Page 17 Sheet 1 of 7

C. R. Math. Rep. Acad. Sci. Canada Vol. 28, (1), 2006 pp. 17–23

NONSTABILITY RESULTS IN THE THEORY OF CONVEX FUNCTIONS

ZYGFRYD KOMINEK AND JACEK MROWIEC

Presented by V. Dlab, FRSC

ABSTRACT. We show that the inequality defining convex functions (convex in the sense of Wright) is not stable in infinitely-dimensional spaces. The inequality defining Jensen-convex functions is not stable either, even if its domain is a real interval.

RÉSUMÉ. Nous montrons que l'inégalité définissant des fonctions convexes (convexes dans le sens de Wright) n'est pas stable dans les espaces à dimension infinie. L'inégalité définissant des fonctions convexes dans le sens de Jensen n'est pas stable non plus, même si son domaine est une intervalle réelle.

Introduction. Let \mathbb{K} be a fixed number field contained in \mathbb{R} (the set of all reals) and let X be a linear space over \mathbb{K} . A subset $D \subset X$ is said to be \mathbb{K} -convex iff for all $x, y \in D$ and each $\lambda \in \mathbb{K} \cap (0, 1)$ we have $\lambda x + (1 - \lambda)y \in D$. Assume that $\varepsilon \geq 0$ is a fixed real and D is a non-empty \mathbb{K} -convex subset of X. A function $f: D \to \mathbb{R}$ satisfying the inequality

(1)
$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) + \varepsilon,$$

for all $x, y \in D$, $t \in (0,1) \cap \mathbb{K}$ is called ε - \mathbb{K} -convex. If (1) is fulfilled only for $t = \frac{1}{2}$ and all $x, y \in D$, then f is said to be an ε -J-convex function (ε -Jensen-convex function). We say that $f : D \to \mathbb{R}$ is an ε - \mathbb{K} -Wright-convex function iff it satisfies the inequality

(2)
$$f(tx + (1-t)y) + f((1-t)x + ty) \le f(x) + f(y) + \varepsilon$$
,

for all $x,y \in D$ and $t \in (0,1) \cap \mathbb{K}$. If $\mathbb{K} = \mathbb{R}$ we say shortly that f is ε -convex, ε -Wright-convex instead of ε - \mathbb{R} -convex, ε - \mathbb{R} -Wright-convex, respectively. Answering a problem which had been formulated by S. Ulam during a talk before a Mathematical Colloquium at the University of Winconsin, Madison, in 1940 (cf. also [10]), D. H. Hyers and S. Ulam [5] (also J. W. Green [4], P. W. Cholewa [2]) proved that if D is an open convex subset of \mathbb{R}^n and $f: D \to \mathbb{R}$ is an ε -convex function, then there exist a convex function $g: D \to \mathbb{R}$ and a constant M (depending on the dimension n) such that

$$(3) |f(x) - g(x)| \le M, \quad x \in D.$$

Received by the editors on July, 2005; revised December 19, 2005. AMS subject classification: Primary: 39B82; secondary: 39B62, 26A61. © Royal Society of Canada 2006.

DRAFT: C.R.Math.Rep.

It is no longer true if D is a subset of an infinite-dimensional real linear space. It was first observed by E. Casini and P. L. Papini [1] (see also [3], where versions of this statement were proved for specially constructed domains). Another counterexample (which works in every infinite-dimensional real linear space) was done by the first author of this paper [6]. In both cases the domain D of f was a rather thin subset of the space. In this note we show that every infinite-dimensional convex subset of a real linear (ly-topological) space admits such examples. In [9], the second author of this paper proved that if D is an open and convex subset of \mathbb{R}^n , then for every ε -Wright-convex function $f: D \to \mathbb{R}$ there exists a Wrightconvex function $q: D \to \mathbb{R}$ (it means that q satisfies (2) for all $x, y \in D$ and every $t \in (0,1)$ with $\varepsilon = 0$ and a constant $M \ge 0$ fulfilling the estimation (3). We show that if D is an infinite-dimensional convex subset of a real linear space then this assertion does not hold. Moreover, we also show that there exists an ε -J-convex function $f: \mathbb{R} \supset (a,b) \to \mathbb{R}$ such that for every Jensen-convex function $g:(a,b)\to\mathbb{R}, -\infty\leq a< b\leq +\infty$ (i.e., g satisfies the inequality (1) for $t=\frac{1}{2}$ and all $x, y \in (a, b)$ with $\varepsilon = 0$, we have

$$\sup\{|f(x) - g(x)| \; ; \; x \in (a, b)\} = \infty.$$

We start with the well-known following lemma [8] (see also Construction. [6]).

