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PERFECT MATCHINGS, EIGENVALUES AND EXPANSION

SEBASTIAN M. CIOABĂ

Presented by Ram Murty, FRSC

Abstract. In this note, we prove a sufficient condition for the exis-
tence of a perfect matching in a regular graph in terms of its eigenvalues

and its expansion constant. We improve a recent result of Brouwer and

Haemers.

Résumé. Dans cette note, nous prouvons un état suffisant pour l’exis-
tence d’un assortiment parfait dans un graphe régulier en termes de ses

valeurs propres et son constante d’expansion. Nous améliorons un résultat

récent de Brouwer et Haemers.

1. Preliminaries. Our graph notation is standard, see West [9]. For a
graph G on n vertices, we denote by λ1 ≥ λ2 ≥ · · · ≥ λn the eigenvalues of its
adjacency matrix. If G is a connected k-regular graph, it is well known that
λ1 = k and we let λ(G) = maxλi 6=±k |λi|. For S ⊂ V (G), we let e(S, Sc) denote
the number of edges with exactly one endpoint in S. We denote odd(G \ S)
the number of odd components of G \ S. The expansion constant of a graph

G is h(G) = min e(S,Sc)
|S| , where the minimum is taken over all S ⊂ V (G) with

|S| ≤ |V (G)|
2 . For a k-regular graph G, it is known (see [1], [2], [8]) that

k − λ2

2
≤ h(G) ≤

√

2k(k − λ2).

In this note, we show that if G is a k-regular graph on n vertices, n is even
and

(1) h(G) >















k − 2

k + 1
if k is even

k − 2

k + 2
if k is odd

then G has a perfect matching.

Krivelevich and Sudakov [7] show that if G is a k-regular graph and k−λ(G) ≥
2, thenG contains a perfect matching. Recently, Brouwer and Haemers [3] proved
the following stronger result.
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Theorem 1.1. (Brouwer-Haemers, 2005) A connected k-regular graph on

n vertices with eigenvalues k = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λn, and n even which

satisfies

(2) k − λ3 ≥















1− 3

k + 1
if k is even

1− 3

k + 2
if k is odd,

has a perfect matching.

In this note, we slightly improve Brouwer and Haemers’ result when k is odd.
We prove that if a k-regular graph G satisfies k − λ3 ≥ 1 − 4

k+2 , then G has a
perfect matching.

The main tool in our proofs is the famous theorem of Tutte (see [9, p. 137]).

Theorem 1.2. (Tutte, 1947) A graph G has a perfect matching if and only

if

odd(G \ S) ≤ |S|
for each S ⊂ V (G).

2. Expansion and perfect matchings. In this section, we determine
a lower bound on the expansion constant of a regular graph that implies the
existence of a perfect matching.

Theorem 2.1. Let G be a k-regular graph. If

(3) h(G) >















k − 2

k + 1
if k is even

k − 2

k + 2
if k is odd

then G contains a perfect matching.

Proof. Assume G has no perfect matching. By Tutte’s theorem, it follows
that there exists a subset S such that q = odd(G \S) > |S| = s. Let G1, . . . , Gq

denote the odd components of G \S. Denote by ni and ei the order and the size
of Gi respectively. It is easy to see that

∑q

i=1 ni + s is even. Since each ni is
odd, it follows that q + s is even. Because q > s, we deduce that q ≥ s+ 2.

For i ∈ [q], denote by ti the number of edges with one endpoint in Gi and
another in S. Because G is connected, it follows that ti ≥ 1 for each i ∈ [q].
Also, since vertices in Gi are adjacent only to vertices in Gi or S, we deduce
that 2ei = kni − ti = k(ni − 1) + k− ti. Because ni is odd, it follows that k− ti
is even. Thus, ti and k have the same parity for each i.

