SOME ALGEBRAS OF BOUNDED FUNCTIONS ON THE DISC

ALEXANDER J. IZZO

Presented by G. A. Elliott, FRSC

ABSTRACT. Let B be a uniformly closed algebra of functions on the unit circle ∂D between H^∞ and L^∞ , and let C_B be the C^* -algebra generated by those Blaschke products that are invertible in B. Let A be the algebra of bounded holomorphic functions on the open unit disc D whose boundary value functions are in C_B . It is shown that if f is a bounded harmonic nonholomorphic function on D whose boundary value function is also in C_B , then the uniformly closed algebra A[f] generated by A and A contains A[G]. This generalizes an earlier result of the author, which in turn contains as special cases a result on the disc algebra due to Čirca and a result on A[G] due to Axler and Shields.

RÉSUMÉ. Soit B une algèbre uniformément fermée de fonctions sur le cercle unité ∂D entre H^{∞} et L^{∞} , et soit C_B la C^* -algèbre générée par les produits de Blaschke qui soient invertibles dans B. Soit A l'algèbre des fonctions holomorphiques bornées sur le disque unité ouvert D dont les fonctions de valeur à la borne se trouvent dans C_B . Il est démontré que, si f est une fonction non-holomorphique harmonique bornée sur D dont la fonction de valeur à la borne est aussi dans C_B , alors l'algèbre uniformément fermée A[f] générée par A et f renferme $C(\overline{D})$. Ceci généralise un résultat antérieur de l'auteur qui, à son tour, contient, en tant que cas particuliers, un résultat concernant l'algèbre disc dû à Čirca et un résultat sur $H^{\infty}(D)$ dû à Axler et Shields.

1. The theorem. Let D denote the open unit disc in the plane, let $C(\overline{D})$ denote the algebra of all complex-valued continuous functions on \overline{D} , let A(D) denote the disc algebra (the algebra of holomorphic functions on D that extend continuously to \overline{D}), and let $H^{\infty}(D)$ denote the algebra of bounded holomorphic functions on D. A theorem of E. M. Čirca $[\check{C}]$ specialized to the disc asserts that if f is a function in $C(\overline{D})$ and f is harmonic but not holomorphic on D, then the uniformly closed subalgebra A(D)[f] of $C(\overline{D})$ generated by A(D) and f is equal to $C(\overline{D})$. There is an analogous result for $H^{\infty}(D)$ due to Sheldon Axler and Allen Shields [A-S]: If f is a bounded function on D that is harmonic but not holomorphic, then the uniformly closed subalgebra $H^{\infty}(D)[f]$ of $L^{\infty}(D)$ generated by $H^{\infty}(D)$ and f contains $C(\overline{D})$. Given the similarity between these two theorems it was natural to wonder whether they were in fact both special cases of a single more general theorem.

The most obvious way to try to unite the Circa and Axler–Shields results would be to show that $A(D)[f] \supset C(\overline{D})$ whenever f is a bounded harmonic nonholomorphic function on D. However, this is false; in fact, it is not even true

Received by the editors on October 6, 2004.

AMS subject classification: 46J10, 46J15, 30H05.

[©] Royal Society of Canada 2005.

that $A(D)[f, \overline{f}] \supset C(\overline{D})$ whenever $f \in H^{\infty}(D)$ [I1, Theorem 7.6]. Nevertheless, the author did unite the theorems of Čirca and Axler and Shields into a single concrete theorem by interpolating between them [I2, Theorem 1.1]: If E is a subset of ∂D , if A is the algebra of bounded holomorphic functions on D that extend continuously to $D \cup E$, and if f is a bounded harmonic nonholomorphic function on D that also extends continuously to $D \cup E$, then $A[f] \supset C(\overline{D})$.

