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CONVERGENCE OF ITERATES OF TYPICAL
NONEXPANSIVE MAPPINGS IN BANACH SPACES

SIMEON REICH AND ALEXANDER J. ZASLAVSKI
Presented by Jonathan Borwein, FRSC

ABSTRACT. Let K be a bounded, closed and convex subset of a Banach
space X. We show that the iterates of a typical element (in the sense of
Baire category) of a class of nonexpansive mappings which take K to X
converge uniformly on K to the unique fixed point of this typical element.

RESUME.  Soit K un sous-ensemble borné, fermé et convexe d’un espace
de Banach X. Nous démontrons que les itérés d’un élément typique (au
sens des catégories de Baire) d’une classe d’applications non-expansives de
K dans X convergent uniformément sur K vers I'unique point fixe de cet
élément typique.

1. Introduction and preliminaries. Let (X,| -||) be a Banach space
and let K C X be a nonempty, bounded, closed and convex subset of X. Denote
by M. the set of all mappings A: K — X which satisfy

|[Az — Ay|| < ||z —y|| for all z,y € K.
For each A, B € M,,,, set
(1.1) d(A, B) = sup{||Ax — Bz|| : x € K}.

It is clear that (M,y.,d) is a complete metric space. Denote by Mg the set
consisting of all A € M,,. such that

(1.2) inf{||z — Az|| : z € K} = 0.

In other words, My consists of all those nonexpansive mappings taking K to X
which have approximate fixed points. Clearly, M is a closed subset of M.
Every nonexpansive self-mapping of K belongs to M. In order to exhibit
two classes of nonself-mappings of K that are also contained in Mg, we first
recall that if x € K, then the inward set I (x) of X with respect to K is defined
by
Ix(z) :={z€ X :z2=2+a(y — x) for some y € K and o > 0}.

A mapping A: K — X is said to be weakly inward if Ax belongs to the closure
of Ik (x) for each € K. Consider now a weakly inward mapping A € M,,..

Received by the editors on July 15, 2005.

AMS subject classification: 47H09, 47H10, 54E50, 54E52.

Keywords: approximate fixed point, Banach space, complete metric space, fixed point,
generic property, iteration, nonexpansive mapping, porous set, weakly inward.

© Royal Society of Canada 2005.

121



122 SIMEON REICH AND ALEXANDER J. ZASLAVSKI

Fix a point z € K and t € [0,1) and let the mapping S: K — X be defined
by Sz = tAx + (1 — t)z, x € K. This strict contraction is also weakly inward
and therefore has a unique fixed point z; € K by Theorem 2.4 in [4]. Since
|lze — Aze|| = 0 as t — 17, we see that A € M.

If K has a nonempty interior int(K) and a nonexpansive mapping A: K —
X satisfies the Leray—Schauder condition with respect to w € int(K), that is,
Ay — w # m(y — w) for all y in the boundary of K and m > 1, then it also
belongs to My. This is because the strict contraction S: K — X defined by
Sz = tAz + (1 — t)w, x € K, also satisfies the Leray—Schauder condition with
respect to w € int(K) and therefore has a unique fixed point [3].

Set

(1.3) p(K) = sup{l[z]| : z € K}

Our purpose in this note is to show that the iterates of a typical element (in
the sense of Baire category) of M, converge uniformly on K to the unique fixed
point of this typical element. As a matter of fact, we are able to establish a more
refined result, involving the notion of porosity which we now recall.

Let (Y, ) be a complete metric space. We denote by B(y,r) the closed ball
of center y € Y and radius r > 0. A subset E C Y is called porous in (Y, ) if
there exist o € (0,1) and 79 > 0 such that for each r € (0,r¢] and each y € Y,
there exists z € Y for which

B(z,ar) C B(y,r) \ E.

A subset of the space Y is called o-porous in (Y, \) if it is a countable union of
porous subsets in (Y, A).

Since porous sets are obviously nowhere dense, all g-porous sets are of the
first Baire category. If Y is a finite-dimensional Euclidean space, then o-porous
sets are also of Lebesgue measure zero.

To point out the difference between porous and nowhere dense sets, note that
if £ CY is nowhere dense, y € Y and r > 0, then there are a point z € Y and
a number s > 0 such that B(z,s) C B(y,r) \ E. If, however, E is also porous,
then for small enough r we can choose s = ar, where a € (0,1) is a constant
which depends only on FE.

