticism. Most famously, Paul Gordon said “Das ist nicht Mathematik, das ist
Theologie!” [This is not mathematics; this is theology].1

In light of these criticisms Hilbert attempted to give a more constructive
proof of the finite generation. The result was his 1893 paper. For the second
proof Hilbert introduced and proved the Nullstellensatz, the so-called Noether
Normalization Lemma and the Hilbert Syzygy Theorem. Together with the Basis
Theorem these are four of the most important theorems in modern algebra.

1Later, after Gordan simplified Hilbert’s 1890 proof and exploited it for his own purposes,
Gordan added “I have become persuaded that even theology has its uses.”
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Let R =
∑∞

d=0Rd be a graded Noetherian F-algebra. A sequence f1, f2, . . . , fr
of homogeneous elements of R is called a homogeneous system of parameters
if f1, f2, . . . , fr are algebraically independent and R is finitely generated as a
module over the subring A = F[f1, f2, . . . , fr], i.e., if there exist g1, g2, . . . , gm ∈
R such that R = Ag1 + Ag2 + · · · + Agm. The Noether Normalization Lemma,
proved by Hilbert in his 1893 paper, asserts that R always has a homogeneous
system of parameters. The number r is called the Krull dimension of R. It can
also be characterized as maximum number of algebraically independent elements
in R.

The ring R is Cohen–Macaulay if R is a free F[h1, h2, . . . , hr]-module for some
homogeneous system of parameters, h1, h2, . . . , hr. It can be shown that if R is
Cohen–Macaulay then R is a free F[h1, h2, . . . , hr]-module for every homogeneous
system of parameters, h1, h2, . . . , hr.

A very important result in invariant theory is the Theorem of Hochster and
Roberts [23], [31] which asserts that if F is characteristic zero and G is a reductive
group, then F[V ]G is Cohen–Macaulay.

Let h1, h2, . . . , hr be a homogeneous system of parameters and define A :=
F[h1, h2, . . . , hr]. If R is Cohen–Macaulay we may write R = Ag1⊕Ag2⊕· · ·⊕Agt
where g1, g2, . . . , gt are homogenous elements of R. This decomposition of R
as a direct sum of cyclic A-modules is called a Hironaka decomposition. No-
tice that R is generated (usually non-minimally) as an algebra by the elements
h1, h2, . . . , hr, g1, g2, . . . , gt. In particular, the highest degree needed for a gen-
erator of R is at most max{deg(h1), deg(h2), . . . , deg(hr), deg(g1), deg(g2), . . . ,
deg(gt)}.

If R = F[V ]G, then the elements of a homogeneous system of parameters,
f1, f2, . . . , fr, are called primary invariants, and the module generators

g1, g2, . . . , gm ∈ R

are called secondary invariants. Of course there are many choices for primary
invariants and secondary invariants.

6. Semi-simple groups.

6.1. Hilbert’s 1893 proof. In his 1893 proof, Hilbert attempted to bound
β(G,V ) in order to obtain a constructive proof of the finite generation of C[V ]G.
However, as he remarks in the paper, he was unable to get an upper bound and
so “[left] the question of an explicit calculation of [β(G,V )] somewhat vague.”

Here is an outline of some of the programme of Hilbert’s 1893 proof.
The nullcone N of V is the subset of V defined by

N := {v ∈ V | f(v) = 0 for all f ∈ F[V ]G+}.

We say that a set of homogenous invariants Ω cuts out the nullcone if f(v) = 0
for all f ∈ Ω implies that v ∈ N . Hilbert showed that a set of invariants Ω cuts
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out the null cone if and only if the algebra B generated by Ω is such that F[V ]G

is a finite B-module.

The number σ(G,V ) is defined to be the least integer b such that the set⋃b
d=1 F[V ]Gd cuts out the null cone.

