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STRONGLY TWO-GENERATED IDEALS IN
RINGS OF INTEGER-VALUED POLYNOMIALS
DETERMINED BY FINITE SETS

SCOTT T. CHAPMAN, K. ALAN LOPER, AND WILLIAM W. SMITH
Presented by Vlastimil Dlab, FRSC

ABSTRACT. Let D be an integral domain, E = {ej,...,ex} a finite
nonempty subset of its quotient field K and Int(E, D) the ring of polynomi-
als in K[z] which map E into D. A 2-generated ideal I of Int(E, D) is called
strongly two-generated if each of its nonzero elements can be chosen as one
of two generators of I. We characterize the strongly two-generated ideals
of Int(E, D). In the case where D is not a Bezout domain and |E| > 1, we
show further that the strongly two-generated ideals of the ring Int(E, D)
form a proper nontrivial subgroup of its ideal class group.

RESUME. Soient D un anneau intégre de corps des fractions K, E =
{e1,...,ex} une partie non vide finie de K et Int(E, D) I'anneau des poly-
némes de K([z] qui envoient E dans D. On dit qu’un idéal I de Int(E, D)
engendré par 2 éléments est fortement engendré par 2 éléments si chacun de
ses éléments non nuls peut étre choisi pour I'un des deux générateurs. On
caractérise les idéaux de Int(E, D) fortement engendrés par 2 générateurs.
Dans le cas ot D n’est pas un anneau de Bézout et ol |E| > 1, on montre en
outre que les idéaux fortement 2-engendrés de 'anneau Int(E, D) forment
un sous-groupe non trivial de son groupe des classes.

Let D be an integral domain with field of fractions K. If a two-generated ideal
I of a D has the property that the first of its two-generators can be chosen at
random from the nonzero elements of I, then I is called strongly two-generated.
A ring in which each two-generated ideal is strongly two-generated is said to have
the strong two-generator property. If an element « of D can be chosen as one of
two generators of every two-generated ideal I in which it is contained, then a is
called a strong two-generator of D. This note is a sequel to the recent paper [2]
by the current authors, in which we studied the strong two-generator property
in certain rings of integer-valued polynomials determined by D. In particular, if
FE is a subset of K, then set

R =Int(E, D) = {f(z) € K[z] | f(a) € D for every a: € E}.

For ease of notation, if E = D, then set Int(D, D) = Int(D). In [2] we showed for
finite sets E that the ring Int(E, D) satisfies the strong two-generator property
if and only if D is a Bezout domain. Moreover, if D is a Dedekind domain with
nontrivial class group, we then characterized which elements of Int(E, D) are
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strong two-generators. In this current work, E is still a finite set but there is no
hypothesis on the domain D. We characterize (in Proposition 4) the strongly
two-generated ideals of R = Int(E, D).

By a result of Lantz and Martin [6], the strongly two-generated ideals of a
ring R form a subgroup of the invertible ideals of R. Hence, our discussion can
be cast in the language of the class group. In the case where D is not a Bezout
domain and |E| > 1, we show that the strongly two-generated ideals of R form a
proper nontrivial subgroup of its ideal class group. We find this result of interest
since it is not known if there exists a nonprincipal strongly two-generated ideal
even in the much studied case E =Z = D.

NOTATION 1. Given a domain R we let F(R) denote the monoid of finitely
generated nonzero ideals, Z(R) the group of invertible ideals and P(R) the group
of nonzero principal ideals. Thus, the class group € (R) is the quotient €(R) =
ZI(R)/P(R). As noted earlier, the strongly two-generated ideals form a subgroup
of Z(R) and we let €3 (R) denote the subgroup of €(R) represented by the
strongly two-generated ideals.

In the case R = Int(E, D), we make use of an additional reduction of the class
of ideals needed to describe the class group € (R). An ideal of R = Int(E, D) is
called unitary whenever IND # (0) (this is equivalent to the condition IK[X] =
K[X]). One notes that if Z,,(R) denotes the invertible unitary ideals, then Z,,(R)
is a subgroup of Z(R). The following observation indicates that the class group
of Int(E, D) can be represented by the unitary ideals.

LEMMA 2. Let R = Int(E, D) where E is a non-empty subset of K. If I is
in Z(R), then there exists an ideal J in I,(R) where [I] = [J] in €(R).