Let D be a subset of a real normed space X and let $f: D \to \mathbb{R}$ be a function bounded from below satisfying Lipschitz condition with a constant $L \in [0, \infty)$. Then the function $F: X \to \mathbb{R}$ defined by the formula

$$F(x) := \inf\{L||x - y|| + f(y) ; y \in D\}, x \in X,$$

is an extension of f to the whole space X preserving the Lipschitz condition.

Note that if f is an ε -K-convex (ε -J-convex, ε -K-Wright-convex) then F is ε -K-convex (ε -J-convex, ε -K-Wright-convex), too. In fact, assume (for example) that f is an ε -K-convex function. Let $x, y \in X$ be fixed and take arbitrary $\eta > 0$. According to definition of F one can find $u, v \in D$ such that

$$F(x) + \eta > L||x - u|| + f(u)$$
 and $F(y) + \eta > L||y - v|| + f(v)$.

By K-convexity of D, $\lambda u + (1 - \lambda)v \in D$, for every $\lambda \in \mathbb{K} \cap (0, 1)$. According to ε -K-convexity of f we obtain

$$\lambda F(x) + (1 - \lambda)F(y) + \varepsilon > L\lambda ||x - u|| + \lambda f(u) - \lambda \eta + L(1 - \lambda)||y - v|| + (1 - \lambda)f(v) - (1 - \lambda)\eta + \varepsilon \geq L ||(\lambda x + (1 - \lambda)y) - (\lambda u + (1 - \lambda)v)|| + f(\lambda u + (1 - \lambda)v) - \eta \geq \inf\{L||\lambda x + (1 - \lambda)y - z|| + f(z); z \in D\} - \eta,$$

from which ε - \mathbb{K} -convexity of F easily follows.

Let X be an infinite-dimensional linear space over the field \mathbb{K} and let D be an infinite-dimensional \mathbb{K} -convex subset of X, *i.e.*, the dimension of the space generated by D over \mathbb{K} is infinite. Without loss of generality we may assume that

$$0 \in D$$
.

For an arbitrary positive integer n we denote by $\{e_1^n, \ldots, e_n^n\}$ the standard basis of \mathbb{K}^n . By ||x|| we will denote the maximum norm in \mathbb{R}^n , *i.e.*,

$$||x|| := \max\{|x_1|, \dots, |x_n|\}, \quad x = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

We define a function $\varphi_n \colon [0,1]^n \to \mathbb{R}$ by the formula

$$\varphi_n(x) := -\log_2\left(\frac{1}{n} + \alpha_n \max\{x_1, \dots, x_n\}\right),$$

where $x = \sum_{i=1}^{n} x_i e_i^n$, $\alpha_n := 1 - \frac{1}{n}$. We have

$$\varphi_n(x) \ge 0$$
, and $\varphi_n(0) = \log_2 n$.

For arbitrary $x, y \in [0, 1]^n$, $x = \sum_{i=1}^n x_i e_i^n$, $y = \sum_{i=1}^n y_i e_i^n$ and $\lambda \in \mathbb{K} \cap (0, 1)$ we obtain

$$\varphi_n(\lambda x + (1 - \lambda)y)$$

$$= -\log_2(\frac{1}{n} + \alpha_n \max\{\lambda x_1 + (1 - \lambda)y_1, \dots, \lambda x_n + (1 - \lambda)y_n\})$$

$$\leq -\log_2(\lambda \frac{1}{n} + \alpha_n \max\{\lambda x_1, \dots, \lambda x_n\})$$

$$= -\log_2(\frac{1}{n} + \alpha_n \max\{x_1, \dots, x_n\}) - \log_2 \lambda$$

$$= \varphi_n(x) - \log_2 \lambda.$$

In a similar way we get

$$\varphi_n(\lambda x + (1 - \lambda)y) \le \varphi_n(y) - \log_2(1 - \lambda).$$

