CONVERGENCE OF ITERATES OF TYPICAL NONEXPANSIVE MAPPINGS IN BANACH SPACES

SIMEON REICH AND ALEXANDER J. ZASLAVSKI

Presented by Jonathan Borwein, FRSC

ABSTRACT. Let K be a bounded, closed and convex subset of a Banach space X. We show that the iterates of a typical element (in the sense of Baire category) of a class of nonexpansive mappings which take K to X converge uniformly on K to the unique fixed point of this typical element.

RÉSUMÉ. Soit K un sous-ensemble borné, fermé et convexe d'un espace de Banach X. Nous démontrons que les itérés d'un élément typique (au sens des catégories de Baire) d'une classe d'applications non-expansives de K dans X convergent uniformément sur K vers l'unique point fixe de cet élément typique.

1. Introduction and preliminaries. Let $(X, \|\cdot\|)$ be a Banach space and let $K \subset X$ be a nonempty, bounded, closed and convex subset of X. Denote by \mathcal{M}_{ne} the set of all mappings $A \colon K \to X$ which satisfy

$$||Ax - Ay|| \le ||x - y||$$
 for all $x, y \in K$.

For each $A, B \in \mathcal{M}_{ne}$, set

(1.1)
$$d(A,B) = \sup\{||Ax - Bx|| : x \in K\}.$$

It is clear that (\mathcal{M}_{ne}, d) is a complete metric space. Denote by \mathcal{M}_0 the set consisting of all $A \in \mathcal{M}_{ne}$ such that

$$\inf\{||x - Ax|| : x \in K\} = 0.$$

In other words, \mathcal{M}_0 consists of all those nonexpansive mappings taking K to X which have approximate fixed points. Clearly, \mathcal{M}_0 is a closed subset of \mathcal{M}_{ne} .

Every nonexpansive self-mapping of K belongs to \mathcal{M}_0 . In order to exhibit two classes of nonself-mappings of K that are also contained in \mathcal{M}_0 , we first recall that if $x \in K$, then the inward set $I_K(x)$ of X with respect to K is defined by

$$I_K(x) := \{ z \in X : z = x + \alpha(y - x) \text{ for some } y \in K \text{ and } \alpha \ge 0 \}.$$

A mapping $A: K \to X$ is said to be weakly inward if Ax belongs to the closure of $I_K(x)$ for each $x \in K$. Consider now a weakly inward mapping $A \in \mathcal{M}_{ne}$.

Received by the editors on July 15, 2005.

AMS subject classification: 47H09, 47H10, 54E50, 54E52.

Keywords: approximate fixed point, Banach space, complete metric space, fixed point, generic property, iteration, nonexpansive mapping, porous set, weakly inward.

[©] Royal Society of Canada 2005.

Fix a point $z \in K$ and $t \in [0,1)$ and let the mapping $S: K \to X$ be defined by Sx = tAx + (1-t)z, $x \in K$. This strict contraction is also weakly inward and therefore has a unique fixed point $x_t \in K$ by Theorem 2.4 in [4]. Since $||x_t - Ax_t|| \to 0$ as $t \to 1^-$, we see that $A \in \mathcal{M}_0$.

If K has a nonempty interior $\operatorname{int}(K)$ and a nonexpansive mapping $A \colon K \to X$ satisfies the Leray–Schauder condition with respect to $w \in \operatorname{int}(K)$, that is, $Ay - w \neq m(y - w)$ for all y in the boundary of K and m > 1, then it also belongs to \mathcal{M}_0 . This is because the strict contraction $S \colon K \to X$ defined by Sx = tAx + (1-t)w, $x \in K$, also satisfies the Leray–Schauder condition with respect to $w \in \operatorname{int}(K)$ and therefore has a unique fixed point [3].

Set

(1.3)
$$\rho(K) = \sup\{||z|| : z \in K\}.$$

Our purpose in this note is to show that the iterates of a typical element (in the sense of Baire category) of \mathcal{M}_0 converge uniformly on K to the unique fixed point of this typical element. As a matter of fact, we are able to establish a more refined result, involving the notion of porosity which we now recall.