The sum of the degrees of the vertices in S is at least the number of edges
between S and

⋃q

i=1 Gi. Thus, ks ≥ ∑q

i=1 ti. Since q ≥ s + 2, it follows that
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there are at least three ti’s such that ti < k. This implies there are at least three
ti’s satisfying ti ≤ k−2. If ti ≤ k−2, then ni > 1. Assume ti ≤ k−2 for i ∈ [3].
If ti ≤ k−2, then ni(ni−1) ≥ 2ei = kni− ti ≥ kni−k+2. Thus, ni ≥ k+ 2

ni−1 .
Hence, ni ≥ k + 1. Now, since k and ni are both odd, we obtain ni ≥ k + 2.

Now n1 + n2 + n3 < n implies that there is at least one i such that ni <
n
2 .

Assume n1 < n
2 . Then t1

n1

≤ k−2
k+1 if k is even and t1

n1

≤ k−2
k+2 if k is odd. This

contradicts the assumption made on the expansion constant and thus, proves
the theorem.

In the next section, we provide examples that show that this result is best
possible.

3. A slight improvement of Theorem 1.1. In this section, we present
the proof of our improvement of Theorem 1.1.

Theorem 3.1. If G is a k-regular graph, k is odd and

(4) k − λ3 ≥ 1− 4

k + 2

then G has a perfect matching.

Proof. Assume that G has no perfect matching. As in the proof of
Theorem 2.1, one shows that there exists S such that G \ S as at least three
components of odd order Gi, i ∈ [3] such that ti ≤ k − 2 and ni ≥ k + 2.

Thus, the average degree di of Gi satisfies the following inequality

(5) di =
2ei
ni

= k − ti

ni

≥ k − k − 2

k + 2
.

Let µi denote the largest eigenvalue of Gi for i ∈ [3]. Suppose µ1 ≥ µ2 ≥ µ3.
Then, by interlacing in G1∪G2∪G3 (see [6, Chapter 9]), it follows that λ3 ≥ µ3.
Now, µ3 ≥ d3 with equality if and only if G3 is regular. But G3 is not regular
since k > d3 = k − t3

n3

> k − 1.

Thus, λ3 ≥ µ3 > k − k−2
k+2 . This is a contradiction with (4) and proves the

theorem.

For k even, Brouwer and Haemers [3] construct examples of k-regular graphs
with λ3 = k− 1+ 3

k+1 +O(k−2) that contain no perfect matchings. This is done

by taking k copies of G′, where G′ is Kk+1 from which a matching of size k−2
2

is deleted. Add k − 2 new vertices and join each of these vertices to a vertex of
degree k − 1 in each G′.

For k odd, Brouwer and Haemers [3] just mention that their construction is
similar to the previous one, but slightly more complicated.

We describe below a construction for k odd. Let H ′ be a graph on k + 2
vertices whose complement is the union of two disjoint edges and a cycle of
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length k− 2. Take k copies of H ′. Add k− 2 new vertices and join each of these
vertices to a vertex of degree k − 1 in each H ′. This is a connected k-regular
graph that has k2 + 3k − 2 vertices and no perfect matching. Also,

λ3 = λ1(H
′) =

k − 3 +
√
k2 + 2k + 17

2
= k − 1 +

4

k + 2
+ O(k−2).

This shows that for n even and k odd, there are k-regular graphs with no per-
fect matching, for which λ3 gets arbitrarily close to the value from Theorem 3.1.
These examples also show that Theorem 2.1 is best possible.

Note that the existence of perfect matchings in a k-regular graph does not
even imply k − λ2 > ǫ > 0. The Cayley graph of Z2n with generating set
S = {±1, n} is a 3-regular graph that contains 3 disjoint perfect matchings and
satisfies λ2 = 2 cos 2π

n
+ 1. The difference k − λ2 = 2 − 2 cos 2π

n
tends to 0 as n

gets large.
On the other hand, it follows from a theorem of Weyl that by adding perfect

matchings to regular graphs, the eigenvalues of the new graphs increase by at
most 1. This was used in [5] to construct new families of regular graphs with small
non-trivial eigenvalues. See also [4] for related results regarding the eigenvalues
of regular graphs.
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comments.
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