PROOF. The argument for this result is a straight forward modification of
the argument given in [1, Lemma VIII 1.2] in the case E = D. [ ]

For unitary ideals of R in the case where E = {ej,...,ex}, we have the
following simple description. As in [7], define the polynomial

F(r)=(z—-e1)(z —e2) - (z — ex).

and foreach 1 <r <k
Hj;&r(x —€j )
Hj;ér(e"' —-€j)
We have that op(e;) = 1 and p.(e;) = 0 when j # r. Hence each p.(z) €

Int(E, D). The polynomials ¢, (z) are called the Lagrange Interpolation Poly-
nomials. We state here a basic result given in [7].

wr(z) =

LEMMA 3. ([7, Proposition 5]) Let D be an integral domain and E = {e,
...,ex} a finite nonempty subset of K. Each unitary ideal I of R = Int(E, D)
is uniquely represented as

(*) I=ne(z) + - + Iepr(z) + Fz)K|z]



STRONGLY TWO-GENERATED IDEALS IN INT(E, D) 35

where I,..., Iy are nonzero ideals of D. In addition, I; = I(e;) for each i and
IND =n;I; # (0). Conversely, any collection of nonzero ideals I,...,I} in D
gtve rise to such a unitary ideal I of R.

Lemma 3 also illustrates the presence of the “strong Hilbert property” for R;
namely, if I and J are nonzero unitary ideals of R, then I = J if and only if
I(e;) = J(e;) for all i. We remark that the Lemma remains valid in the context of
fractional ideals (adjusting the equality to INK = N§I;). We note I is invertible
if and only if each I; = I(e;) is invertible. The “if” part is immediate. but
for the converse one uses the strong Hilbert property: if each I(e;) is invertible,
letting J be the (unique) fractional unitary ideal such that J(e;) = I(e;)~! for
each i, then (IJ)(e;) = D for each i and hence, by uniqueness, IJ = Int(E, D).
Thus, the Lemma provides a natural mapping ¢: Z,(R) — Z(D)* and indeed
gives us that this mapping is a group isomorphism. This idea will be considered
after the following result is given regarding the strongly two-generated ideals.

PROPOSITION 4.  Let D be an integral domain and E = {e,, ...,ex} a
finite nonempty subset of K. Let I be a unitary ideal of R = Int(E, D) with
unique representation (*) where I1,...,Ix are nonzero ideals of D. We have the
following.

(1) I is principal if and only if each I; is principal and Iy = Ip = - - = Ii.
(2) I is strongly two-generated if and only if each I; is principal.

PrOOF. (1) (=) Suppose I = dInt(E, D) where d # 0 in D is a principal
unitary ideal of Int(E, D). For each 1 < i < k, we have that I(e;) = dD = I;. For
(«), assume that ) = Iy = --- = I =dD for d # 0 in D. If J = dInt(E, D),
then I(e;) = J(e;) for 1 < i < k and I = dInt(E, D) by the strong Hilbert
property.

(2) (=) Let I be a strongly two-generated unitary ideal of Int(E, D) with
unique representation (). Since F(z) € I, there exists a g(z) in I with I =
(F(2),9()). Thus I; = I(e:) = (F(es), g(e:)) = (0,9(e:)) = (g(e:)) and hence
each I; is principal. For (<), suppose that each I; = (b;) is principal and let
f(z) be a nonzero element of I. Using Lagrange interpolation, one easily gets a
polynomial g(z) in Int(E, D) with g(e;) = b; for all i. In fact, one can construct
such a polynomial where f(z) and g(z) are relatively prime in K[X]. This is
done in the proof of {2, Theorem 4]. An alternate argument is to note that if
9(z) is a polynomial with g(e;) = b;, then g1(z) = g(z) + aF(z) has the same
property for any constant a. Then, consider an extension L of K where f(z)
splits and choose an element a not in the set

{ - 9(2)/F(2) | z is a root of f(x) with z 5 e; for all i}.
The polynomials g;(z) and f(z) will have no common roots in L and, hence,

g1(z) will be the desired polynomial. Finally, setting J = (f(z),g1(z)) yields an
unitary ideal with J(e;) = I(e;) for all i. Hence J = I. ]
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Combining Lemma 2 with Proposition 4 characterizes all strongly two-
generated ideals in Int(E, D) when E is finite.

COROLLARY 5. Let D be an integral domain with quotient field K, E =
{e1,---,ex} a nonempty finite subset of K and I a finitely generated ideal of
R = Int(E, D). I is strongly two-generated if and only if whenever J is a unitary
ideal of Int(E, D) such that [I] = [J] in €(Int(E, D)), then J(e;) is a principal
ideal of D for each i.

