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NONSTABILITY RESULTS IN THE THEORY
OF CONVEX FUNCTIONS
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ABSTRACT.  We show that the inequality defining convex functions
(convex in the sense of Wright) is not stable in infinitely-dimensional spaces.
The inequality defining Jensen-convex functions is not stable either, even
if its domain is a real interval.

RESUME. Nous montrons que 'inégalité définissant des fonctions con-
vexes (convexes dans le sens de Wright) n’est pas stable dans les espaces
a dimension infinie. L’inégalité définissant des fonctions convexes dans le
sens de Jensen n’est pas stable non plus, méme si son domaine est une
intervalle réelle.

Introduction. Let K be a fixed number field contained in R (the set of all
reals) and let X be a linear space over K. A subset D C X is said to be K-convex
iff for all z,y € D and each A € KN (0,1) we have Ax 4+ (1 — A\)y € D. Assume
that € > 0 is a fixed real and D is a non-empty K-convex subset of X. A function
f: D — R satisfying the inequality

(1) flte+ 1 =t)y) <tf(@)+ 1 -1)f(y) +e,

forallz,y € D, t € (0,1)NK is called e-K-convex. If (1) is fulfilled only for ¢t = 1
and all z,y € D, then f is said to be an e-J-convex function (e-Jensen-convex
function). We say that f: D — R is an e-K-Wright-convex function iff it satisfies
the inequality

(2) fltz+ (1 —t)y) + F(L—t)z+ty) < f(z) + fly) +¢,

for all z,y € D and t € (0,1) NK. If K = R we say shortly that f is e-
convex, e-Wright-convex instead of e-R-convex, e-R-Wright-convex, respectively.
Answering a problem which had been formulated by S. Ulam during a talk before
a Mathematical Colloquium at the University of Winconsin, Madison, in 1940
(cf. also [10]), D. H. Hyers and S. Ulam [5] (also J. W. Green [4], P. W. Cholewa
[2]) proved that if D is an open convex subset of R™ and f: D — R is an e-
convex function, then there exist a convex function g: D — R and a constant M
(depending on the dimension n) such that

3) |f(x) —g(x)| <M, zeD.
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It is no longer true if D is a subset of an infinite-dimensional real linear space. It
was first observed by E. Casini and P. L. Papini [1] (see also [3], where versions
of this statement were proved for specially constructed domains). Another coun-
terexample (which works in every infinite-dimensional real linear space) was done
by the first author of this paper [6]. In both cases the domain D of f was a rather
thin subset of the space. In this note we show that every infinite-dimensional
convex subset of a real linear (ly-topological) space admits such examples. In [9],
the second author of this paper proved that if D is an open and convex subset
of R™, then for every e-Wright-convex function f: D — R there exists a Wright-
convex function g: D — R (it means that g satisfies (2) for all z,y € D and
every t € (0,1) with ¢ = 0) and a constant M > 0 fulfilling the estimation (3).
We show that if D is an infinite-dimensional convex subset of a real linear space
then this assertion does not hold. Moreover, we also show that there exists an e-
J-convex function f: R D (a,b) — R such that for every Jensen-convex function
g: (a,b) = R, —0o < a < b < 400 (i.e., g satisfies the inequality (1) for ¢t = %
and all z,y € (a,b) with € = 0), we have

sup{|f(x) — g(2)| ; 7 € (a,b)} = .

Construction. We start with the well-known following lemma [8] (see also
[6])-
LEMMA. Let D be a subset of a real normed space X and let f: D — R

be a function bounded from below satisfying Lipschitz condition with a constant
L €[0,00). Then the function F': X — R defined by the formula

F(z) = mf{L]z -yl + f(y) sy € D}, z€X,

is an extension of f to the whole space X preserving the Lipschitz condition.