We are now ready to formulate our result. Its proof will be given in the next
section.

THEOREM 1.1.  There exists a set F C (Mg, d) such that its complement Mo\ F
is a o-porous subset of (Mo, d) and each B € F has the following properties:

(1) there exists a unique point xp € K such that Bxg = xp;
(2) for each € > 0, there exist 6 > 0, a natural number q, and a neighborhood U
of B in (Mye,d) such that:

(a) ifCel,ye K, and |ly — Cyl| <9, then |ly —zp|| < ¢;
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(b) if C € U, {x;}_, C K, and Cx; = w41, @ = 0,...,¢ — 1, then
|lzg — Bl < €.

Although analogous results for the closed subspace of (Mg, d) comprising all
nonexpansive self-mappings of K were established by De Blasi and Myjak in [1]
and [2], Theorem 1.1 seems to be the first generic result dealing with nonself-
mappings. In this connection see also the related papers [5] and [6]. Additional
information regarding various generic aspects of (metric) fixed point theory can
be found, for instance, in 7] and [8].

2. Proof of Theorem 1.1. We begin with a simple lemma.

Denote by E the set of all A € M, for which there exists x € K satisfying
Az = x. That is, E consists of all those nonexpansive mappings A: K — X
which have a fixed point.

LEMMA 2.1. E is an everywhere dense subset of (Mo, d).

PROOF. Let A € My and € > 0. By (1.2), there exists € K such that
||z — AZ|| < €/2.
Define
(2.1) By=Ay+z—- Az, yecK.

Clearly, B € M, and B = Z. Thus B € E. It is easy to see that d(A, B) =
||z — AZ|| < e. This completes the proof of Lemma 2.1. [ |

For each natural number n, denote by F,, the set of all those mappings A €
M which have the following property:

(P1) There exist a natural number ¢, x, € K, 6 > 0, and a neighborhood U of
A in M, such that:
(i) if BeU and if z € K satisfies ||z — Bz|| < ¢, then ||z — z.|| < 1/n;
(ii) if B € U and if {z;}]_, C K satisfies 2,41 = Bz;, i = 0,...,q — 1,
then ||zg — z.|| < 1/n.

Set -
F=()Fn
n=1

We intend to prove that Mg \ F is a o-porous subset of (Mo, d). To meet this
goal, it is sufficient to show that for each natural number n, the set Mg \ F, is
a porous subset of (M, d).

Indeed, let n be a natural number. Choose a positive number

(2.2) a<2 M (p(K)+1) 'n k.
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Let
(2.3) AeMy and re€(0,1].

By Lemma 2.1, there are Ag € F and z, € K such that

(2.4) d(Ag,A) <7/8 and Agz, = ..
Set

(2.5) 7= [32(p(K) +1)] 'r

and

(2.6) 5= (4n)"1y — 2ar.

By (2.6), (2.5) and (2.2),
(2.7) 5> 0.

Now choose an integer ¢ > 4 such that

(2.8) (1 =7)2(p(K) +1) < (16n)~".
Define
(2.9) Ay =1 =)Aoy +vz., yeEK.

Clearly, A; € M, and
(2.10) Az, = .
By (1.1), (2.9), (2.4) and (1.3),

d(Ax1, Ao) = sup{|| A1y — Aoyl| : y € K} = sup{[|vAoy — yal[ 1 y € K}
= ysup{||Aoy — Aoz.|| : y € K}
< ysup{|ly — .| 1 y € K} < 29p(K),
so that
(2.11) d(A1, Ag) < 2yp(K).
By (2.11), (2.4) and (2.5),
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Assume that B € M,,. satisfies
(2.13) d(B, A1) < 2ar.
Assume further that
(2.14) z € K and ||z — Bz|| < 4.
By (2.10) and (2.9),
(2.15) [|A12 — .|| = ||A12 — A1z
= (1= )l 402 — Agal| < (1= ]J2 — 2]l
By (1.1), (2.13) and (2.15),
1Bz = zl[ = [|[A1z — 2| - || Bz — As2|

> ||A1z — z|| = d(B, A1) > ||A1z — z|| — 2ar

>z — x| — ||ze — Ar2]] — 2ar

> |2 = 2all = (1= [z — 2| - 201 = |z — 2.]| - 2ar.
When combined with (2.14) and (2.6), this inequality implies that

5> [|Bx — 2| > 41z — 2.]| - 2ar

and
|z — .|| <7710+ 2ar) < (4n) 7.