We now use the previous results about the unitary ideals, the principal ide-
als, and the strongly two generated ideals to describe the groups €(R) and
€2 (R). Lemma 3 provides a group isomorphism Z(D)* — Z,(R); on the other
hand, since every ideal class is represented by a unitary ideal, we have a sur-
jective homorphism Z,(R) — €(R). Combining these produces a surjective
homomorphism from Z(D)* onto € (R). Proposition 4 yields the kernel of this
homomorphism is A where

A={{,....I)|I e P(D)}.

It is easy to see for any abelian group G and subgroup H that G¥/A = G/H x
G*-! where A = {(a,...,a)|a € H}. Thus, in our application we have

(1) ¢ (R) = ¢(D) x Z(D)F.
From this general statement we note two special cases.
THEOREM 6. If D is a Dedekind domain, then

€(R) = €(D) x (ZX)k?

where ZX is a sum of copies of Z under the set X of prime ideals of D. In
particular, if D is a discrete valuation domain, then € (R) = Z*~1.

PROOF. This is an immediate application of (f) for in case D is a Dedekind
domain we have from the unique factorization of ideals that Z(D) & ZX. The
discrete valuation statement is just a special case. |

We also note here that in the special case |E| = 1 we have €(R) = €(D).
Moreover, when |E| = 1, Proposition 4 implies that €3 (R) is trivial.
We now turn our attention to €3 (R). Proposition 4 yields a natural homo-
morphism
Z.(R) — €(D)*.

Since principal ideals map onto the trivial element of € (D)¥, we obtain a sur-
jective homomorphism
¥: ¢(R) — € (D)~

In addition, Proposition 4 yields the kernel of ¥ is €3 (R). This result is sum-
marized as follows.
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PROPOSITION 7. € (R)/C2(R) = €(D)*.

Remark: Proposition 7 yields the result established in [2] that when D is a
Bezout domain every invertible ideal is strongly two-generated (that is, one gets
€ (R) = €2 (R)). To be precise, €2 (R) is a proper subgroup of € (R) if and only
if D is not a Bezout domain, and it is nontrivial if and only if |[E| > 1. This
last fact follows immediately from Proposition 4, or from (}) combined with
Proposition 7.

We close with an example which illustrates the result of Proposition 7.

EXAMPLE 8. Let D be an algebraic ring of integers with nontrivial class
group (such as D = Z[/=5]) and let E be any two element subset of K. Pick
nonzero nonunit o and B8 in D such that a and 8 are not associates. Let I3
be any nonprincipal finitely generated ideal of D. Consider the following three
ideals in Int(E, D).

I = aDy,(z) + aDy2(z) + F(z)K|[z]
I' = aDy; (z) + BDypa(z) + F(z)K|z]
I# = aDy) (z) + Isp2(z) + Flz]K[z].

Then

1. I is a principal ideal of Int(E, D) and hence [I] = 0 in € (Int(E, D)).

2. I* is a strongly two-generated ideal of Int(E, D) which is not a principal ideal.
Hence [I*] lies in €, (Int(E, D))\{0}.

3. I# is finitely generated but neither principal nor strongly two-generated. Since
under our hypothesis Int(E, D) is a Prifer domain (see [7, Theorem 8]), I#
is invertible and thus [I#] lies in € (Int(E, D))\, (Int(E, D)).
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PALINDROME-POLYNOMIALS WITH ROOTS
ON THE UNIT CIRCLE

JOHN KONVALINA AND VALENTIN MATACHE
Presented by Vlastimil Dlab, FRSC

ABSTRACT. Given a polynomial f(z) of degree n, let f7(z) denote its
reciprocal, i.e., f"(z) = =™ f(1/z). If a polynomial is equal to its reciprocal,
we call it a palindrome since the coefficients are the same when read back-

"wards or forwards. In this mathematical note we show that palindromes
whose coefficients satisfy a certain magnitude-condition must have a root
on the unit circle. More exactly our main result is the following. If a palin-
drome f(z) of even degree n with real coefficients €o, €1, .. ., € satisfies the

condition |ex| > len /2] cos(w/([%]+2)), for some k € {0,1,...n/2-1},
then f(z) has unimodular roots. In particular, palindromes with coefficients
0 and 1 always have a root on the unit circle.