Let (Y, λ) be a complete metric space. We denote by B(y, r) the closed ball of center $y \in Y$ and radius r > 0. A subset $E \subset Y$ is called porous in (Y, λ) if there exist $\alpha \in (0, 1)$ and $r_0 > 0$ such that for each $r \in (0, r_0]$ and each $y \in Y$, there exists $z \in Y$ for which

$$B(z, \alpha r) \subset B(y, r) \setminus E$$
.

A subset of the space Y is called σ -porous in (Y, λ) if it is a countable union of porous subsets in (Y, λ) .

Since porous sets are obviously nowhere dense, all σ -porous sets are of the first Baire category. If Y is a finite-dimensional Euclidean space, then σ -porous sets are also of Lebesgue measure zero.

To point out the difference between porous and nowhere dense sets, note that if $E \subset Y$ is nowhere dense, $y \in Y$ and r > 0, then there are a point $z \in Y$ and a number s > 0 such that $B(z,s) \subset B(y,r) \setminus E$. If, however, E is also porous, then for small enough r we can choose $s = \alpha r$, where $\alpha \in (0,1)$ is a constant which depends only on E.

We are now ready to formulate our result. Its proof will be given in the next section.

THEOREM 1.1. There exists a set $\mathcal{F} \subset (\mathcal{M}_0, d)$ such that its complement $\mathcal{M}_0 \setminus \mathcal{F}$ is a σ -porous subset of (\mathcal{M}_0, d) and each $B \in \mathcal{F}$ has the following properties:

- (1) there exists a unique point $x_B \in K$ such that $Bx_B = x_B$;
- (2) for each $\epsilon > 0$, there exist $\delta > 0$, a natural number q, and a neighborhood \mathcal{U} of B in (\mathcal{M}_{ne}, d) such that:

(a) if
$$C \in \mathcal{U}$$
, $y \in K$, and $||y - Cy|| \le \delta$, then $||y - x_B|| \le \epsilon$;

(b) if
$$C \in \mathcal{U}$$
, $\{x_i\}_{i=0}^q \subset K$, and $Cx_i = x_{i+1}$, $i = 0, ..., q-1$, then $||x_q - x_B|| \le \epsilon$.

Although analogous results for the closed subspace of (\mathcal{M}_0, d) comprising all nonexpansive self-mappings of K were established by De Blasi and Myjak in [1] and [2], Theorem 1.1 seems to be the first generic result dealing with nonself-mappings. In this connection see also the related papers [5] and [6]. Additional information regarding various generic aspects of (metric) fixed point theory can be found, for instance, in [7] and [8].

2. **Proof of Theorem 1.1.** We begin with a simple lemma.

Denote by E the set of all $A \in \mathcal{M}_{ne}$ for which there exists $x \in K$ satisfying Ax = x. That is, E consists of all those nonexpansive mappings $A: K \to X$ which have a fixed point.

LEMMA 2.1. E is an everywhere dense subset of (\mathcal{M}_0, d) .

PROOF. Let $A \in \mathcal{M}_0$ and $\epsilon > 0$. By (1.2), there exists $\bar{x} \in K$ such that

$$||\bar{x} - A\bar{x}|| < \epsilon/2.$$

Define

$$(2.1) By = Ay + \bar{x} - A\bar{x}, \quad y \in K.$$

Clearly, $B \in \mathcal{M}_{ne}$ and $B\bar{x} = \bar{x}$. Thus $B \in E$. It is easy to see that $d(A, B) = ||\bar{x} - A\bar{x}|| < \epsilon$. This completes the proof of Lemma 2.1.

