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Abstract. We show that any Lebesgue measurable function f : R →

[0,∞) satisfying

f(x) =

∫
∞

0

f(x + y)f(y) dy

has the form

f(x) = 2λe−λx

with a λ ∈ [0,∞).

Résumé. Nous démontrons que toute fonction mesurable au sens de
Lebesgue f : R → [0,∞) satisfaisant à

f(x) =

∫
∞

0

f(x + y)f(y) dy

est de la forme

f(x) = 2λe−λx

avec un λ ∈ [0,∞).

1. Referring to [2, Problem 7, p. 194, posed by József Bukszár and pre-
sented by János Aczél] we consider the equation

(1) f(x) =

∫

∞

0

f(x+ y)f(y) dy.

Our result reads as follows.

Theorem. Any Lebesgue measurable function f : R → [0,∞) satisfying (1) for
x ∈ R has the form

f(x) = 2λe−λx

with a λ ∈ [0,∞).

We will prove this theorem in Section 3 based on some of our results concerning
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solutions of

(2) ϕ(x) =

∫

R

ϕ(x+ y)ν (dy)

and established in [1]. For the reader’s convenience we present these results in
Section 2 as lemmas. Note however that (1) has also solutions f : R → R which
change the sign, e.g.,

f(x) = 4λ(1− λx)e−λx

with a λ ∈ (0,∞), and that the paper [3] by L. v. Wolfersdorf and E. Wegert
deals with more general equations. We thank Professor Vladimir Mityushev for
calling our attention to that paper.

2. Assume ν is a Borel measure on R with ν(R \ {0}) > 0 and every
point of R has a neighbourhood of finite measure ν. Let G denote the additive
subgroup of R generated by the support of ν (i.e., by the set of all points each
neighbourhood of which has a positive measure). The following has been proved
(among others) in [1] (as Corollary 1.1, a part of Theorem 2.1 and Lemma 2.2,
respectively).

Lemma 1. Any non-negative continuous solution of (2) defined on a coset of

G either vanishes everywhere, or is positive everywhere.

Lemma 2. If (2) has a non-negative and non-zero continuous solution defined

on a coset of G then there exists a real number λ such that

(3)

∫

R

eλyν (dy) = 1.

Lemma 3. If ν(R) = 1 then every non-negative continuous solution of (2)
defined on a coset of G is monotonic.

3. Assume f : R → [0,∞) is Lebesgue measurable and satisfies (1) for
x ∈ R. To get the required form of f we may assume that it is non-zero.

Since

(4) f(0) =

∫

∞

0

f(y)2 dy

the square of each of the functions g, h : R → [0,∞), defined by

g = f · I[0,∞), h(x) = g(−x) for x ∈ R,

is Lebesgue integrable. Consequently, the convolution g ∗ h is continuous and

(g ∗ h)(x) ≤

(
∫

R

g(y)2 dy

)1/2

·

(
∫

R

h(y)2 dy

)1/2

=

∫

∞

0

f(y)2 dy = f(0)
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for x ∈ R. On the other hand, by (1) we have

(g ∗ h)(x) = f(x) for x ∈ [0,∞).

This shows that f |[0,∞) is continuous and

(5) f(x) ≤ f(0) for x ∈ [0,∞).

In particular, there exists a positive δ such that f(x) ≥ 1
2f(0) for x ∈ [0, δ]

whence, according to (1),

f(x) ≥
1

2
f(0)

∫ δ

0

f(x+ y) dy =
1

2
f(0)

∫ x+δ

x

f(z) dz for x ∈ R.

This implies that f is Lebesgue integrable on every compact interval.
To prove that f is continuous fix arbitrarily x0 ∈ (−∞, 0] and an a ∈

(−x0,∞). Putting

F = f · I[−a,2(x0+a)], c = max{f(0), f(0)1/2},

and using (1), (5), Hölder’s inequality and (4), for every ξ ∈ [−(x0 + a), x0 + a]
we have

|f(x0 + ξ)− f(x0)|

≤

∫

∞

0

|f(x0 + ξ + y)− f(x0 + y)|f(y) dy

≤ f(0)

∫ a

0

|f(x0 + ξ + y)− f(x0 + y)| dy

+

(
∫

∞

a

|f(x0 + ξ + y)− f(x0 + y)|2 dy

)1/2

· f(0)1/2

≤ c

(
∫ x0+a

x0

|F (z + ξ)− F (z)| dz +

(
∫

∞

x0+a

|g(z + ξ)− g(z)|2 dz

)1/2)

.

Due to the Lebesgue integrability of F and of the square of g the last sum tends
to zero when ξ does and the continuity of f follows.

Now define a Borel measure ν on R by

ν(B) =

∫

B∩[0,∞)

f(y) dy.

Since f |[0,∞) is continuous and non-zero, ν has the properties stated at the
beginning of Section 2 and the additive subgroup of R generated by the support
of ν coincides with the whole group R. Moreover, f is a continuous solution of
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(2). According to Lemma 1, the function f is positive everywhere and Lemma 2
provides a real number λ satisfying (3). Consider another Borel measure µ on R

given by

µ(B) =

∫

B

eλyν (dy)

and a function ϕ : R → (0,∞) defined by

ϕ(x) = f(x)e−λx.

Clearly, µ(B) vanishes exactly when ν(B) does, (3) means that µ(R) = 1, and

ϕ(x) =

∫

R

ϕ(x+ y)µ (dy) =

∫

[0,∞)

ϕ(x+ y)µ (dy),

i.e.,

(6)

∫

[0,∞)

(

ϕ(x+ y)− ϕ(x)
)

µ (dy) = 0 for x ∈ R.

In particular, µ shares the properties stated at the beginning of Section 2 with
ν, the additive subgroup of R generated by the support of µ coincides with R

and, according to Lemma 3, ϕ is monotonic. Hence and from (6) for any fixed
x ∈ R we have

(7) ϕ(x+ y) = ϕ(x)

for µ–a.e., i.e., ν–a.e., y ≥ 0, and, since f is positive everywhere, (7) holds for
a.e. (with respect to the Lebesgue measure) y ≥ 0. Due to the continuity of ϕ
equality (7) holds for every y ≥ 0 and x ∈ R. This means that ϕ is constant:

ϕ(x) = ϕ(0) = f(0) for x ∈ R,

or, in other words,
f(x) = f(0)eλx for x ∈ R.

This jointly with (1) gives f(0) = −2λ and ends the proof.
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