RESUME. Soit f(z) un polynéme de degré n. Soit f"(z) = =™ f(1/xz).
Le polynéme f(z) s’appelle polynéme réciproque si fT(z) = f(z). Dans
cet article nous prouvons que les polynémes réciproques dont les coeffi-
cients possédent une certaine propriété, ont des zéros sur le cercle unité,
c'est-a-dire ont des zeros de valeur absolue 1. Notre principal résultat est
le théoréme suivant. Soit f(z) un polynéme réciproque dont le degré n
est pair et dont les coefficients €p,€1,...,€, sont des nombres réels tels
que |ex| > Iﬁnlglm(ﬂ/([ﬁg;] + 2)), pour au moins une valeur de k €
{0,1,...n/2—1}. Tel polynéme f(z) posséde des zéros de valeur absolue 1.

Pour consequence, chaque polynéme réciproque avec des coefficients 0 et 1
a des zéros sur le cercle unité.

1. Introduction. We arrive at an interesting geometric property of pal-
indrome-polynomials, i.e., of polynomials whose coefficients are the same when
read backwards or forwards, by investigating polynomials with coefficients 0
and 1 or (0,1)-polynomials. They are interesting because of their applications
in various areas of pure and applied mathematics including algebra, number
theory, combinatorics, and coding theory. Computer-assisted experiments lead
us to conjecture that (0, 1)-palindromes necessarily have at least one unimodular
root, that is, have a root of absolute value 1. In the sequel we will prove not
only that this conjecture is true but that palindromes with real coefficients often
have roots on the unit circle. This introductory section is dedicated to setting
up notations and terminology. The second section contains the main results of
the article. We begin by defining the notion of palindrome. Given a polynomial
f(z) of degree n, let f"(z) denote its reciprocal, i.e., fr(z) = =™f(1/z). Ifa
polynomial is equal to its reciprocal, we call it a palindrome-polynomial or simply

Received by the editors on June 13, 2003.
AMS subject classification: Primary: 12D10; secondary: 30C15.
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a palindrome. In the next section we establish rather easily the following. Let
f(z) € R[X] be a palindrome having even degree n and null middle coefficient.
Then the polynomial f(z) has unimodular roots, (Lemma 2). Note that the
existence of unimodular roots is interesting only for palindromes of even degree,
because if the degree is odd, obviously —1 is a root. By R[X] we denote the ring
of polynomials of one variable with coefficients in R, the field of real numbers.
If the middle coefficient is not null, a palindrome with real coefficients may lack
unimodular roots, (consider e.g., f(z) = z2 — 3z + 1). It turns out that the
relative size of the middle coefficient with respect to the other coefficients is
important for the existence of unimodular roots. Our proof relies on inequalities
for the coefficients of non-negative trigonometric polynomials due to Szegé and
Egervéry and Szész. For each real z let [z] denote the largest integer which is
less than or equal to . The main result proved in Section 2 is the following.

Let f(z) = Y p_o€kz*, with €j = €a—j, ¥j = 0,1,...,n/2 be a palindrome
having even degree n. If there exists k € {0,1,...,n/2 — 1} such that

™
lex| > leny2l cos( —),
[=742e) +2

then f(z) has unimodular roots (Theorem 1).

In particular, (0,1)-palindromes of any degree have roots on the unit circle,
(Corollary 1).

Another consequence of Theorem 1 is the following.

Let f(z) be a palindrome with real coefficients, having even degree n. If2|e,| >
lens2l, then f(z) has unimodular roots (Corollary 2).

2. Palindromes and their zeros. Our approach is based on the following
classical construction. Denoting u = z + 1/z we associate to each palindrome
f(z) € R[X] having even degree n the polynomial g(u) uniquely determined by
the following identity.

@) f(z) = z"*g(u)

Several comments are in order here. For each k = 1,2,... we denote ox(z) =
zF + 1/zF. For k = 0 we set op(z) = 1. Observe that o;(x) = u and that the
following identity holds.

) u* = oy (z) + Z ok—25(z) (k) k=2,3,...
1<i<k/2 J
Let f(z) = Y po €xz*, With €; = €n—j, Vj =0,1,...,n/2. Note that

n/2

3 f(x) = 2"/?h(z), where h(z) =) _ €x0n/2—x(z).
k=0
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Equations (2) and (3) prove that g(u) exists and is uniquely determined. After
these preparations we can prove the following lemma, which appears also in [4],
in essentially the same form. We include it with proof, to make the paper self-
contained.