By the Hilbert Basis theorem there exists a finite set k1, k2, . . . , ks ∈ F[V ]G

of homogeneous invariants which cut out the nullcone and with ci := deg(ki) ≤
σ(G,V ) for all i. Let N be the least common multiple of c1, c2, . . . , cs. Then

the invariants k′i := k
N/ci
i all have the same degree, namely N . Furthermore it

is easy to see that k′1, k
′
2, . . . , k

′
s also cut out the nullcone. Since the k′i share

the same degree, by Hilbert’s proof of the Noether Normalization Lemma, there
exists a homogeneous system of parameters f1, f2, . . . , fr with each fi a linear
combination of the k′i. In particular, deg(fi) = N for all i. Hilbert was able to
bound σ(G,V ) (for G = SLn(C)) and thus to bound the degrees of the primary
invariants f1, f2, . . . , fr. However he was unable to extend this to a bound for
β(G,V ).

6.2. Popov’s bound. In 1981, V. L. Popov using modern results extended the
above ideas of Hilbert as follows.

The power series H(R, λ) :=
∑∞

d=0 dimF(Rd)λ
d is called the Hilbert Series of

the graded algebra R. One consequence of the Hilbert Syzygy Theorem is that
the Hilbert series of a Noetherian graded algebra can always be expressed as a
rational function.

Let h1, h2, . . . , hr be a homogeneous system of parameters for F[V ]G and define
A := F[h1, h2, . . . , hr]. Since A ∼= F[h1]⊗F[h2]⊗· · ·⊗F[hr], it is easy to see that
H(A, λ) =

∏r
i=1(1−λ

ai) where ai = deg(hi). Then the Hironaka decomposition
shows that

(6.2.1) H(R, λ) =

∑t
j=1 λ

bj

∏r
i=1(1− λai)

where g1, g2, . . . , gt are secondary invariants and bj = deg(gj).

The degree of a rational function f(λ)/h(λ) is defined to be deg
(
f(λ)

)
−

deg
(
h(λ)

)
. In 1979, G. Kempf [31] showed that in characteristic 0 the degree

of H(F[V ]G, λ) is always negative. Therefore bj ≤ a1 + a2 + · · · + ar for all
j = 1, 2, . . . , t and thus β(G,V ) ≤ a1 + a2 + · · ·+ ar.

Combining this with Hilbert’s method, Popov obtained the following.

Theorem 6.3. Suppose that G is a connected semi-simple group defined
over a field F of characteristic zero and that V is an almost faithful G-representa-
tion. Then

β(G,V ) ≤ dim(V ) lcm{1, 2, . . . , σ(G,V )}.

Following Hilbert’s proof, Popov bounded σ(G,V ) and proved the following
bound.
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Theorem 6.4. Suppose that G is a connected semi-simple group defined
over a field F of characteristic zero and that V is an almost faithful G-representa-
tion. Then

β(G,V ) ≤ r C

(
2d+qnq+1(n− 1)q−dwr(q + 1)!

3q
((

q−d
2

)
!
)2

)

where q = dimG, r = Krull dimF[V ]G ≤ n = dimV , d = rankG ≤ r, C(x) is
the least common multiple of {1, 2, . . . , ⌊x⌋} and w = w(T ) ∈ N is defined, in
Section 7, using the action on V of a maximal torus T of G.

In 1993, Karin Hiss [22] gave new bounds for σ(G,V ) which have the advan-
tage of being independent of dimV . One of her bounds is expressed in terms of
the nilpotency degree NV of V which is defined as follows. The Borel subgroup
B of G can be written as a product B = TU where U is a maximal unipotent
subgroup of G and T is a maximal torus in G. Then NV := min{s | Xs(v) =
0 for all v ∈ V , X ∈ Lie Algebra (U)}. Hiss proved the following bound.

Theorem 6.5. Let V be a representation of a connected semi-simple group
defined over an algebraically closed field. Then

σ(G,V ) ≤
2r(m+ 1)! r!(
(m− r)/2

)
!2
Nm−r

V Vol(WV )

where m = dimG, r = rankG, and WV is the convex hull of the weights of V
as described in Section 7 below.

Hiss also proved another upper bound on σ(G,V ) involving the degree (as
varieties) of the G orbits in V . Derksen [5], using a result of Kazarnovskii gave
an improvement on Hiss’s bounds.

In 1989, F. Knop [34] showed that if G is connected and semi-simple and the
characteristic of F is zero then deg

(
H(F[V ]G, λ)

)
≤ − dim

(
F[V ]G

)
. This gives

the following improvement of Theorem 6.3.

