
C. R. Math. Rep. Acad. Sci. Canada Vol. 27, (4), 2005 pp. 121–128

CONVERGENCE OF ITERATES OF TYPICAL

NONEXPANSIVE MAPPINGS IN BANACH SPACES

SIMEON REICH AND ALEXANDER J. ZASLAVSKI

Presented by Jonathan Borwein, FRSC

Abstract. Let K be a bounded, closed and convex subset of a Banach
space X. We show that the iterates of a typical element (in the sense of
Baire category) of a class of nonexpansive mappings which take K to X

converge uniformly on K to the unique fixed point of this typical element.

Résumé. Soit K un sous-ensemble borné, fermé et convexe d’un espace
de Banach X. Nous démontrons que les itérés d’un élément typique (au
sens des catégories de Baire) d’une classe d’applications non-expansives de

K dans X convergent uniformément sur K vers l’unique point fixe de cet
élément typique.

1. Introduction and preliminaries. Let (X, ‖ · ‖) be a Banach space
and let K ⊂ X be a nonempty, bounded, closed and convex subset of X. Denote
by Mne the set of all mappings A : K → X which satisfy

‖Ax−Ay‖ ≤ ‖x− y‖ for all x, y ∈ K.

For each A,B ∈ Mne, set

(1.1) d(A,B) = sup{||Ax−Bx|| : x ∈ K}.

It is clear that (Mne, d) is a complete metric space. Denote by M0 the set
consisting of all A ∈ Mne such that

(1.2) inf{||x−Ax|| : x ∈ K} = 0.

In other words, M0 consists of all those nonexpansive mappings taking K to X
which have approximate fixed points. Clearly, M0 is a closed subset of Mne.

Every nonexpansive self-mapping of K belongs to M0. In order to exhibit
two classes of nonself-mappings of K that are also contained in M0, we first
recall that if x ∈ K, then the inward set IK(x) of X with respect to K is defined
by

IK(x) := {z ∈ X : z = x+ α(y − x) for some y ∈ K and α ≥ 0}.

A mapping A : K → X is said to be weakly inward if Ax belongs to the closure
of IK(x) for each x ∈ K. Consider now a weakly inward mapping A ∈ Mne.
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Fix a point z ∈ K and t ∈ [0, 1) and let the mapping S : K → X be defined
by Sx = tAx + (1 − t)z, x ∈ K. This strict contraction is also weakly inward
and therefore has a unique fixed point xt ∈ K by Theorem 2.4 in [4]. Since
||xt −Axt|| → 0 as t → 1−, we see that A ∈ M0.

If K has a nonempty interior int(K) and a nonexpansive mapping A : K →
X satisfies the Leray–Schauder condition with respect to w ∈ int(K), that is,
Ay − w 6= m(y − w) for all y in the boundary of K and m > 1, then it also
belongs to M0. This is because the strict contraction S : K → X defined by
Sx = tAx + (1 − t)w, x ∈ K, also satisfies the Leray–Schauder condition with
respect to w ∈ int(K) and therefore has a unique fixed point [3].

Set

(1.3) ρ(K) = sup{||z|| : z ∈ K}.

Our purpose in this note is to show that the iterates of a typical element (in
the sense of Baire category) of M0 converge uniformly on K to the unique fixed
point of this typical element. As a matter of fact, we are able to establish a more
refined result, involving the notion of porosity which we now recall.

Let (Y, λ) be a complete metric space. We denote by B(y, r) the closed ball
of center y ∈ Y and radius r > 0. A subset E ⊂ Y is called porous in (Y, λ) if
there exist α ∈ (0, 1) and r0 > 0 such that for each r ∈ (0, r0] and each y ∈ Y ,
there exists z ∈ Y for which

B(z, αr) ⊂ B(y, r) \ E.

A subset of the space Y is called σ-porous in (Y, λ) if it is a countable union of
porous subsets in (Y, λ).

Since porous sets are obviously nowhere dense, all σ-porous sets are of the
first Baire category. If Y is a finite-dimensional Euclidean space, then σ-porous
sets are also of Lebesgue measure zero.

To point out the difference between porous and nowhere dense sets, note that
if E ⊂ Y is nowhere dense, y ∈ Y and r > 0, then there are a point z ∈ Y and
a number s > 0 such that B(z, s) ⊂ B(y, r) \ E. If, however, E is also porous,
then for small enough r we can choose s = αr, where α ∈ (0, 1) is a constant
which depends only on E.

We are now ready to formulate our result. Its proof will be given in the next
section.

Theorem 1.1. There exists a set F ⊂ (M0, d) such that its complement M0\F
is a σ-porous subset of (M0, d) and each B ∈ F has the following properties:

(1) there exists a unique point xB ∈ K such that BxB = xB;

(2) for each ǫ > 0, there exist δ > 0, a natural number q, and a neighborhood U
of B in (Mne, d) such that:

(a) if C ∈ U , y ∈ K, and ||y − Cy|| ≤ δ, then ||y − xB || ≤ ǫ;
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(b) if C ∈ U , {xi}
q
i=0

⊂ K, and Cxi = xi+1, i = 0, . . . , q − 1, then

||xq − xB || ≤ ǫ.