LeMMA 1. Let f(z) € R[X] and g(u) € R[U] be as above. The polynomial
f(z) has a unimodular root if and only if the polynomial g(u) has a real root in
the interval [-2, 2], respectively if and only if the following cosine polynomial has
real zeros.

n/2-1

(4) 0(&) =€np+ ) 2excos((n/2 - k)z)
k=0

PROOF. If z = €' is a unimodular root of f(z) then u = 2cos8 is a root of
g(u) and clearly —2 < u < 2. Conversely if g(u) has aroot, u € [—2, 2], then there
exists @ € R such that 2cosf = u. Let z = €%, then z is a unimodular root of
f(z). The fact that the existence of unimodular roots for the palindrome under
consideration is equivalent to the existence of zeros for the cosine polynomial
in (4) is an immediate consequence of the considerations above, equality (3),
and the fact that if z = % then oy (z) = 2coskf for k > 1. [ |

Based on the previous remarks we can prove the existence of unimodular
roots for arbitrary palindromes with real coefficients, having even degree and
null middle-term. More exactly the following is true.

LEMMA 2. Let f(z) € R[X] be a palindrome having even degree n and such
that €72 = 0. Then the polynomial f(z) has unimodular roots.

PROOF. By Lemma 1 it will suffice to show that a cosine polynomial of the

form
n/2-1

p(z) = Z ex cos((n/2 — k)z)
k=0
with real coefficients ¢, necessarily has a zero in the interval [0,27]. The latter

is an immediate consequence of the fact that the integral of ¢(z) on [0, 27 equals
0 and ¢(z) is a continuous function.

As we observed in the introduction, if the middle coefficient is not null, a
palindrome with real coefficients may fail to have unimodular roots. However,
the relative size of the middle coefficient with respect to the other coefficients
matters here. The crucial inequality needed in the proof of our next result states
that the coefficients of a non-negative trigonometric polynomial

N[ =

n
+ Z(ak coskz +bisinkz) >0  z € [0,27]
k=1
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have the property

= T
ak+b£$cos—[pk_] =5

see Egerviry and Szdsz [2], Szegd [6]. For further inequalities see Alzer [1],
Losonczi [5]. In particular, for pure cosine polynomials, (where b; = by = «+- =
b, = 0) we have

lak| < cos

[%]+2 k=12,...,n.

THEOREM 1. Let f(z) be a palindrome with real coefficients, having even
degree n, such that for some k € {0,1,...,n/2 — 1} the following condition is
satisfied

(5) el cos( @—JTJE)"””"
n/2-k

Such a palindrome has unimodular roots.

PROOF. The case €,/2 = 0 is covered by Lemma 2. Let us consider the case
€n/2 # 0. Since f(z) and — f(z) have the same roots we can assume without loss
of generality that €,/2 > 0. Denote by ¢(z) the cosine polynomial in equality (4).
Since the integral of ¢(z) on [0, 2] is positive, it follows that (z) attains positive
values on that interval. Thus, the only way it can have no zeros would be if it is
a positive cosine polynomial. Assume by contradiction that this is the case, and
observe that the following cosine polynomial, ¢(z), is also positive.

n/2—-1
o(z)=1/2+ E k., cos((n/2 — k)x)
k=0 €n/2

Let 6 = min{¢(z) : z € [0,27]}. Observe that 0 < § < 1/2. Indeed, ¢(z) — 1/2
is not the null function on [0,27] and has null integral on that interval, thus
&(z) —1/2, being a continuous function, must assume both positive and negative
values. Therefore the following cosine polynomial is non-negative on R:

n/2-1
€,
1/2+ kz:; Ee,.,_,a'}T-_a) cos((n/2 - k)z).

By the Egervéry-Szdsz Inequality, in such a case one should have the following
inequality satisfied for each k € {0,1,...,n/2 -1}

e < o)



PALINDROME-POLYNOMIALS WITH ROOTS ON THE UNIT CIRCLE = 43

This leads to the fact that for each k € {0,1,...,n/2 — 1} one can write

€n/2

SCOS(@;‘]E)(I_%) <COS(E7"'2LT;]E)’

which is contradictory under our assumptions. [ ]

COROLLARY 1. Let f(z) be a palindrome with real coefficients, having even
degree n, such that

max{lex| : k € {0,1,...,n/2 -1} } > e 2l

Such a palindrome has unimodular roots. In particular, (0, 1)-palindromes of any
degree have roots on the unit circle.