Theorem 6.6. Let V be a representation of a connected connected semi-
simple group G defined over a field F of characteristic zero. Suppose a1, a2, . . . , ar
is a homogeneous system of parameters for F[V ]G. Then

β(G,V ) ≤ max{a1 + a2 + · · ·+ ar − r, a1, a2, . . . , ar}.

7. Tori. Suppose that F is algebraically closed and G = T is a torus, i.e.,
G ∼= (F×)r for some r ∈ N. In 1987, Kempf [31] adapted the 1981 proof by
Popov of Theorem 6.4 to representations of tori.

Let G = T , be a torus. We may choose a basis {x1, x2, . . . , xn} of the dual
space of V , V ∗ such that t · xi = ωi(t)xi for some ωi ∈ X∗(T ) ∼= Zr, the
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character group of T . In this case we say T acts diagonally on V . The ele-
ments ω1, ω2, . . . , ωn are called the weights of V . We denote their convex hull in
X∗(T )⊗Z Q ∼= Qr by WV .

Let S be the monoid S := {E = (e1, . . . , en) ∈ Zn |
∑n

i=1 eiωi = 0 ∈ X∗(T )}.
Then E ∈ S if and only if XE = xe11 · · ·xenn ∈ F[V ]T . Fix an explicit isomorphism
ψ : X∗(T ) → Zr and write ωi = (ωi,1, . . . , ωi,r) with ωi,j ∈ Z. Then the value w,
used in Popov’s bound given above, is defined by w = w(T ) := max{|ωi,j | : 1 ≤
i ≤ n, 1 ≤ j ≤ r}. Notice that the value of w depends on the choice of ψ, which
is determined only up to GLr(Z).

Studying S, Kempf [33] was able to find k1, . . . , ks with F[V ]T finitely gener-
ated over F[k1, . . . , ks] and deg kj ≤ n r!wr for all 1 ≤ j ≤ s and so prove the
following.

Theorem 7.1. Let V be an n-dimensional faithful representation for an r-
dimensional torus, T ∼= (F×)r. Then β(T, V ) ≤ nC(n r!wr) where C(x) = least
common multiple of {1, 2, . . . , ⌊x⌋}.

The author [50] used geometric properties of the monoid S and of the cone it
generates C = S⊗ZQ≥0 ⊂ X∗(T )⊗ZQ ∼= Qr to obtain a much better (sometimes
sharp) bound for β(T, V ).

Theorem 7.2. Let V be an n-dimensional diagonal faithful representation
of torus T ∼= (F×)r. Then β(T, V ) ≤ (n−r) r! Vol(WV ). In terms of the number
w, we have β(T, V ) ≤ (n− r)⌊wr(r + 1)(r+1)/2⌋.

Proof. Since any invariant is a linear combination of invariant monomials
it suffices to consider invariant monomials and thus we may concentrate our
attention on S.

We define the degree of an element E of S by deg(E) := degXE . The
cone C has a finite number of extremal rays: L1, L2, . . . , Ls. These rays are
characterized by the condition Li ∩C = Q≥0 ·Ri for some Ri ∈ S. The element
Ri is uniquely determined if we add the condition that Li ∩ S = NRi. Let
E ∈ S. Since the dimension of S is n− r, E lies in some simplicial cone spanned
by Ri1 , Ri2 , . . . , Rin−r

for some 1 ≤ i1 < i2 < · · · < in−r.
By Carathéodory’s theorem we may write E = α1Ri1+α2Ri2+· · ·+αn−rRin−r

where α1, α2, . . . , αn−r ∈ Q≥0.
If αji > 1 then we may decompose E within S as E = (E−Rji)+Rji . Multi-

plicatively this corresponds to decomposing the monomial XE = XE−RjiXRji .
Hence if XE is a generator of F[V ]T then each αi ≤ 1. But then

degXE = α1 degRj1 + · · ·+ αn−r degRjn−r
≤ degRj1 + · · ·+ degRjn−r

≤ (n− r)max{degRi | 1 ≤ i ≤ s}.

