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Abstract. We show that the inequality defining convex functions
(convex in the sense of Wright) is not stable in infinitely-dimensional spaces.
The inequality defining Jensen-convex functions is not stable either, even

if its domain is a real interval.

Résumé. Nous montrons que l’inégalité définissant des fonctions con-
vexes (convexes dans le sens de Wright) n’est pas stable dans les espaces

à dimension infinie. L’inégalité définissant des fonctions convexes dans le

sens de Jensen n’est pas stable non plus, même si son domaine est une

intervalle réelle.

Introduction. Let K be a fixed number field contained in R (the set of all
reals) and let X be a linear space over K. A subset D ⊂ X is said to be K-convex
iff for all x, y ∈ D and each λ ∈ K ∩ (0, 1) we have λx+ (1− λ)y ∈ D. Assume
that ε ≥ 0 is a fixed real and D is a non-empty K-convex subset of X. A function
f : D → R satisfying the inequality

(1) f
(

tx+ (1− t)y
)

≤ tf(x) + (1− t)f(y) + ε,

for all x, y ∈ D, t ∈ (0, 1)∩K is called ε-K-convex. If (1) is fulfilled only for t = 1
2

and all x, y ∈ D, then f is said to be an ε-J-convex function (ε-Jensen-convex
function). We say that f : D → R is an ε-K-Wright-convex function iff it satisfies
the inequality

(2) f
(

tx+ (1− t)y
)

+ f
(

(1− t)x+ ty
)

≤ f(x) + f(y) + ε,

for all x, y ∈ D and t ∈ (0, 1) ∩ K. If K = R we say shortly that f is ε-
convex, ε-Wright-convex instead of ε-R-convex, ε-R-Wright-convex, respectively.
Answering a problem which had been formulated by S. Ulam during a talk before
a Mathematical Colloquium at the University of Winconsin, Madison, in 1940
(cf. also [10]), D. H. Hyers and S. Ulam [5] (also J. W. Green [4], P. W. Cholewa
[2]) proved that if D is an open convex subset of Rn and f : D → R is an ε-
convex function, then there exist a convex function g : D → R and a constant M
(depending on the dimension n) such that

(3) |f(x)− g(x)| ≤M, x ∈ D.
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It is no longer true if D is a subset of an infinite-dimensional real linear space. It
was first observed by E. Casini and P. L. Papini [1] (see also [3], where versions
of this statement were proved for specially constructed domains). Another coun-
terexample (which works in every infinite-dimensional real linear space) was done
by the first author of this paper [6]. In both cases the domain D of f was a rather
thin subset of the space. In this note we show that every infinite-dimensional
convex subset of a real linear (ly-topological) space admits such examples. In [9],
the second author of this paper proved that if D is an open and convex subset
of Rn, then for every ε-Wright-convex function f : D → R there exists a Wright-
convex function g : D → R (it means that g satisfies (2) for all x, y ∈ D and
every t ∈ (0, 1) with ε = 0) and a constant M ≥ 0 fulfilling the estimation (3).
We show that if D is an infinite-dimensional convex subset of a real linear space
then this assertion does not hold. Moreover, we also show that there exists an ε-
J-convex function f : R ⊃ (a, b) → R such that for every Jensen-convex function
g : (a, b) → R, −∞ ≤ a < b ≤ +∞ (i.e., g satisfies the inequality (1) for t = 1

2
and all x, y ∈ (a, b) with ε = 0), we have

sup{|f(x)− g(x)| ; x ∈ (a, b)} = ∞.

Construction. We start with the well-known following lemma [8] (see also
[6]).

Lemma. Let D be a subset of a real normed space X and let f : D → R

be a function bounded from below satisfying Lipschitz condition with a constant
L ∈ [0,∞). Then the function F : X → R defined by the formula

F (x) := inf{L‖x− y‖+ f(y) ; y ∈ D}, x ∈ X,

is an extension of f to the whole space X preserving the Lipschitz condition.

Note that if f is an ε-K-convex (ε-J-convex, ε-K-Wright-convex) then F is
ε-K-convex (ε-J-convex, ε-K-Wright-convex), too. In fact, assume (for example)
that f is an ε-K-convex function. Let x, y ∈ X be fixed and take arbitrary η > 0.
According to definition of F one can find u, v ∈ D such that

F (x) + η > L‖x− u‖+ f(u) and F (y) + η > L‖y − v‖+ f(v).

By K-convexity of D, λu+ (1− λ)v ∈ D, for every λ ∈ K ∩ (0, 1). According to
ε-K-convexity of f we obtain

λF (x) + (1− λ)F (y) + ε

> Lλ‖x− u‖+ λf(u)− λη + L(1− λ)‖y − v‖+ (1− λ)f(v)− (1− λ)η + ε

≥ L
∥

∥

(

λx+ (1− λ)y
)

−
(

λu+ (1− λ)v
)
∥

∥+ f
(

λu+ (1− λ)v
)

− η

≥ inf{L‖λx+ (1− λ)y − z‖+ f(z) ; z ∈ D} − η,
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from which ε-K-convexity of F easily follows.