ProoOF. The statement above is a direct consequence of Theorem 1 and the
well-known fact that

T
60| T | £ 1, ke {0,1,...,n/2-1}.
( [25] +2 )

COROLLARY 2. Let f(z) be a palindrome with real coefficients, having even
degree n. If

(6) 2len| 2 lenyal

then f(z) has unimodular roots.

ProOF. Enter k = 0 in inequality (5) and recall that €, = €. [ ]
The author of [3] proves that palindromes of the form
(2]
(7) Wz"+ 2" b2+ 1)+ ) ap(z™ R+ )
k=1

have all their roots on the unit circle if their coefficients satisfy the following
condition

(2]
(®) 223 ol
k=1

Palindromes of the form (7) are important because of their role in the investi-
gation of spectral properties of the Coxeter transformation of certain oriented
graphs. If one needs palindromes of form (7) to have some, (not necessarily all),
roots on the unit circle, then the following less restrictive version of condition (8)
can be proved.
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COROLLARY 3. Even-degree palindromes of the form (7) have unimodular
roots if

(9) 1] 2> 2lan /2.

PROOF. Note that the middle coefficient of such a palindrome is 2a,/; +
and that if (9) holds then

[2an/2 + 1| < 2lan/2| + || < 2|1,

that is, (6) holds, and hence the palindrome under consideration must have
unimodular roots. |

The statement in Theorem 1 does not extend to palindromes with complex
coefficients. Indeed, consider f(z) = 2% + iz + 1. The condition in Theorem 1
is sufficient, but not necessary, for the existence of unimodular roots. Indeed,
consider h(z) = —2z* — 2x% + 522 — 2z — 2 and use Lemma 1 to show that it
has unimodular roots. Obviously this palindrome does not satisfy the condition
in Theorem 1.
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CLASSIFICATION OF QUADRUPLE
CANONICAL COVERS: GALOIS CASE

FRANCISCO JAVIER GALLEGO AND BANGERE P. PURNAPRAJNA
Presented by M. Ram Murty, FRSC

RESUME. Le but de cet article est de décrire la classification obtenue
dans [GP1] des revétements galoisiens de degré 4 des surfaces de degré
minimal qui sont définis par le morphisme canonique. Cette classification
montre que ces revétements sont ou bien bidoubles ou bien cycliques non
simples. S’ils sont des revétements bidoubles, alors ils sont tous, & une
exception prés, des produits fibrés de revétements doubles. A partir de cette
classification, on déduit des implications importantes, comme l’existence de
familles d'un genre géométrique non borné et aussi, ’existence de familles
avec irregularité non bornée. Cette situation est tres différente de celle des
revétements canoniques doubles et triples.

The purpose of this research announcement is to describe the resultsin [GP1]
on the classification of Galois quadruple canonical covers of surfaces of minimal
degree W (i.e., an embedded projective algebraic surface whose degree is equal
to its codimension in projective space plus 1.) Let X be a surface of general
type with a base point free canonical bundle Kx. We say X 5 W is a canonical
cover of W if ¢ is induced by the complete linear series |Kx|. Note that, since
W maybe singular, the Galois canonical covers of this article need not be flat,
though they are always finite.

The earlier work on the classification of double covers is due to Horikawa in
(Hol], [Ho2] and for triple covers to Konno [K]. The surfaces of general type
with a base point free canonical bundle which admit a morphism to a surface
of minimal degree play a fundamental role in numerous contexts including the
classification of surfaces of general type with low K2 ([Hol], [Ho2]) and their
moduli, the construction of new examples of surfaces of general type by various
authors, the mapping of the so-called geography of surfaces of general type and
the study of the generators of the canonical ring of a variety of general type,
among other things.

The classification done in [GP1] yields important implications and we will
mention only two of them (due to space constraints) at the end of this article.
Our work together with that of Horikawa and Konno seems to reveal a striking
numerology depending on the degree n of the cover. There exist many more
canonical covers if n is even: p, is unbounded for n = 2,4 while Py <4ifn=3.
On the other hand p, is bounded if W is singular, ¢ is Galois and n < 4. This
seems to point out to the non-existence of higher degree canonical covers when W
is singular. This together with other facts, like the nonexistence of regular Galois
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canonical covers of prime degree n > 5 (proved in [GP1]), suggests obstacles to
the existence in general of canonical covers of higher degree.