Hence we have reduced to bounding the degrees of the Ri. Reordering the
variables if necessary, we may assume that Ri = (γ1, γ2, . . . , γd, 0, 0, . . . , 0) where



58 DAVID L. WEHLAU

each γj is a positive integer. The fact that Ri lies in the extremal ray Li of S
implies that the d weights ω1, ω2, . . . , ωd span a (d − 1)-dimensional subspace
of Qn−r.

The system of r linear equations in the n unknowns y1, y2, . . . , yn:

y1ω1 + · · ·+ ydωd = 0 = yd+1 = yd+2 = · · · = yn

has a one-dimensional solution space.
Using Cramer’s rule to solve this system we get an integer solution E =

(e1, e2, . . . , ed, 0, 0, . . . , 0), where

ei = (−1)i det(ω1, ω2, . . . , ωi−1, ωi+1, ωi+2, . . . , ωd)

= ±r! Volume of Convex Hull (ω1, ω2, . . . , ωi−1,0, ωi+1, ωi+2, . . . , ωd)

for i = 1, 2, . . . , d.
Now Ri is a integer multiple of the solution E and thus all the non-zero entries

ej of E share the same signum which (after multiplying E by −1 if necessary)
we may assume is positive. Therefore

deg(Ri) = e1 + e2 + · · ·+ ed

= r!

d∑

i=1

Volume of Convex Hull (ω1, ω2, . . . , ωi−1,0, ωi+1, ωi+2, . . . , ωd)

= r! Volume of Convex Hull (ω1, ω2, . . . , ωd)

≤ r! Volume of Convex Hull (ω1, ω2, . . . , ωn).

The final assertion of the theorem may be proved by bounding the volume of the
convex hull of the ωi in terms of their coordinates ωij .

Remark 7.3. If dimV ≥ rankT+2 then the above bound may be improved
to β(T, V ) ≤ (n− r − 1)r! Vol(W) [50].

The author has conjectured [52] that:

Conjecture 7.4. β(T, V ) ≤ r! Vol(W).

The author also proved [50] the following bound which is independent of
dimV .

Theorem 7.5. Let T be an r-dimensional torus acting diagonally on V .
Then β(T, V ) ≤ (2w)2

r−1

.

This is proved by induction on r using T ∼= (F×)r−1 × F×.
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8. Derksen’s bounds. In 2001, Derksen [6] gave new dramatically better
upper bounds on β(G,V ) in terms of the number σ(G,V ) (which we remind the
reader was defined in Section 6.1). By working with a larger set of invariants
which cut out the nullcone, rather than a homogeneous system of parameters,
Derksen proved the following.

Theorem 8.1. Let G be a reductive group defined over an algebraically closed
field F of characteristic zero. Then

β(G,V ) ≤ max
{
2,

3

8
sσ2(G,V )

}

where s = dimF[V ]G ≤ dimV .

In the same paper Derksen also gave a good new upper bound on σ(G,V ) as
follows. Since G is a linear algebraic group it is given as the set of common zeroes
of some finite collection of polynomials h1, h2, . . . , hℓ ∈ F[y1, y2, . . . , yc] for some
c ∈ N. The fact that the n-dimensional representation ρ : G→ GL(V ) is rational
means that there exist polynomials ai,j ∈ F[y1, y2, . . . , yc] for 1 ≤ i, j ≤ n such
that ρ(g) is given by

ρ(g) =




a1,1(g) a1,2(g) . . . a1,n(g)
a2,1(g) a2,2(g) . . . a2,n(g)

...
...

. . .
...

an,1(g) an,2(g) . . . an,n(g)


 .

Derksen showed the following.

Theorem 8.2. Let G be a reductive group defined over an algebraically closed
field F of characteristic zero. Then

σ(G,V ) ≤ Hc−mAm

where H = max{deg(h1), deg(h2), . . . , deg(hℓ)}, A = max{deg(ai,j) | 1 ≤ i, j ≤
n}, m = dimG and c is the number of variables needed to define the hi as in the
preceding paragraph.

Remark 8.3. It is important to note that by combining the above two re-
sults Derksen gave a bound on β(G,V ) which grows polynomially with respect
to the various parameters.
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