Although analogous results for the closed subspace of (M0, d) comprising all
nonexpansive self-mappings of K were established by De Blasi and Myjak in [1]
and [2], Theorem 1.1 seems to be the first generic result dealing with nonself-
mappings. In this connection see also the related papers [5] and [6]. Additional
information regarding various generic aspects of (metric) fixed point theory can
be found, for instance, in [7] and [8].

2. Proof of Theorem 1.1. We begin with a simple lemma.
Denote by E the set of all A ∈ Mne for which there exists x ∈ K satisfying

Ax = x. That is, E consists of all those nonexpansive mappings A : K → X
which have a fixed point.

Lemma 2.1. E is an everywhere dense subset of (M0, d).

Proof. Let A ∈ M0 and ǫ > 0. By (1.2), there exists x̄ ∈ K such that

||x̄−Ax̄|| < ǫ/2.

Define

(2.1) By = Ay + x̄−Ax̄, y ∈ K.

Clearly, B ∈ Mne and Bx̄ = x̄. Thus B ∈ E. It is easy to see that d(A,B) =
||x̄−Ax̄|| < ǫ. This completes the proof of Lemma 2.1.

For each natural number n, denote by Fn the set of all those mappings A ∈
M0 which have the following property:

(P1) There exist a natural number q, x∗ ∈ K, δ > 0, and a neighborhood U of
A in Mne such that:

(i) if B ∈ U and if z ∈ K satisfies ||z −Bz|| ≤ δ, then ||z − x∗|| ≤ 1/n;

(ii) if B ∈ U and if {xi}
q
i=0

⊂ K satisfies xi+1 = Bxi, i = 0, . . . , q − 1,
then ||xq − x∗|| ≤ 1/n.

Set

F =

∞
⋂

n=1

Fn.

We intend to prove that M0 \ F is a σ-porous subset of (M0, d). To meet this
goal, it is sufficient to show that for each natural number n, the set M0 \ Fn is
a porous subset of (M0, d).

Indeed, let n be a natural number. Choose a positive number

(2.2) α ≤ 2−11
(

ρ(K) + 1
)

−1
n−1.
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Let

(2.3) A ∈ M0 and r ∈ (0, 1].

By Lemma 2.1, there are A0 ∈ E and x∗ ∈ K such that

(2.4) d(A0, A) < r/8 and A0x∗ = x∗.

Set

(2.5) γ =
[

32
(

ρ(K) + 1
)]

−1
r

and

(2.6) δ = (4n)−1γ − 2αr.

By (2.6), (2.5) and (2.2),

(2.7) δ > 0.

Now choose an integer q ≥ 4 such that

(2.8) (1− γ)q2
(

ρ(K) + 1
)

< (16n)−1.

Define

(2.9) A1y = (1− γ)A0y + γx∗, y ∈ K.

Clearly, A1 ∈ Mne and

(2.10) A1x∗ = x∗.

By (1.1), (2.9), (2.4) and (1.3),

d(A1, A0) = sup{||A1y −A0y|| : y ∈ K} = sup{||γA0y − γx∗|| : y ∈ K}

= γ sup{||A0y −A0x∗|| : y ∈ K}

≤ γ sup{||y − x∗|| : y ∈ K} ≤ 2γρ(K),

so that

(2.11) d(A1, A0) ≤ 2γρ(K).

By (2.11), (2.4) and (2.5),

(2.12) d(A,A1) ≤ d(A,A0) + d(A0, A1) ≤ r/8 + 2γρ(K) ≤ r/4.
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Assume that B ∈ Mne satisfies

(2.13) d(B,A1) ≤ 2αr.

Assume further that

(2.14) z ∈ K and ||z −Bz|| ≤ δ.

By (2.10) and (2.9),

||A1z − x∗|| = ||A1z −A1x∗||

= (1− γ)||A0z −A0x∗|| ≤ (1− γ)||z − x∗||.

(2.15)

By (1.1), (2.13) and (2.15),

||Bz − z|| ≥ ||A1z − z|| − ||Bz −A1z||

≥ ||A1z − z|| − d(B,A1) ≥ ||A1z − z|| − 2αr

≥ ||z − x∗|| − ||x∗ −A1z|| − 2αr

≥ ||z − x∗|| − (1− γ)||z − x∗|| − 2αr = γ||z − x∗|| − 2αr.

When combined with (2.14) and (2.6), this inequality implies that

δ ≥ ||Bz − z|| ≥ γ||z − x∗|| − 2αr

and
||z − x∗|| ≤ γ−1(δ + 2αr) ≤ (4n)−1.