This implies that

$$\varphi_n(\lambda x + (1 - \lambda)y) \le \lambda \varphi_n(x) + (1 - \lambda)\varphi_n(y) - \log_2 \lambda^{\lambda} (1 - \lambda)^{1 - \lambda}$$

$$\le \lambda \varphi_n(x) + (1 - \lambda)\varphi_n(y) + 1,$$

and therefore φ_n is an 1-convex function. It is easily seen that φ_n fulfils the Lipschitz condition with a constant L_n in $[0,1]^n$. On account of the Lemma the function $\psi_n \colon \mathbb{R}^n \to \mathbb{R}$ given by the formula

$$\psi_n(x) := \inf\{L_n ||x - y|| + \varphi_n(y) ; y \in [0, 1]^n\}, \quad x \in \mathbb{R}^n,$$

pp.17-23

April 24, 2006 15:33

is an extension of φ_n on the whole space \mathbb{R}^n and, moreover, ψ_n is a 1-convex function. Let us define

$$\sigma_n = (1, \dots, 1) = \sum_{i=1}^n e_i^n,$$

$$\psi_n^*(x) := \psi_n(\sigma_n - x), \quad x \in \mathbb{R}^n,$$

and let $Z := \lim_{\mathbb{K}}(D)$ denotes the linear space (over \mathbb{K}) generated by D. Observe that $\psi_n^*(0) = 0$. Since the dimension of the space (Z, \mathbb{K}) is infinite, one can choose an infinite sequence $(w_i)_{i \in \mathbb{N}}$ of linearly independent elements of D. Put

$$W := \{ w_i ; i \in \mathbb{N} \} \text{ and } W' := \{ w' := 2^{-i} w_i ; i \in \mathbb{N} \}.$$

Note that every finite sum of elements of the set W' belongs to the set D, because it is a convex combination of elements of the set $W \subset D$ and $0 \in D$. The linear space $Y := \lim_{\mathbb{K}} (W')$ is a linear subspace of X and W' is a basis of Y. Let H_0 be a subset of X such that $H_0 \cap W' = \emptyset$ and $H := W' \cup H_0 = \{h_t, t \in T\}$ is a basis of the space X. Put

$$T_n := \left\{ \frac{n(n-1)}{2} + 1, \dots, \frac{n(n+1)}{2} \right\},$$

$$H_n := \left\{ w_i' \in W' \; ; \; i \in T_n \right\},$$

$$Y_n := \lim_{\mathbb{K}} (H_n), \quad n \in \mathbb{N},$$

$$Y_0 := \lim_{\mathbb{K}} (H_0).$$

For an arbitrary positive integer n the dimension of the space Y_n is equal to n, and the set H_n is a basis of Y_n . Moreover, functions $I_n: Y_n \to \mathbb{K}^n \subset \mathbb{R}^n$ given by the formula

$$I_n(x) := \sum_{i=1}^n \lambda_{m_i^n} e_i^n,$$

where $x = \sum_{j \in T_n} \lambda_j w'_j \in Y_n$, $\lambda_{m_i^n} \in \mathbb{K}$, $w'_{m_i^n} \in H_n$, $m_i^n = \frac{n(n-1)}{2} + i$, $i=1,\ldots,n$, form isomorphisms of the spaces (Y_n,\mathbb{K}) onto $(\mathbb{K}^n,\mathbb{K})$.