Thus we have shown that
(2.16) if 2 € K satisfies ||z — Bz|| < 4, then ||z — 2.|| < (4n)~".
Now assume that
(217) {1’1 (i]:()CK7 Bil'izl'iJrh 1=0,...,q9—1.
By (2.17), (1.1), (2.13), (2.9) and (2.4), for i =0,...,q — 1, there holds
i1 — @l = [|Bw; — 2| < ||Bwi — Avail| + |[Ara; — 2|
= ||BQL‘Z — A1x1|| + ||A11‘l — A1$*||
<d(B, A1) + (1 = 7)[[Aozi — Aoz ||
< 207 + (1 =)l — .||,

that is,
lzit1 — @] < 20r + (1 =)z — =]
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In view of this inequality, which is valid for i =0,...,q — 1, we get
q—1
llzg — 2| < 207 ) (1 =7) + (1= 7)||z0 — .||
i=0

< 2ary™ + (1= 7)) |zo — .|
<20y 4+ 2p(K) (1 — )"

When combined with (2.5), (2.8) and (2.2), this inequality implies that
2 — 2]l < (1= 1)920(K) + 2 [32(p(K) + 1)]
< (16n) 71 + 64a[p(K) + 1] < (16n) 7 + (32n) 7! < (8n)7L.
Thus we have shown that
(2.18) if {z;}%, C K satisfies (2.17), then ||z, — z.|| < (8n)~".

By (2.18), (2.17) and (2.16), each C € M which satisfies d(C, A;) < ar has
property (P1). Therefore

{C e My :d(C, A1) < ar} C F,.
When combined with (2.2) and (2.12), this inclusion implies that
{CeMpy:d(C,A) <ar} C{B e My:d(B,A) <r}NF,.

This means that Mg \ F,, is a porous set in (M, d) for all natural numbers n.
Therefore Mg \ F is a o-porous set in (Mo, d).
Now let A € F and € > 0. Choose a natural number

(2.19) n > 8(min{1,e}) "t

Since A € F,, property (P1) implies that there exist a natural number g,, a
number J,, > 0, a neighborhood U,, of A in M,,., and a point x,, € K such that
the following property holds:

(P2) (i) if BeU,, z € K, and ||z — Bz|| < d,, then ||z — z,|| < 1/n;

(ii) if B € Uy, {zi}ly € K, and 241 = Bz, i = 0,...,q, — 1,
then ||z, — x| < 1/n.

Since A € My, there exists a sequence {y;}52; C K such that

(2.20) lim ||y; — Ay;|| = 0.
21— 00
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Hence there exists a natural number iy such that
[ly: — Ay;|| < 9, for all integers i > ig.
When combined with (P2)(i), this implies that
(2.21) [|z, — y:i|] < 1/n for all integers i > ig.
In view of (2.21), for each pair of integers 4, j > o,
Ny = ysll < llyi = zall + [lzn —y5ll <2/n <e

Since € is an arbitrary positive number, we conclude that {y;}5°; is a Cauchy
sequence and therefore there exists

(2.22) xa = lim y;.
71— 00

Clearly, Axq = x4. It is easy to see that x4 is the unique fixed point of A.
Indeed, if it were not unique, then we would be able to construct a nonconvergent
sequence {y; }22, satisfying (2.20).

By (2.21) and (2.22),

(2.23) [lza — 20| < 1/n.
Now assume that
(2.24) Bel,, ze€K, and ||z— Bz|| < 0p.

By (P2)(i) and (2.24),
[lz — xn|] < 1/n.

When combined with (2.23) and (2.19), this inequality implies that
12 = 2all < 112 = 2ll + |J2n — 24l < 2/n < €.
Finally, suppose that
(2.25) Bel,, {z}r,CcK, and Bz =z41,1=0,...,q, — 1.
Then by (P2)(ii) and (2.25),
||z, — znll < 1/n.
When combined with (2.23) and (2.19), this last inequality implies that
lzq, — zall < llzq, — @nll + llzn —zall <2/n <e

This completes the proof of Theorem 1.1. [ |
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