Thus we have shown that

(2.16) if z ∈ K satisfies ||z −Bz|| ≤ δ, then ||z − x∗|| ≤ (4n)−1.

Now assume that

(2.17) {xi}
q
i=0

⊂ K, Bxi = xi+1, i = 0, . . . , q − 1.

By (2.17), (1.1), (2.13), (2.9) and (2.4), for i = 0, . . . , q − 1, there holds

||xi+1 − x∗|| = ||Bxi − x∗|| ≤ ||Bxi −A1xi||+ ||A1xi − x∗||

= ||Bxi −A1xi||+ ||A1xi −A1x∗||

≤ d(B,A1) + (1− γ)||A0xi −A0x∗||

≤ 2αr + (1− γ)||xi − x∗||,

that is,
||xi+1 − x∗|| ≤ 2αr + (1− γ)||xi − x∗||.
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In view of this inequality, which is valid for i = 0, . . . , q − 1, we get

||xq − x∗|| ≤ 2αr

q−1
∑

i=0

(1− γ)i + (1− γ)q||x0 − x∗||

≤ 2αrγ−1 + (1− γ)q||x0 − x∗||

≤ 2αrγ−1 + 2ρ(K)(1− γ)q.

When combined with (2.5), (2.8) and (2.2), this inequality implies that

||xq − x∗|| ≤ (1− γ)q2ρ(K) + 2α
[

32
(

ρ(K) + 1
)]

≤ (16n)−1 + 64α[ρ(K) + 1] ≤ (16n)−1 + (32n)−1 < (8n)−1.

Thus we have shown that

(2.18) if {xi}
q
i=0

⊂ K satisfies (2.17), then ||xq − x∗|| ≤ (8n)−1.

By (2.18), (2.17) and (2.16), each C ∈ M0 which satisfies d(C,A1) ≤ αr has
property (P1). Therefore

{C ∈ M0 : d(C,A1) ≤ αr} ⊂ Fn.

When combined with (2.2) and (2.12), this inclusion implies that

{C ∈ M0 : d(C,A1) ≤ αr} ⊂ {B ∈ M0 : d(B,A) ≤ r} ∩ Fn.

This means that M0 \ Fn is a porous set in (M0, d) for all natural numbers n.
Therefore M0 \ F is a σ-porous set in (M0, d).

Now let A ∈ F and ǫ > 0. Choose a natural number

(2.19) n > 8(min{1, ǫ})−1.

Since A ∈ Fn, property (P1) implies that there exist a natural number qn, a
number δn > 0, a neighborhood Un of A in Mne, and a point xn ∈ K such that
the following property holds:

(P2) (i) if B ∈ Un, z ∈ K, and ||z −Bz|| ≤ δn, then ||z − xn|| ≤ 1/n;

(ii) if B ∈ Un, {zi}
qn
i=0

⊂ K, and zi+1 = Bzi, i = 0, . . . , qn − 1,
then ||zqn − xn|| ≤ 1/n.

Since A ∈ M0, there exists a sequence {yi}
∞

i=1 ⊂ K such that

(2.20) lim
i→∞

||yi −Ayi|| = 0.
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Hence there exists a natural number i0 such that

||yi −Ayi|| ≤ δn for all integers i ≥ i0.

When combined with (P2)(i), this implies that

(2.21) ||xn − yi|| ≤ 1/n for all integers i ≥ i0.

In view of (2.21), for each pair of integers i, j ≥ i0,

||yi − yj || ≤ ||yi − xn||+ ||xn − yj || ≤ 2/n < ǫ.

Since ǫ is an arbitrary positive number, we conclude that {yi}
∞

i=1 is a Cauchy
sequence and therefore there exists

(2.22) xA = lim
i→∞

yi.

Clearly, AxA = xA. It is easy to see that xA is the unique fixed point of A.
Indeed, if it were not unique, then we would be able to construct a nonconvergent
sequence {yi}

∞

i=0 satisfying (2.20).
By (2.21) and (2.22),

(2.23) ||xA − xn|| ≤ 1/n.

Now assume that

(2.24) B ∈ Un, z ∈ K, and ||z −Bz|| ≤ δn.

By (P2)(i) and (2.24),
||z − xn|| ≤ 1/n.

When combined with (2.23) and (2.19), this inequality implies that

||z − xA|| ≤ ||z − xn||+ ||xn − xA|| ≤ 2/n < ǫ.

Finally, suppose that

(2.25) B ∈ Un, {zi}
qn
i=0

⊂ K, and Bzi = zi+1, i = 0, . . . , qn − 1.

Then by (P2)(ii) and (2.25),

||zqn − xn|| ≤ 1/n.

When combined with (2.23) and (2.19), this last inequality implies that

||zqn − xA|| ≤ ||zqn − xn||+ ||xn − xA|| ≤ 2/n < ǫ.

This completes the proof of Theorem 1.1.
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