We fix now some notation and conventions. Throughout this article W will
be an embedded projective algebraic surface of minimal degree and X will be
a projective algebraic normal surface of general type with at worst canonical
singularities. By F. we denote the Hirzebruch surface with e, Cy and f as in
Hartshorne {H]. By S(a,b) we denote a rational normal scroll (which can be a
cone) as in Eisenbud-Harris [EH]. This scroll is the image of F. by the complete
linear series |Co +mf|, withe=|b—a|,m > e+1life=0,1and m > eife > 2.
If a = b, the linear series |mCp + f| also gives a minimal degree embedding of Fy,
equivalent to the previous one by the automorphism of P! x P! = F swapping
the factors. In this case the convention will always be to choose Cp and f so
that the surface is embedded by |Co + mf].

We first summarize the results dealing with the classification of canonical
Galois covers of smooth surfaces of minimal degree, starting with the case in
which the Galois group is Zy x Z; (these are also called bi-double covers).

THEOREM 1. Let W be a smooth surface of minimal degree. If X 5 W is a
canonical Galois cover with Galois group Zo x Z, then W is either linear P2
or a smooth rational normal scroll and X is the product fibered over W of two
double covers of X BWand Xo BW and @ is the morphism Xy xwXo = W.
Let Dy and D, be the branch divisors of py, p2 and if W is a rational normal
scroll, let Dy ~ 2a2Co+2bo f and Dy ~ 2a,Co+2b, f. Then we have in addition:

I. IfW = P2, then D; and D; are quartics. In this case X is regular.

II. IfW is a rational normal scroll and X is regular, then W = S(m — e, m),
0<e<?2,m>e+landa;=la=2,b=m+1andby=e+1.

III. If X is an irregular surface, then W = S(m,m) and one of the following
happens:

(1) a1 =0,a2 =3, by =m+1, bp =1. In this case, ¢(X) =m;
(2) a1 =0,a2=3, by =m+2, by =0. In this case, ¢(X) =m +3;
(3) a1 =1,a2=2, by =m+2, bp=0. In this case, ¢(X) = 1.

Conversely, if X 5 W is the fiber product over W of two double covers X; 5 W
and Xo B8 W, branched respectively along divisors Dy and D, as in one of the
above cases, then X 5 W is a Galois canonical cover with Galois group Zo x Zs.

SKETCH OF PROOF. Since W is smooth, if X % W is Galois of degree 4, then
 is flat and ,Ox splits as a vector bundle as Ow & Ly ® L2 @ L3, with L;, L,
and L line bundles. This implies in particular, that if W is isomorphic to P2,
X is regular. The subalgebras Ow @ L; correspond to three intermediate degree
2 covers p; induced by the three index 2 subgroups of Z2 x Z;. The general
description of the branch divisors of ¢ and of the intermediate covers, and of the
multiplicative structure of ¢.Ox is well-known (see [HM].) Using this general
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description we first show that a bidouble cover is a fibered product if and only
if Ly ® Ly = L3. Using relative duality we show that, if ¢ is a canonical cover,
then

(1) L3y =L ® Ly = ww(-1)

and in particular, a fiber product. If W is isomorphic to P2, then it has to
be linear P2 and not the Veronese surface. This follows as the splitting type of
. Ox is incompatible with the one proved in Lemma 2.3, [GP2]. This lemma also
gives the branch divisors when W is linear P2. If W is a scroll, one determines
the branch divisors of the double covers through a detailed study of the different
possibilities which arise, the key ingredients in the argument being (1), the fact
that ¢ is induced by a complete linear series and the computation of H'(Ox)
from the cohomology of the L;’s. This analysis gives for instance, that, if X is
regular, then

p.Ox = Oy ® Oy (—Co — (m +1)f) ® Oy (-2Co — (e + 1))
52 Oy(—3Co —(m+e+ 2)f)

From such a description it is easy to find out the linear equivalence classes of the
branch divisors. Finally, the bound e < 2 on W ~ F, comes from the restrictions
imposed on the fixed part of the branch divisors by the fact that X is normal.
Knowing the branch divisors allows us to determine exactly the L;’s and from
them the irregularity of X. ]

We study now canonical cyclic covers (i.e., those with Galois group Z,4) of
smooth surfaces of minimal degree. Among other things, next theorem together
with Theorem 3 shows the nonexistence of simple cyclic canonical quadruple
covers of surfaces of minimal degree.