Now we define functions $F_n: Y_n \to [0, \infty)$ by the formula

$$F_n(x) := \psi_n^* (I_n(x)), \quad x \in Y_n.$$

Functions F_n , $n \in \mathbb{N}$, are 1-K-convex in Y_n , and $F_n(0) = 0$, $n \in \mathbb{N}$. Since

$$X = Y_n \oplus \lim_{\mathbb{K}} (H \setminus H_n)$$
 (direct sum),

each element $x \in X$ has a unique representation of the form $x = x_n^1 + x_n^0$, where $x_n^1 \in Y_n$ and $x_n^0 \in \lim_{\mathbb{K}} (H \setminus H_n)$. In the next step we define the functions $G_n \colon X \to [0, \infty)$ by the formula

$$G_n(x) := F_n(x_n^1), \quad x = x_n^1 + x_n^0, \ x_n^1 \in Y_n, \ x_n^0 \in \lim_{\mathbb{K}} (H \setminus H_n).$$

pp.17-23

Every element $x \in X$ treated as an element of the linear space over \mathbb{K} has a unique representation of the form

(4)
$$x = \sum_{n \in \mathbb{N}} x_n + x_0, \quad x_n \in Y_n, \ x_0 \in Y_0, \ n \in \mathbb{N},$$

where the sum on the right hand side has a finite number of summands different from zero (in particular every summand may be equal to zero). Let us put

(5)
$$G(x) := \max\{G_n(x) ; n \in \mathbb{N}\},\$$

if x is of the form (4). Function $G: X \to [0, \infty)$ is a 1-K-convex and G(0) = 0.

Consequences.

THEOREM. Let (X, \mathbb{K}) be a linear space (over \mathbb{K}) and let $D \subset X$ be an infinite dimensional K-convex subset of X. For arbitrary $\varepsilon > 0$ there exists an ε -Kconvex function $f: D \to \mathbb{R}$ such that for every \mathbb{K} -convex function $g: D \to \mathbb{R}$ we have

$$\sup\{|f(x) - g(x)| ; x \in D\} = \infty.$$

PROOF. Without loss of generality we may assume that $0 \in D$ and $\varepsilon = 1$. Put

$$f:=G_{\mid D},$$

where G is a function obtained in the previous section. For indirect proof assume that there exists a K-convex function $g: D \to \mathbb{R}$ (i.e., g fulfils condition (1) with $\varepsilon = 0, x, y \in D, t \in (0,1) \cap \mathbb{K}$) and a constant M > 0 such that condition (3) is fulfilled. Fix a positive integer n such that

$$\log_2 n > 2M + 1.$$

Putting

$$u_n := \left(1 - \frac{1}{n}\right) \sum_{j \in T_n} w'_j, \quad v_n^i := \sum_{j \in T_n} w'_j - w'_{m_i^n}, \quad i = 1, \dots, n,$$

we observe that

$$u_n = \frac{n-1}{n} \sum_{j \in T_n} w'_j = \frac{1}{n} \left(n \sum_{j \in T_n} w'_j - \sum_{i \in T_n} w'_i \right)$$
$$= \frac{1}{n} \left(\sum_{i=1}^n \left(\sum_{j \in T_n} w'_j - w'_{m_i^n} \right) \right) = \frac{1}{n} \sum_{i=1}^n v_n^i.$$

pp.17-23

22 ZYGFRYD KOMINEK AND JACEK MROWIEC

Since $u_n, v_n^i \in D$, i = 1, ..., n, by virtue of (3) we have

$$f(u_n) = G(u_n) \le g(u_n) + M = g\left(\frac{1}{n}\sum_{i=1}^n v_n^i\right) + M$$

$$\le \frac{1}{n}\sum_{i=1}^n g(v_n^i) + M \le \frac{1}{n}\left[\sum_{i=1}^n \left(G(v_n^i) + M\right)\right] + M$$

$$= \frac{1}{n}\sum_{i=1}^n G(v_n^i) + 2M.$$

Moreover, since $v_n^i \in Y$, we have

$$G(v_n^i) = G_n(v_n^i) = \psi_n^* (I_n(v_n^i)) = \psi_n^* (I_n (\sum_{j \in T_n} w_j' - w_{m_n^i}))$$

$$= \psi_n^* (\sum_{i=1}^n \sum_{j \neq i}^n e_j^n) = \psi_n(e_i^n) = \varphi_n(e_i^n) = -\log_2 (\frac{1}{n} + (1 - \frac{1}{n})) = 0.$$