In the present paper, we extend this result to a larger class of algebras. Throughout the paper, L^{∞} will denote $L^{\infty}(\partial D)$, and H^{∞} will denote the subalgebra of L^{∞} consisting of those functions that arise as boundary values of functions in $H^{\infty}(D)$. In addition, B will always be an arbitrary, but fixed, uniformly closed algebra on the unit circle ∂D between H^{∞} and L^{∞} , and C_B will be the C^* -algebra (i.e., uniformly closed self-adjoint unital algebra) generated by those Blaschke products that are invertible in B. (We assume that B is strictly larger than H^{∞} so that C_B is nontrivial.) The algebras $H^{\infty} \cap C_B$ were considered by Alice Chang and Donald Marshall [C-M] as generalizations of both the disc algebra and H^{∞} . We will prove the following result.

Theorem 1.1. Let A be the algebra of bounded holomorphic functions on D whose boundary value functions are in C_B . Let f be a bounded harmonic nonholomorphic function on D whose boundary value function is also in C_B . Then $A[f] \supset C(\overline{D})$.

For E a subset of ∂D , denote by L_E^{∞} the set of L^{∞} functions on ∂D that are continuous on E. Then $H^{\infty} + L_E^{\infty}$ is a uniformly closed algebra and $L_E^{\infty} = C_{(H^{\infty} + L_E^{\infty})}$ [G, Exercise IX.15(c)]. Thus the earlier result of the author mentioned above is the special case of our new theorem when $B = H^{\infty} + L_E^{\infty}$. There is also a stronger form of the earlier result in which the function f is allowed to have discontinuities on a small subset of E [I2, Theorem 1.2]. That stronger result is not contained in the new theorem and will not be considered in this paper.

Considering the algebras C_B in the setting of [I2] was suggested to me by Donald Marshall, and I would like to thank him for the suggestion. The work was carried out while I was a visitor at Brown University. I would like to thank the Department of Mathematics for its hospitality.

2. The proof. The proof of Theorem 1.1 is similar to the proof of the earlier special case [I2, Theorem 1.1] mentioned in the introduction. In particular the theorem will be obtained as a consequence a characterization, due to the author, of the uniformly closed algebras of bounded continuous functions on a bounded open set $\Omega \subset \mathbb{C}$ that contain $C(\overline{\Omega})$. Before giving the statement of the characterization we discuss some terminology and notation to be used throughout the paper.

By a uniformly closed algebra of bounded continuous functions on a space Σ , we mean a supremum-norm closed subalgebra of the algebra $C_b(\Sigma)$ of all bounded continuous complex-valued functions on Σ . That is, by a uniformly closed algebra, we mean an algebra of complex-valued functions that forms a Banach

algebra under the supremum-norm. The maximal ideal space of such an algebra A will be denoted by \mathcal{M}_A . If A is such an algebra and f is a bounded continuous complex-valued function on Σ , we will denote by A[f] the uniformly closed algebra generated by A and f. Also $r \colon \mathcal{M}_{A[f]} \to \mathcal{M}_A$ will denote the map sending each multiplicative linear functional on A[f] to its restriction to A. We will be concerned almost exclusively with uniformly closed algebras of bounded continuous functions on D that contain the disc algebra. The Gelfand transform of a function f in A will be denoted by \hat{f} . The Gelfand transform of the identity function z will be denoted by π or π_A .

Here now is the statement of the author's characterization mentioned above [I1, Theorem 3.1].

Theorem 2.1. Let Ω be a bounded open set in the plane, and let A be a uniformly closed algebra of bounded continuous functions on Ω that contains $A(\Omega)$. Then $A \supset C(\overline{\Omega})$ if and only if both of the following conditions hold:

- (i) $\pi: \mathcal{M}_A \to \overline{\Omega}$ is one-to-one over Ω , and
- (ii) for almost every point a in Ω there is a function f in A that is differentiable at a and such that $(\partial f/\partial \bar{z})(a) \neq 0$.

We will also use the following lemma [I1, Lemma 6.1].

LEMMA 2.2. Let Σ be a topological space and let A be a uniformly closed algebra of bounded continuous functions on Σ that separates points and contains the constants. Suppose that f is a function in the uniform closure of the complex-linear span of $\log |A^{-1}|$. Then the mapping $r: \mathcal{M}_{A[f]} \to \mathcal{M}_A$ sending each multiplicative linear functional on $\mathcal{M}_{A[f]}$ to its restriction to A is one-to-one.