Let X be an infinite-dimensional linear space over the field K and let D be
an infinite-dimensional K-convex subset of X, i.e., the dimension of the space
generated by D over K is infinite. Without loss of generality we may assume
that

0 ∈ D.

For an arbitrary positive integer n we denote by {en1 , . . . , e
n
n} the standard basis

of Kn. By ‖x‖ we will denote the maximum norm in Rn, i.e.,

‖x‖ := max{|x1|, . . . , |xn|}, x = (x1, . . . , xn) ∈ Rn.

We define a function ϕn : [0, 1]
n → R by the formula

ϕn(x) := − log2

( 1

n
+ αn max{x1, . . . , xn}

)

,

where x = Σn
i=1xie

n
i , αn := 1− 1

n
. We have

ϕn(x) ≥ 0, and ϕn(0) = log2 n.

For arbitrary x, y ∈ [0, 1]n, x =
∑n

i=1 xie
n
i , y =

∑n

i=1 yie
n
i and λ ∈ K ∩ (0, 1) we

obtain

ϕn

(

λx+ (1− λ)y
)

= − log2

( 1

n
+ αn max{λx1 + (1− λ)y1, . . . , λxn + (1− λ)yn})

≤ − log2

(

λ
1

n
+ αn max{λx1, . . . , λxn}

)

= − log2

( 1

n
+ αn max{x1, . . . , xn}

)

− log2 λ

= ϕn(x)− log2 λ.

In a similar way we get

ϕn

(

λx+ (1− λ)y
)

≤ ϕn(y)− log2(1− λ).

This implies that

ϕn

(

λx+ (1− λ)y
)

≤ λϕn(x) + (1− λ)ϕn(y)− log2 λ
λ(1− λ)1−λ

≤ λϕn(x) + (1− λ)ϕn(y) + 1,

and therefore ϕn is an 1-convex function. It is easily seen that ϕn fulfils the
Lipschitz condition with a constant Ln in [0, 1]n. On account of the Lemma the
function ψn : R

n → R given by the formula

ψn(x) := inf{Ln‖x− y‖+ ϕn(y) ; y ∈ [0, 1]n}, x ∈ Rn,
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is an extension of ϕn on the whole space Rn and, moreover, ψn is a 1-convex
function. Let us define

σn = (1, . . . , 1) =
n
∑

i=1

eni ,

ψ∗
n(x) := ψn(σn − x), x ∈ Rn,

and let Z := linK(D) denotes the linear space (over K) generated by D. Observe
that ψ∗

n(0) = 0. Since the dimension of the space (Z,K) is infinite, one can
choose an infinite sequence (wi)i∈N of linearly independent elements of D. Put

W := {wi ; i ∈ N} and W ′ := {w′ := 2−iwi ; i ∈ N}.

Note that every finite sum of elements of the setW ′ belongs to the setD, because
it is a convex combination of elements of the set W ⊂ D and 0 ∈ D. The linear
space Y := linK(W

′) is a linear subspace of X and W ′ is a basis of Y . Let H0

be a subset of X such that H0 ∩W
′ = ∅ and H := W ′ ∪H0 = {ht, t ∈ T} is a

basis of the space X. Put

Tn :=
{n(n− 1)

2
+ 1, . . . ,

n(n+ 1)

2

}

,

Hn := {w′
i ∈W ′ ; i ∈ Tn},

Yn := linK(Hn), n ∈ N,

Y0 := linK(H0).

For an arbitrary positive integer n the dimension of the space Yn is equal to n,
and the set Hn is a basis of Yn. Moreover, functions In : Yn → Kn ⊂ Rn given
by the formula

In(x) :=
n
∑

i=1

λmn

i
eni ,

where x =
∑

j∈Tn
λjw

′
j ∈ Yn, λmn

i
∈ K, w′

mn

i

∈ Hn, m
n
i = n(n−1)

2 + i, i=1, . . . , n,

form isomorphisms of the spaces (Yn,K) onto (Kn,K).
Now we define functions Fn : Yn → [0,∞) by the formula

Fn(x) := ψ∗
n

(

In(x)
)

, x ∈ Yn.

