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SOME ALGEBRAS OF BOUNDED FUNCTIONS ON THE DISC
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Abstract. Let B be a uniformly closed algebra of functions on the
unit circle ∂D between H∞ and L∞, and let CB be the C∗-algebra gen-

erated by those Blaschke products that are invertible in B. Let A be the
algebra of bounded holomorphic functions on the open unit disc D whose
boundary value functions are in CB . It is shown that if f is a bounded
harmonic nonholomorphic function on D whose boundary value function is

also in CB , then the uniformly closed algebra A[f ] generated by A and f

contains C(D). This generalizes an earlier result of the author, which in
turn contains as special cases a result on the disc algebra due to Čirca and

a result on H∞(D) due to Axler and Shields.

Résumé. Soit B une algèbre uniformément fermée de fonctions sur

le cercle unité ∂D entre H∞ et L∞, et soit CB la C∗-algèbre générée par
les produits de Blaschke qui soient invertibles dans B. Soit A l’algèbre
des fonctions holomorphiques bornées sur le disque unité ouvert D dont

les fonctions de valeur à la borne se trouvent dans CB . Il est démontré
que, si f est une fonction non-holomorphique harmonique bornée sur D

dont la fonction de valeur à la borne est aussi dans CB , alors l’algèbre
uniformément fermeé A[f ] générée par A et f renferme C(D). Ceci généra-

lise un résultat antérieur de l’auteur qui, à son tour, contient, en tant
que cas particuliers, un résultat concernant l’algèbre disc dû à Čirca et un
résultat sur H∞(D) dû à Axler et Shields.

1. The theorem. Let D denote the open unit disc in the plane, let C(D)
denote the algebra of all complex-valued continuous functions on D, let A(D)
denote the disc algebra (the algebra of holomorphic functions on D that extend
continuously to D), and let H∞(D) denote the algebra of bounded holomorphic
functions on D. A theorem of E. M. Čirca [Č] specialized to the disc asserts
that if f is a function in C(D) and f is harmonic but not holomorphic on D,
then the uniformly closed subalgebra A(D)[f ] of C(D) generated by A(D) and
f is equal to C(D). There is an analogous result for H∞(D) due to Sheldon
Axler and Allen Shields [A–S]: If f is a bounded function on D that is harmonic
but not holomorphic, then the uniformly closed subalgebra H∞(D)[f ] of L∞(D)
generated by H∞(D) and f contains C(D). Given the similarity between these
two theorems it was natural to wonder whether they were in fact both special
cases of a single more general theorem.

The most obvious way to try to unite the Čirca and Axler–Shields results
would be to show that A(D)[f ] ⊃ C(D) whenever f is a bounded harmonic
nonholomorphic function on D. However, this is false; in fact, it is not even true
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that A(D)[f, f̄ ] ⊃ C(D) whenever f ∈ H∞(D) [I1, Theorem 7.6]. Nevertheless,
the author did unite the theorems of Čirca and Axler and Shields into a single
concrete theorem by interpolating between them [I2, Theorem 1.1]: If E is a
subset of ∂D, if A is the algebra of bounded holomorphic functions on D that
extend continuously to D ∪ E, and if f is a bounded harmonic nonholomorphic
function on D that also extends continuously to D ∪ E, then A[f ] ⊃ C(D).

In the present paper, we extend this result to a larger class of algebras.
Throughout the paper, L∞ will denote L∞(∂D), and H∞ will denote the sub-
algebra of L∞ consisting of those functions that arise as boundary values of
functions in H∞(D). In addition, B will always be an arbitrary, but fixed, uni-
formly closed algebra on the unit circle ∂D between H∞ and L∞, and CB will be
the C∗-algebra (i.e., uniformly closed self-adjoint unital algebra) generated by
those Blaschke products that are invertible in B. (We assume that B is strictly
larger than H∞ so that CB is nontrivial.) The algebras H∞ ∩ CB were consid-
ered by Alice Chang and Donald Marshall [C–M] as generalizations of both the
disc algebra and H∞. We will prove the following result.

Theorem 1.1. Let A be the algebra of bounded holomorphic functions on

D whose boundary value functions are in CB. Let f be a bounded harmonic

nonholomorphic function on D whose boundary value function is also in CB.

Then A[f ] ⊃ C(D).

For E a subset of ∂D, denote by L∞

E the set of L∞ functions on ∂D that
are continuous on E. Then H∞ + L∞

E is a uniformly closed algebra and L∞

E =
C(H∞+L∞

E
) [G, Exercise IX.15(c)]. Thus the earlier result of the author men-

tioned above is the special case of our new theorem when B = H∞+L∞

E . There
is also a stronger form of the earlier result in which the function f is allowed
to have discontinuities on a small subset of E [I2, Theorem 1.2]. That stronger
result is not contained in the new theorem and will not be considered in this
paper.