For each natural number n, denote by \mathcal{F}_n the set of all those mappings $A \in \mathcal{M}_0$ which have the following property:

- (P1) There exist a natural number $q, x_* \in K$, $\delta > 0$, and a neighborhood \mathcal{U} of A in \mathcal{M}_{ne} such that:
 - (i) if $B \in \mathcal{U}$ and if $z \in K$ satisfies $||z Bz|| \le \delta$, then $||z x_*|| \le 1/n$;
 - (ii) if $B \in \mathcal{U}$ and if $\{x_i\}_{i=0}^q \subset K$ satisfies $x_{i+1} = Bx_i$, i = 0, ..., q-1, then $||x_q x_*|| \le 1/n$.

Set

$$\mathcal{F} = \bigcap_{n=1}^{\infty} \mathcal{F}_n.$$

We intend to prove that $\mathcal{M}_0 \setminus \mathcal{F}$ is a σ -porous subset of (\mathcal{M}_0, d) . To meet this goal, it is sufficient to show that for each natural number n, the set $\mathcal{M}_0 \setminus \mathcal{F}_n$ is a porous subset of (\mathcal{M}_0, d) .

Indeed, let n be a natural number. Choose a positive number

(2.2)
$$\alpha \le 2^{-11} (\rho(K) + 1)^{-1} n^{-1}.$$

Let

$$(2.3) A \in \mathcal{M}_0 \text{ and } r \in (0,1].$$

By Lemma 2.1, there are $A_0 \in E$ and $x_* \in K$ such that

(2.4)
$$d(A_0, A) < r/8$$
 and $A_0 x_* = x_*$.

Set

(2.5)
$$\gamma = \left[32(\rho(K) + 1)\right]^{-1} r$$

and

$$(2.6) \delta = (4n)^{-1}\gamma - 2\alpha r.$$

By (2.6), (2.5) and (2.2),

$$(2.7) \delta > 0.$$

Now choose an integer $q \geq 4$ such that

$$(2.8) (1 - \gamma)^q 2(\rho(K) + 1) < (16n)^{-1}.$$

Define

(2.9)
$$A_1 y = (1 - \gamma) A_0 y + \gamma x_*, \quad y \in K.$$

Clearly, $A_1 \in \mathcal{M}_{ne}$ and

$$(2.10) A_1 x_* = x_*.$$

By (1.1), (2.9), (2.4) and (1.3),

$$d(A_1, A_0) = \sup\{||A_1 y - A_0 y|| : y \in K\} = \sup\{||\gamma A_0 y - \gamma x_*|| : y \in K\}$$
$$= \gamma \sup\{||A_0 y - A_0 x_*|| : y \in K\}$$
$$\leq \gamma \sup\{||y - x_*|| : y \in K\} \leq 2\gamma \rho(K),$$

so that

$$(2.11) d(A_1, A_0) \le 2\gamma \rho(K).$$

By (2.11), (2.4) and (2.5),

$$(2.12) d(A, A_1) \le d(A, A_0) + d(A_0, A_1) \le r/8 + 2\gamma \rho(K) \le r/4.$$

Assume that $B \in \mathcal{M}_{ne}$ satisfies

$$(2.13) d(B, A_1) \le 2\alpha r.$$

Assume further that

$$(2.14) z \in K \text{ and } ||z - Bz|| \le \delta.$$

By (2.10) and (2.9),

(2.15)
$$||A_1z - x_*|| = ||A_1z - A_1x_*||$$
$$= (1 - \gamma)||A_0z - A_0x_*|| \le (1 - \gamma)||z - x_*||.$$

By (1.1), (2.13) and (2.15),

$$\begin{split} ||Bz - z|| &\geq ||A_1z - z|| - ||Bz - A_1z|| \\ &\geq ||A_1z - z|| - d(B, A_1) \geq ||A_1z - z|| - 2\alpha r \\ &\geq ||z - x_*|| - ||x_* - A_1z|| - 2\alpha r \\ &\geq ||z - x_*|| - (1 - \gamma)||z - x_*|| - 2\alpha r = \gamma ||z - x_*|| - 2\alpha r. \end{split}$$

When combined with (2.14) and (2.6), this inequality implies that

$$\delta \ge ||Bz - z|| \ge \gamma ||z - x_*|| - 2\alpha r$$

and

$$||z - x_*|| \le \gamma^{-1} (\delta + 2\alpha r) \le (4n)^{-1}.$$

Thus we have shown that

(2.16) if
$$z \in K$$
 satisfies $||z - Bz|| \le \delta$, then $||z - x_*|| \le (4n)^{-1}$.