A subalgebra H of L^{∞} is called *stable* if H satisfies the following condition: for each $\lambda \in D$ and each function $h \in H$, the function

$$g = \frac{h - h(\lambda)}{z - \lambda}$$

is also in H. The following result is from David Dawson's dissertation [D, Theorem 5.4]. For the reader's convenience we include the short proof.

THEOREM 2.3. Let S be a C^* -subalgebra of L^{∞} , and let $H = S \cap H^{\infty}$. Then

- (a) if f and g are in H, g^{-1} is in L^{∞} , and fg^{-1} is in H^{∞} , then fg^{-1} is in H;
- (b) if z is in S, then H is stable.

PROOF. Because S is a C^* -subalgebra of L^{∞} , a function in S is invertible in S if and only if it is invertible in L^{∞} . To prove (a), take f and g in H and suppose g^{-1} is in L^{∞} . Then g^{-1} is in S, so fg^{-1} is also in S. Since fg^{-1} is assumed to be in H^{∞} , this gives fg^{-1} is in H. Part (b) follows from part (a) by taking $f = h - h(\lambda)$ and $g = z - \lambda$.

By [D, Theorem 2.3] for a stable algebra H the mapping $\pi \colon \mathcal{M}_H \to \overline{D}$ is one-to-one over D. (The proof of this can also be found in [I2, Theorem 2.2].) Combining this with Theorem 2.3, we immediately obtain the following.

COROLLARY 2.4. Let A be the algebra of bounded holomorphic functions on D whose boundary value functions are in C_B . Then $\pi: \mathcal{M}_A \to \overline{D}$ is one-to-one over D.

Proof of Theorem 1.1 Since the set where the \bar{z} -derivative of a nonholomorphic harmonic function vanishes is discrete, to prove the theorem it is enough, by Theorem 2.1, to show that the mapping $\pi_{A[f]} \colon \mathcal{M}_{A[f]} \to \overline{D}$ is one-to-one over D. By Corollary 2.4, the mapping $\pi_A \colon \mathcal{M}_A \to \overline{D}$ is one-to-one over D. Thus, noting that $\pi_{A[f]} = \pi_A \circ r$, we see that it suffices to show that r is injective. By [C-M, Lemma 3.1], $H^{\infty} \cap C_B$ is a logmodular subalgebra of C_B , that is every real-valued function in C_B is in the uniform closure of $\log |(H^{\infty} \cap C_B)^{-1}|$. It follows that f is in the uniform closure of the complex-linear span of $\log |A^{-1}|$. Hence r is injective by Lemma 2.2, and the proof is complete.

References

- [A-S] S. Axler and A. Shields, Algebras generated by analytic and harmonic functions. Indiana Univ. Math. J. 36(1987), 631–638.
- [C-M] S. Y. Chang and D. E. Marshall, Some algebras of bounded analytic functions containing the disk algebra. In: Banach Spaces of Analytic Functions (Proc. Pelczynski Conf., Kent State Univ., Kent, Ohio, 1976), Lecture Notes in Math. 604, Springer-Verlag, Berlin, 1977, 12–20.
- [Č] E. M. Čirka, Approximation by holomorphic functions on smooth manifolds in Cⁿ.
 Mat. Sb. 78(1969), 101–123; English transl., Math. USSR Sb. 7(1969), 95–114.
- [D] D. D. Dawson, Subalgebras of H^{∞} . Ph.D. dissertation, Indiana University, 1975.
- [G] J. B. Garnett, Bounded Analytic Functions. Academic Press, New York, 1981.
- [11] A. J. Izzo, Algebras containing bounded holomorphic functions. Indiana Univ. Math. J. 52(2003), 1305–1342.
- [I2] A. J. Izzo, Algebras generated by holomorphic and harmonic functions on the disc. Bull. London Math. Soc., to appear.

Department of Mathematics and Statistics Bowling Green State University Bowling Green, OH 43403 USA

email: aizzo@math.bgsu.edu