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PERFECT MATCHINGS, EIGENVALUES AND EXPANSION
SEBASTIAN M. CIOABA
Presented by Ram Murty, FRSC

ABSTRACT. In this note, we prove a sufficient condition for the exis-
tence of a perfect matching in a regular graph in terms of its eigenvalues
and its expansion constant. We improve a recent result of Brouwer and
Haemers.

RESUME. Dans cette note, nous prouvons un état suffisant pour 1’exis-
tence d’un assortiment parfait dans un graphe régulier en termes de ses
valeurs propres et son constante d’expansion. Nous améliorons un résultat
récent de Brouwer et Haemers.

1. Preliminaries. Our graph notation is standard, see West [9]. For a
graph G on n vertices, we denote by A\; > Ao > --- > A, the eigenvalues of its
adjacency matrix. If G is a connected k-regular graph, it is well known that
A1 =k and we let A(G) = maxy, 21 |A\;|. For S C V(G), we let ¢(S, S°) denote
the number of edges with exactly one endpoint in S. We denote odd(G \ 5)
the number of odd components of G \ S. The expansion constant of a graph

G is h(G) = min e(lsﬁc), where the minimum is taken over all S C V(G) with
|S] < @ For a k-regular graph G, it is known (see [1], [2], [8]) that

k— Ao
2

< h(G) < /2k(k — Aa).

In this note, we show that if G is a k-regular graph on n vertices, n is even
and

:7;? if k is even
(1) SR
m lf k' 1S Odd

then G has a perfect matching.

Krivelevich and Sudakov [7] show that if G is a k-regular graph and k—\(G) >
2, then G contains a perfect matching. Recently, Brouwer and Haemers [3] proved
the following stronger result.
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THEOREM 1.1. (Brouwer-Haemers, 2005) A connected k-regular graph on

n vertices with eigenvalues k = Ay > Ay > A3 > -+ > \,, and n even which
satisfies

1—i if k is even
) R T

1—m if k is odd,

has a perfect matching.

In this note, we slightly improve Brouwer and Haemers’ result when k is odd.
We prove that if a k-regular graph G satisfies k — A3 > 1 — %ﬁ, then G has a
perfect matching.

The main tool in our proofs is the famous theorem of Tutte (see [9, p. 137]).

THEOREM 1.2. (Tutte, 1947) A graph G has a perfect matching if and only
if
0dd(G\ $) < 9]
for each S C V(G).

2. Expansion and perfect matchings. In this section, we determine
a lower bound on the expansion constant of a regular graph that implies the
existence of a perfect matching.

THEOREM 2.1.  Let G be a k-regular graph. If

:7;? if k is even
@ SR S
P ) if k is odd

then G contains a perfect matching.

PROOF. Assume G has no perfect matching. By Tutte’s theorem, it follows
that there exists a subset S such that ¢ = odd(G\ S) > |S| = s. Let G1,...,G,
denote the odd components of G\ S. Denote by n; and e; the order and the size
of G; respectively. It is easy to see that Zgzl n; + s is even. Since each n; is
odd, it follows that ¢ + s is even. Because ¢ > s, we deduce that ¢ > s + 2.

For i € [q], denote by t; the number of edges with one endpoint in G; and
another in S. Because G is connected, it follows that ¢; > 1 for each i € [g].
Also, since vertices in G; are adjacent only to vertices in G; or S, we deduce
that 2e; = kn; — t; = k(n; — 1) + k — t;. Because n; is odd, it follows that k — ¢;
is even. Thus, t; and k have the same parity for each 1.

The sum of the degrees of the vertices in S is at least the number of edges
between S and J{_; G;. Thus, ks > Y% t;. Since ¢ > s+ 2, it follows that
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there are at least three ¢;’s such that ¢; < k. This implies there are at least three
t;’s satisfying t; < k—2. If t; < k—2, then n; > 1. Assume ¢; < k—2 for i € [3].
If t; < k—2, then n;(n; —1) > 2e; = kn; —t; > kn; —k+2. Thus, n; > k+ 2.

Hence, n; > k 4+ 1. Now, since k and n; are both odd, we obtain n; > k + 2.

Now nj + nz +ng < n implies that there is at least one i such that n; < 3.
Assume n; < 5. Then fl—ll < Z—ﬁ if k£ is even and fl—ll < % if £ is odd. This
contradicts the assumption made on the expansion constant and thus, proves

the theorem. [ ]

In the next section, we provide examples that show that this result is best
possible.

3. A slight improvement of Theorem 1.1. In this section, we present
the proof of our improvement of Theorem 1.1.

THEOREM 3.1. If G is a k-regular graph, k is odd and

4
4 k—X3>1———
(4) S5 T kg2

then G has a perfect matching.

PRrROOF. Assume that G has no perfect matching. As in the proof of
Theorem 2.1, one shows that there exists S such that G \ S as at least three
components of odd order G;, ¢ € [3] such that ¢; <k —2 and n; > k + 2.

Thus, the average degree d; of G; satisfies the following inequality

—_ 262‘ ti k—2
<5) dl_nl_k nzzk k‘+2

Let p; denote the largest eigenvalue of G; for ¢ € [3]. Suppose p1 > p2 > us.
Then, by interlacing in Gy UG2 UG5 (see [6, Chapter 9)), it follows that A3 > ps.
Now, us > ds with equality if and only if G3 is regular. But G3 is not regular
sincek>d73=k—f71 >k —1.

Thus, A3 > puz > k — 222, This is a contradiction with (4) and proves the

k+2-
theorem. [ ]

For k even, Brouwer and Haemers [3] construct examples of k-regular graphs
with A3 = k—1+ kiﬂ +O(k~2) that contain no perfect matchings. This is done
by taking k copies of G’, where G’ is K1 from which a matching of size %
is deleted. Add k — 2 new vertices and join each of these vertices to a vertex of
degree k — 1 in each G'.

For k odd, Brouwer and Haemers [3] just mention that their construction is
similar to the previous one, but slightly more complicated.

We describe below a construction for k odd. Let H’ be a graph on k + 2

vertices whose complement is the union of two disjoint edges and a cycle of
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length k — 2. Take k copies of H'. Add k — 2 new vertices and join each of these
vertices to a vertex of degree k — 1 in each H’'. This is a connected k-regular
graph that has k? + 3k — 2 vertices and no perfect matching. Also,

k—3+Vk?+2k+17 4
= + i =k—14+-——+0(k?).

Az = A\ (H'
s =) 2 k+2

This shows that for n even and k odd, there are k-regular graphs with no per-
fect matching, for which A3 gets arbitrarily close to the value from Theorem 3.1.
These examples also show that Theorem 2.1 is best possible.

Note that the existence of perfect matchings in a k-regular graph does not
even imply k£ — Ay > ¢ > 0. The Cayley graph of Zs, with generating set
S ={x1,n} is a 3-regular graph that contains 3 disjoint perfect matchings and
satisfies Ay = 2 cos 27” + 1. The difference k — Ay = 2 — 2 cos %’T tends to 0 as n
gets large.

On the other hand, it follows from a theorem of Weyl that by adding perfect
matchings to regular graphs, the eigenvalues of the new graphs increase by at
most 1. This was used in [5] to construct new families of regular graphs with small
non-trivial eigenvalues. See also [4] for related results regarding the eigenvalues
of regular graphs.
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