Note that if f is an e-K-convex (e-J-convex, e-K-Wright-convex) then F' is
e-K-convex (e-J-convex, e-K-Wright-convex), too. In fact, assume (for example)
that f is an e-K-convex function. Let x,y € X be fixed and take arbitrary n > 0.
According to definition of F' one can find u,v € D such that

F(z)+n> L||lz —ull+ f(u) and F(y)+n> Lly —v| + f(v).

By K-convexity of D, Au+ (1 — A)v € D, for every A € KN (0,1). According to
e-K-convexity of f we obtain
AF(z)+ (1 —=XNF(y)+e
> LAlz = ul + Af(u) = A+ L1 = Mly = vl + 1 = A) f(v) =1 = N)n+e
>L||(Az+ (1= Ny) — Au+ (1 =2)||+ f(Au+ (1= Av) —n
> inf{L|[Az + (1 — Ny — 2| + f(z) ; 2 € D} =,
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from which e-K-convexity of F' easily follows.

Let X be an infinite-dimensional linear space over the field K and let D be
an infinite-dimensional K-convex subset of X, i.e., the dimension of the space
generated by D over K is infinite. Without loss of generality we may assume
that

0eD.

For an arbitrary positive integer n we denote by {el,...,el"} the standard basis
of K. By ||z|| we will denote the maximum norm in R, i.e.,

lz]| := max{|z1|, ..., |za|}, x=(x1,...,2,) € R™

We define a function ¢, : [0, 1] — R by the formula

1
() := —log, (f + a, max{zy,... ,xn}),
n
where © = X7 z;el’, oy, :=1 — . We have
(@) >0, and @a(0) = logy n.

For arbitrary z,y € [0,1]", . = Y 1" zel, y = > i, yel and A € KN (0,1) we
obtain

on(Az + (1= N)y)

1
=— logQ(ﬁ + apymax{iz; + (1 — Ny1, ..., Az, + (1 — Nyn})
1
< —log, ()\E + a, max{Azy,..., /\xn})

= —log, (% + a, max{zy,... ,xn}> —log, A
= pn(x) —logy A.
In a similar way we get
Pn(Az + (1 = N)y) < @uly) —logy(1 = A).
This implies that
on (A + (L= A)y) < Apn(@) + (1 = N)on(y) — logs (1 — 1)1
< Apn(z) + (1= Nepn(y) +1,

and therefore ¢, is an 1-convex function. It is easily seen that ¢, fulfils the
Lipschitz condition with a constant L,, in [0, 1]™. On account of the Lemma the
function v, : R™ — R given by the formula

Yp(z) = inf{L,|lz —y|| + only) ; ¥y € [0,1]"}, xR,
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is an extension of ¢,, on the whole space R™ and, moreover, 3, is a 1-convex
function. Let us define

Un:(l,...,l):ie?,
i=1

vr(z) = p(on — ), xR,

and let Z := ling (D) denotes the linear space (over K) generated by D. Observe
that ¢7(0) = 0. Since the dimension of the space (Z,K) is infinite, one can
choose an infinite sequence (w;);en of linearly independent elements of D. Put

W:={w;;i €N} and W :={w :=2""w;;iecN}.

Note that every finite sum of elements of the set W’ belongs to the set D, because
it is a convex combination of elements of the set W C D and 0 € D. The linear
space Y := ling(W') is a linear subspace of X and W' is a basis of Y. Let Hy
be a subset of X such that HoNW’' = @ and H := W/ UHy = {h,t € T} is a
basis of the space X. Put

1= (M0 MDY
H, :={w, e W' ;ieT,},
Y, :=ling(H,), neN,
Yo := ling (Hyp).
For an arbitrary positive integer n the dimension of the space Y,, is equal to n,

and the set H, is a basis of Y;,. Moreover, functions I,,: Y,, — K" C R" given
by the formula

I,(x) := i Amney,
i=1

where v = ZjeT” Ajw € Yo, App € K, wyn € Hy, m! = %—H’, 1=1,...,n,

form isomorphisms of the spaces (Y,,,K) onto (K", K).
Now we define functions F},: Y;, — [0, 00) by the formula