This means that

$$(7) f(u_n) \le 2M.$$

On the other hand we obtain the following inequality

$$f(u_n) = G(u_n) = \psi_n^* \left(\left(1 - \frac{1}{n} \right) \sum_{j=1}^n e_j^n \right) = \psi_n \left(\frac{1}{n} \sum_{j=1}^n e_j^n \right)$$
$$= \varphi_n \left(\frac{1}{n} \sum_{j=1}^n e_j^n \right) = -\log_2 \left(\frac{2}{n} - \frac{1}{n^2} \right) \ge -\log_2 \frac{2}{n} = \log_2 n - 1,$$

which jointly with (7) implies that

$$\log_2 n - 1 \le f(u_n) \le 2M.$$

This contradicts (6) and ends the proof of our theorem.

As an immediate consequence we obtain:

COROLLARY 1. Let X be a real linear space, and let $D \subset X$ be an infinitelydimensional subset of X. The inequality defining convex functions $f: D \to \mathbb{R}$ is not stable in the sense of Hyers and Ulam.

NONSTABILITY RESULTS IN THE THEORY OF CONVEX FUNCTIONS

Since every open and convex subset D of the space \mathbb{R}^n treated as a linear space over \mathbb{Q} (the set of all rationals) has infinite dimension, our theorem implies also the following corollary.

COROLLARY 2. Let D be an infinitely-dimensional over \mathbb{Q} and convex subset of \mathbb{R}^n (for example convex and open). There exists an ε -J-convex function $f:D\to$ \mathbb{R} such that for every J-convex function $q: D \to \mathbb{R}$ we have

$$\sup\{|f(x) - g(x)| ; x \in D\} = \infty.$$

It follows from the definitions that every ε -K-convex function is also a 2ε -K-Wright-convex function. Note also that every K-Wright-convex function is J-convex. Thus we can repeat the argument used in our theorem to obtain the following:

Corollary 3. Let X be a linear space over \mathbb{K} and let D be an infinitedimensional subset of X. Then there exists an ε -K-Wright-convex function such that for every \mathbb{K} -Wright-convex function $q: D \to \mathbb{R}$ we have

$$\sup\{|f(x) - g(x)| ; x \in D\} = \infty.$$

Particularly, Corollaries 1 and 3 say that in every infinite-dimensional case the inequalities defining the notions of the convexity and Wright-convexity, as well, are not stable in the sense of Hyers and Ulam. Similarly, Corollary 2 says that the inequality defining the notion of Jensen-convexity on an open and convex domain is not stable in the Hyers–Ulam sense.

References

- 1. E. Casini and P. L. Papini, A counterexample to the infinity version of the Hyers and Ulam stability theorem. Proc. Amer. Math. Soc. 118 (1993), 885–890.
- P. W. Cholewa, Remarks on the stability of functional equations. Aequationes Math. **27** (1984), 76–86.
- 3. R. Ger, Almost Approximately Convex Functions. Math. Slovaca 38 (1988), 61–78.
- J. W. Green, Approximately convex functions. Duke Math. J. 19 (1952), 499–504.
- D. H. Hyers and S. M. Ulam, Approximately convex functions. Proc. Amer. Math. Soc. 3 (1952), 821–828.
- Z. Kominek, Report and abstracts of the meeting of functionals analysis and applications. Extracta Math. 14 (1999), 69-98.
- M. Laczkovich, The local stability of convexity, affinity and of the Jensen equation. Aequationes Math. 58 (1999), 135–142.
- E. J. McShane, Extension of range of functions. Bull. Amer. Math. Soc. 40 (1934), 837-842.
- J. Mrowiec, On the stability of Wright-convex functions. Aequationes Math. 65 (2003), 158-164.
- 10. S. Ulam, A collection of mathematical problems. Interscience, New York, 1960.

Institute of Mathematics Silesian University Bankowa 14 PL-40-007 Katowice Poland

email: zkominek@ux2.math.us.edu.pl

 $Department\ of\ Mathematics$ University of Bielsko-Biaâła Willowa 2 PL-43-309 Bielsko-Biaâła Poland

email: jmrowiec@ath.bielsko.pl