Now assume that

$$\{x_i\}_{i=0}^q \subset K, \quad Bx_i = x_{i+1}, \quad i = 0, \dots, q-1.$$

By (2.17), (1.1), (2.13), (2.9) and (2.4), for $i = 0, \ldots, q-1$, there holds

$$||x_{i+1} - x_*|| = ||Bx_i - x_*|| \le ||Bx_i - A_1x_i|| + ||A_1x_i - x_*||$$

$$= ||Bx_i - A_1x_i|| + ||A_1x_i - A_1x_*||$$

$$\le d(B, A_1) + (1 - \gamma)||A_0x_i - A_0x_*||$$

$$\le 2\alpha r + (1 - \gamma)||x_i - x_*||,$$

that is,

$$||x_{i+1} - x_*|| \le 2\alpha r + (1 - \gamma)||x_i - x_*||.$$

In view of this inequality, which is valid for $i = 0, \ldots, q - 1$, we get

$$||x_q - x_*|| \le 2\alpha r \sum_{i=0}^{q-1} (1 - \gamma)^i + (1 - \gamma)^q ||x_0 - x_*||$$

$$\le 2\alpha r \gamma^{-1} + (1 - \gamma)^q ||x_0 - x_*||$$

$$\le 2\alpha r \gamma^{-1} + 2\rho(K)(1 - \gamma)^q.$$

When combined with (2.5), (2.8) and (2.2), this inequality implies that

$$||x_q - x_*|| \le (1 - \gamma)^q 2\rho(K) + 2\alpha \left[32(\rho(K) + 1) \right]$$

$$\le (16n)^{-1} + 64\alpha \left[\rho(K) + 1 \right] \le (16n)^{-1} + (32n)^{-1} < (8n)^{-1}.$$

Thus we have shown that

(2.18) if
$$\{x_i\}_{i=0}^q \subset K$$
 satisfies (2.17), then $||x_q - x_*|| \le (8n)^{-1}$.

By (2.18), (2.17) and (2.16), each $C \in \mathcal{M}_0$ which satisfies $d(C, A_1) \leq \alpha r$ has property (P1). Therefore

$$\{C \in \mathcal{M}_0 : d(C, A_1) \leq \alpha r\} \subset \mathcal{F}_n.$$

When combined with (2.2) and (2.12), this inclusion implies that

$$\{C \in \mathcal{M}_0 : d(C, A_1) < \alpha r\} \subset \{B \in \mathcal{M}_0 : d(B, A) < r\} \cap \mathcal{F}_n.$$

This means that $\mathcal{M}_0 \setminus \mathcal{F}_n$ is a porous set in (\mathcal{M}_0, d) for all natural numbers n. Therefore $\mathcal{M}_0 \setminus \mathcal{F}$ is a σ -porous set in (\mathcal{M}_0, d) .

Now let $A \in \mathcal{F}$ and $\epsilon > 0$. Choose a natural number

$$(2.19) n > 8(\min\{1, \epsilon\})^{-1}.$$

Since $A \in \mathcal{F}_n$, property (P1) implies that there exist a natural number q_n , a number $\delta_n > 0$, a neighborhood \mathcal{U}_n of A in \mathcal{M}_{ne} , and a point $x_n \in K$ such that the following property holds:

(P2) (i) if
$$B \in \mathcal{U}_n$$
, $z \in K$, and $||z - Bz|| \le \delta_n$, then $||z - x_n|| \le 1/n$;

(ii) if
$$B \in \mathcal{U}_n$$
, $\{z_i\}_{i=0}^{q_n} \subset K$, and $z_{i+1} = Bz_i$, $i = 0, \ldots, q_n - 1$, then $||z_{q_n} - x_n|| \le 1/n$.