Functions Fn, n ∈ N, are 1-K-convex in Yn, and Fn(0) = 0, n ∈ N. Since

X = Yn ⊕ linK(H \Hn) (direct sum),

each element x ∈ X has a unique representation of the form x = x1n + x0n,
where x1n ∈ Yn and x0n ∈ linK(H \Hn). In the next step we define the functions
Gn : X → [0,∞) by the formula

Gn(x) := Fn(x
1
n), x = x1n + x0n, x

1
n ∈ Yn, x

0
n ∈ linK(H \Hn).
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Observe that Gn are 1-K-convex, and Gn(0) = 0, n ∈ N.
Every element x ∈ X treated as an element of the linear space over K has a

unique representation of the form

(4) x =
∑

n∈N

xn + x0, xn ∈ Yn, x0 ∈ Y0, n ∈ N,

where the sum on the right hand side has a finite number of summands different
from zero (in particular every summand may be equal to zero). Let us put

(5) G(x) := max{Gn(x) ; n ∈ N},

if x is of the form (4). Function G : X → [0,∞) is a 1-K-convex and G(0) = 0.

Consequences.

Theorem. Let (X,K) be a linear space (over K) and let D ⊂ X be an infinite
dimensional K-convex subset of X. For arbitrary ε > 0 there exists an ε-K-
convex function f : D → R such that for every K-convex function g : D → R we
have

sup{|f(x)− g(x)| ; x ∈ D} = ∞.

Proof. Without loss of generality we may assume that 0 ∈ D and ε = 1. Put

f := G|D,

where G is a function obtained in the previous section. For indirect proof assume
that there exists a K-convex function g : D → R (i.e., g fulfils condition (1) with
ε = 0, x, y ∈ D, t ∈ (0, 1) ∩K) and a constant M > 0 such that condition (3) is
fulfilled. Fix a positive integer n such that

(6) log2 n > 2M + 1.

Putting

un :=
(

1−
1

n

)

∑

j∈Tn

w′
j , vin :=

∑

j∈Tn

w′
j − w′

mn

i

, i = 1, . . . , n,

we observe that

un =
n− 1

n

∑

j∈Tn

w′
j =

1

n

(

n
∑

j∈Tn

w′
j −

∑

i∈Tn

w′
i

)

=
1

n

(

n
∑

i=1

(

∑

j∈Tn

w′
j − w′

mn

i

))

=
1

n

n
∑

i=1

vin.
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Since un, v
i
n ∈ D, i = 1, . . . , n, by virtue of (3) we have

f(un) = G(un) ≤ g(un) +M = g
( 1

n

n
∑

i=1

vin

)

+M

≤
1

n

n
∑

i=1

g(vin) +M ≤
1

n

[

n
∑

i=1

(

G(vin) +M
)

]

+M

=
1

n

n
∑

i=1

G(vin) + 2M.

Moreover, since vin ∈ Y , we have

G(vin) = Gn(v
i
n) = ψ∗

n

(

In(v
i
n)
)

= ψ∗
n

(

In

(

∑

j∈Tn

w′
j − w′

mi
n

))

= ψ∗
n

(

n
∑

j=1,j 6=i

enj

)

= ψn(e
n
i ) = ϕn(e

n
i ) = − log2

( 1

n
+
(

1−
1

n

))

= 0.

This means that

(7) f(un) ≤ 2M.

On the other hand we obtain the following inequality

f(un) = G(un) = ψ∗
n

((

1−
1

n

)

n
∑

j=1

enj

)

= ψn

( 1

n

n
∑

j=1

enj

)

= ϕn

( 1

n

n
∑

j=1

enj

)

= − log2

( 2

n
−

1

n2

)

≥ − log2
2

n
= log2 n− 1,

which jointly with (7) implies that

log2 n− 1 ≤ f(un) ≤ 2M.

This contradicts (6) and ends the proof of our theorem.

As an immediate consequence we obtain:

Corollary 1. Let X be a real linear space, and let D ⊂ X be an infinitely-
dimensional subset of X. The inequality defining convex functions f : D → R is
not stable in the sense of Hyers and Ulam.
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Since every open and convex subsetD of the space Rn treated as a linear space
over Q (the set of all rationals) has infinite dimension, our theorem implies also
the following corollary.

Corollary 2. Let D be an infinitely-dimensional over Q and convex subset of
Rn (for example convex and open). There exists an ε-J-convex function f : D →
R such that for every J-convex function g : D → R we have

sup{|f(x)− g(x)| ; x ∈ D} = ∞.

It follows from the definitions that every ε-K-convex function is also a 2ε-
K-Wright-convex function. Note also that every K-Wright-convex function is
J-convex. Thus we can repeat the argument used in our theorem to obtain the
following:

Corollary 3. Let X be a linear space over K and let D be an infinite-
dimensional subset of X. Then there exists an ε-K-Wright-convex function such
that for every K-Wright-convex function g : D → R we have

sup{|f(x)− g(x)| ; x ∈ D} = ∞.

Particularly, Corollaries 1 and 3 say that in every infinite-dimensional case the
inequalities defining the notions of the convexity and Wright-convexity, as well,
are not stable in the sense of Hyers and Ulam. Similarly, Corollary 2 says that
the inequality defining the notion of Jensen-convexity on an open and convex
domain is not stable in the Hyers–Ulam sense.
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