Considering the algebras CB in the setting of [I2] was suggested to me by
Donald Marshall, and I would like to thank him for the suggestion. The work
was carried out while I was a visitor at Brown University. I would like to thank
the Department of Mathematics for its hospitality.

2. The proof. The proof of Theorem 1.1 is similar to the proof of the
earlier special case [I2, Theorem 1.1] mentioned in the introduction. In particular
the theorem will be obtained as a consequence a characterization, due to the
author, of the uniformly closed algebras of bounded continuous functions on
a bounded open set Ω ⊂ C that contain C(Ω). Before giving the statement
of the characterization we discuss some terminology and notation to be used
throughout the paper.

By a uniformly closed algebra of bounded continuous functions on a space Σ,
we mean a supremum-norm closed subalgebra of the algebra Cb(Σ) of all bounded
continuous complex-valued functions on Σ. That is, by a uniformly closed al-
gebra, we mean an algebra of complex-valued functions that forms a Banach



74 ALEXANDER J. IZZO

algebra under the supremum-norm. The maximal ideal space of such an alge-
bra A will be denoted by MA. If A is such an algebra and f is a bounded
continuous complex-valued function on Σ, we will denote by A[f ] the uniformly
closed algebra generated by A and f . Also r : MA[f ] → MA will denote the map
sending each multiplicative linear functional on A[f ] to its restriction to A. We
will be concerned almost exclusively with uniformly closed algebras of bounded
continuous functions on D that contain the disc algebra. The Gelfand transform
of a function f in A will be denoted by f̂ . The Gelfand transform of the identity
function z will be denoted by π or πA.

Here now is the statement of the author’s characterization mentioned above
[I1, Theorem 3.1].

Theorem 2.1. Let Ω be a bounded open set in the plane, and let A be a

uniformly closed algebra of bounded continuous functions on Ω that contains

A(Ω). Then A ⊃ C(Ω) if and only if both of the following conditions hold:

(i) π : MA → Ω is one-to-one over Ω, and
(ii) for almost every point a in Ω there is a function f in A that is differentiable

at a and such that (∂f/∂z̄)(a) 6= 0.

We will also use the following lemma [I1, Lemma 6.1].

Lemma 2.2. Let Σ be a topological space and let A be a uniformly closed algebra

of bounded continuous functions on Σ that separates points and contains the con-

stants. Suppose that f is a function in the uniform closure of the complex-linear

span of log |A−1|. Then the mapping r : MA[f ] → MA sending each multiplica-

tive linear functional on MA[f ] to its restriction to A is one-to-one.

A subalgebra H of L∞ is called stable if H satisfies the following condition:
for each λ ∈ D and each function h ∈ H, the function

g =
h− h(λ)

z − λ

is also in H. The following result is from David Dawson’s dissertation [D, The-
orem 5.4]. For the reader’s convenience we include the short proof.

Theorem 2.3. Let S be a C∗-subalgebra of L∞, and let H = S ∩H∞. Then

(a) if f and g are in H, g−1 is in L∞, and fg−1 is in H∞, then fg−1 is in H;

(b) if z is in S, then H is stable.

Proof. Because S is a C∗-subalgebra of L∞, a function in S is invertible
in S if and only if it is invertible in L∞. To prove (a), take f and g in H and
suppose g−1 is in L∞. Then g−1 is in S, so fg−1 is also in S. Since fg−1 is
assumed to be in H∞, this gives fg−1 is in H. Part (b) follows from part (a) by
taking f = h− h(λ) and g = z − λ.
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By [D, Theorem 2.3] for a stable algebra H the mapping π : MH → D is
one-to-one over D. (The proof of this can also be found in [I2, Theorem 2.2].)
Combining this with Theorem 2.3, we immediately obtain the following.

Corollary 2.4. Let A be the algebra of bounded holomorphic functions on

D whose boundary value functions are in CB. Then π : MA → D is one-to-one

over D.

Proof of Theorem 1.1 Since the set where the z̄-derivative of a nonholomor-
phic harmonic function vanishes is discrete, to prove the theorem it is enough, by
Theorem 2.1, to show that the mapping πA[f ] : MA[f ] → D is one-to-one over D.

By Corollary 2.4, the mapping πA : MA → D is one-to-one over D. Thus, not-
ing that πA[f ] = πA ◦ r, we see that it suffices to show that r is injective. By
[C–M, Lemma 3.1], H∞ ∩ CB is a logmodular subalgebra of CB , that is every
real-valued function in CB is in the uniform closure of log |(H∞ ∩ CB)

−1|. It
follows that f is in the uniform closure of the complex-linear span of log |A−1|.
Hence r is injective by Lemma 2.2, and the proof is complete.
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