Since $A \in \mathcal{M}_0$, there exists a sequence $\{y_i\}_{i=1}^{\infty} \subset K$ such that

(2.20)
$$\lim_{i \to \infty} ||y_i - Ay_i|| = 0.$$

Hence there exists a natural number i_0 such that

$$||y_i - Ay_i|| \le \delta_n$$
 for all integers $i \ge i_0$.

When combined with (P2)(i), this implies that

(2.21)
$$||x_n - y_i|| \le 1/n \quad \text{for all integers } i \ge i_0.$$

In view of (2.21), for each pair of integers $i, j \geq i_0$,

$$||y_i - y_j|| \le ||y_i - x_n|| + ||x_n - y_j|| \le 2/n < \epsilon.$$

Since ϵ is an arbitrary positive number, we conclude that $\{y_i\}_{i=1}^{\infty}$ is a Cauchy sequence and therefore there exists

$$(2.22) x_A = \lim_{i \to \infty} y_i.$$

Clearly, $Ax_A = x_A$. It is easy to see that x_A is the unique fixed point of A. Indeed, if it were not unique, then we would be able to construct a nonconvergent sequence $\{y_i\}_{i=0}^{\infty}$ satisfying (2.20).

By (2.21) and (2.22),

$$(2.23) ||x_A - x_n|| \le 1/n.$$

Now assume that

$$(2.24) B \in \mathcal{U}_n, \quad z \in K, \quad \text{and} \quad ||z - Bz|| \le \delta_n.$$

By (P2)(i) and (2.24),

$$||z - x_n|| < 1/n.$$

When combined with (2.23) and (2.19), this inequality implies that

$$||z - x_A|| \le ||z - x_n|| + ||x_n - x_A|| \le 2/n < \epsilon.$$

Finally, suppose that

(2.25)
$$B \in \mathcal{U}_n$$
, $\{z_i\}_{i=0}^{q_n} \subset K$, and $Bz_i = z_{i+1}, i = 0, \dots, q_n - 1$.

Then by (P2)(ii) and (2.25),

$$||z_{q_n} - x_n|| \le 1/n.$$

When combined with (2.23) and (2.19), this last inequality implies that

$$||z_{q_n} - x_A|| \le ||z_{q_n} - x_n|| + ||x_n - x_A|| \le 2/n < \epsilon.$$

This completes the proof of Theorem 1.1.

ACKNOWLEDGMENTS. The first author was partially supported by the Fund for the Promotion of Research at the Technion and by the Technion VPR Fund. He also thanks the Erwin Schrödinger International Institute for Mathematical Physics in Vienna for its support. Both authors thank an anonymous referee for several helpful suggestions.

References

- F. S. De Blasi and J. Myjak, Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach. C. R. Acad. Sci. Paris 283 (1976), 185–187.
- 2. _____, Sur la porosité de l'ensemble des contractions sans point fixe. C. R. Acad. Sci. Paris 308 (1989), 51–54.
- S. Reich, Fixed points of condensing functions. J. Math. Anal. Appl. 41 (1973), 460–467.
- 4. _____, On fixed point theorems obtained from existence theorems for differential equations. J. Math. Anal. Appl. **54** (1976), 26–36.
- S. Reich and A. J. Zaslavski, Almost all nonexpansive mappings are contractive. C. R. Math. Rep. Acad. Sci. Canada 22 (2000), 118–124.
- ______, The set of noncontractive mappings is σ-porous in the space of all nonexpansive mappings. C. R. Acad. Sci. Paris 333 (2001), 539–544.
- 7. _____, Generic aspects of metric fixed point theory. In: Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht, 2001, 557–575.
- 8. T. Zamfirescu, A generic view on the theorems of Brouwer and Schauder. Math. Z. 213 (1993), 387–392.

Department of Mathematics
The Technion-Israel Institute of Technology
32000 Haifa
Israel
email: sreich@tx.technion.ac.il
ajzasl@tx.technion.ac.il