E,(z) = ([n(x)), reY,.
Functions F,,, n € N, are 1-K-convex in Y,,, and F,,(0) = 0, n € N. Since
X =Y, ®ling(H\ H,) (direct sum),

each element z € X has a unique representation of the form z = z} + 22,
where z1 €Y, and 2 € ling(H \ H,,). In the next step we define the functions
Grn: X — [0,00) by the formula

Gn(w) = Fo(z}), x=ux)+2% zl €V, 22 €ling(H \ H,).

no
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Observe that G,, are 1-K-convex, and G,,(0) =0, n € N.
Every element x € X treated as an element of the linear space over K has a
unique representation of the form

(4) I’:Zl’n+l'0, .’,EnE}/n, IOEYO,’HGN,
neN

where the sum on the right hand side has a finite number of summands different
from zero (in particular every summand may be equal to zero). Let us put

(5) G(x) := max{G,(z) ; n € N},
if x is of the form (4). Function G: X — [0,00) is a 1-K-convex and G(0) = 0.

Consequences.

THEOREM. Let (X,K) be a linear space (over K) and let D C X be an infinite
dimensional K-convexr subset of X. For arbitrary € > 0 there exists an £-K-
convez function f: D — R such that for every K-convex function g: D — R we
have

sup{|f(z) — g(z)| ; z € D} = 0.

ProOOF. Without loss of generality we may assume that 0 € D and € = 1. Put

f = G\D7
where G is a function obtained in the previous section. For indirect proof assume
that there exists a K-convex function g: D — R (i.e., g fulfils condition (1) with
e=0,z,y€ D, te(0,1)NK) and a constant M > 0 such that condition (3) is
fulfilled. Fix a positive integer n such that
(6) logon > 2M + 1.

Putting
R 1 _ l !/ T . /I / - 1
Uy, 1= - Wi, vy = E Wi = Wyyn, t=1,...n,

we observe that

JET, JET, €Ty,

LS v wie)) = 3o

i=1 jET, i=
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Since u,,v!, € D, i=1,...,n, by virtue of (3) we have
n
Z“ )+ M

< L3 gl + M < - [S (G + M)] 4 M

i=1 =1

BM—‘

F(un) = Glun) < glun) +M = g

JETR
=20 ) =l = gulet) = —loma( 2+ (1- 1)) =0
Jj=1,5#i
This means that
(7) flun) <2M.

On the other hand we obtain the following inequality

which jointly with (7) implies that
logon —1 < f(u,) <2M.
This contradicts (6) and ends the proof of our theorem. [ |

As an immediate consequence we obtain:

COROLLARY 1. Let X be a real linear space, and let D C X be an infinitely-
dimensional subset of X. The inequality defining convex functions f: D — R is
not stable in the sense of Hyers and Ulam.
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Since every open and convex subset D of the space R™ treated as a linear space
over Q (the set of all rationals) has infinite dimension, our theorem implies also
the following corollary.

COROLLARY 2. Let D be an infinitely-dimensional over Q and convex subset of
R™ (for example convexr and open). There exists an e-J-convex function f: D —
R such that for every J-convez function g: D — R we have

sup{|f(z) = g(z)[ ; 2 € D} = o0.

It follows from the definitions that every e-K-convex function is also a 2e-
K-Wright-convex function. Note also that every K-Wright-convex function is
J-convex. Thus we can repeat the argument used in our theorem to obtain the
following:

COROLLARY 3. Let X be a linear space over K and let D be an infinite-
dimensional subset of X. Then there exists an e-K-Wright-convex function such
that for every K-Wright-convez function g: D — R we have

sup{|f(z) — g(z)| ; z € D} = 0.

Particularly, Corollaries 1 and 3 say that in every infinite-dimensional case the
inequalities defining the notions of the convexity and Wright-convexity, as well,
are not stable in the sense of Hyers and Ulam. Similarly, Corollary 2 says that
the inequality defining the notion of Jensen-convexity on an open and convex
domain is not stable in the Hyers—Ulam sense.
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