THEOREM 2. Let W be a smooth surface of minimal degree r and let X 5 W be
a canonical Galois cover with Galois group Z4. Then  is the composition of two
double covers X; B Y branched along a divisor Dy and X nx 1, branched along
the ramification of p1 and p} D, and with trace zero module p{Ow(—%Dl — %Dz)
and W, D, and D, satisfy

1. W =P2?, D, is a conic and D, is a quartic.

I. W=_8m-em),0<e<2 m>2e+1 Dy~ (2m—e+1)f and
Dy ~4Co + (2e + 2)f.

III. W =S(1,1) (i.e., W is quadric hypersurface in P3), Dy ~ 3Cy and Dy ~
2Co +4f.

In cases 1, II and III, X is regular and X is singular having at best 4(r + 1)
singular points of type A;.

If X is irregular, then q(X) = 1, X is singular having at best 4(r +4) singular
points of type A, and
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IV. W=58(m,m),m>1, Dy ~(2m+4)f, Dy ~ 4Cp.

Conversely, if X 5 W is the composition of two double covers X; BB Y
branched along a divisor Dy and X B X;, branched along the ramification of p;
and pi Dy and with trace zero module p{Ow (—3Dy — 1 Ds), with Dy and D, as
in one of the above cases, then X 5 W is a Galois canonical cover with Galois
group Z,.

SKETCH OF PROOF. We first prove that ¢ cannot be simple cyclic. If it were,
0+O0x = Ow ® L ® L®% @ L®3 for some line bundle L and wy = ww ® L=3.
An analysis of the branch divisor together with the fact that ¢ is induced by
the complete canonical series of X yields a contradiction. A cover with Galois
group Z4 is a composition of two double covers which corresponds to the index
2 subgroup of Z4. The bundle ¢,Ox splits as Ow @ L; @& Lo & L3 by the
action of Z4, as direct sum of eigenspaces, where L;, Ly, L3 corresponds to
eigenspaces associated to i, —1 and —i respectively. The general description of
the multiplicative structure of ¢,Ox and its relation with the branch locus of the
double covers is summarized in [GP1] (see also [PA] and [HM])). Using relative
duality, we show that if ¢ is a canonical cover, then (1) holds also in this case.
This simplifies the multiplicative structure of ¢,Ox for an arbitrary cyclic cover
of degree 4. For instance, if W is a scroll and X is regular, we obtain a splitting
for ¢.Ox as in Theorem 1 and, from it, the description of the branch divisors.
One shows that the bound e < 2 when W ~ F, is imposed by the normality
of X. A more involved analysis when X is irregular gives us the description of
the branch divisors in this case. The number and type of singular points that X
possesses comes from the intersection between the branch divisors. |

Finally we classify Galois quadruple canonical covers of singular surfaces W of
minimal degree. The proof is much more subtle than the smooth case and it uses
the classification of the smooth case together with some ideas on how to “control
the singularities” to be made precise later. First we construct a commutative
diagram.

Let W be a singular rational normal scroll and let X % W be a canonical
cover. Let w the singular point of W and let Y % W be the minimal desingu-
larization of W. Then there exists the following commutative square:

¥ 4. x
(*) l” l«»
Yy 4 w
where X is the normalization of the reduced part of X xw Y, which is irreducible,

and p and § are induced by the projections from the fiber product onto each
factor. Note that if ¢ is a Galois cover with Galois group G so is p.

THEOREM 3. Let W be a singular rational normal scroll and let X LWohea
Galois, quadruple canonical cover. Let X, Y, q, @ and p be as in commutative
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diagram (*). Then W = §(0,2) (and hence, Y = F), the (normal) surface X
has at worst canonical singularities and X is regular. Moreover

I.  If§ is crepant, then X is the canonical model of X and one of the following
happens:

(1) If G = Zy x Zy, then X is the product over Y of two double covers
branched along divisors D2 and Dy which are linearly equivalent to
2Co +6f and 4Co + 6 f respectively.

(2) If G = Z4, then p is the composition of two double covers: X, BBY
branched along a divisor D, linearly equivalent to 4Cy + 6f and X B3
X1, branched along the ramification of py and piD,, with Dy linearly
equivalent to 3f, and with trace zero module p}Oy(—Co—3f). Then X
has at best 12 singular points of type A;, 3 of them lying on the line F,
inverse image of Co, and 9 outside F, and X has only one point, which
is singular, lying over w and has at best another 9 singular points of
type A,.

II. If § is noncrepant and G = Zy x Z,, then X is the normalization of the
fiber product over Y of two double covers of Y each branched along a divisor
linearly equivalent to 4Co+6f. In this case ¢~ {w} consists of two smooth
points and X 5 X is the blowing up of X at these two points.

II1. If g is noncrepant and G = Zy, then the inverse image of Cy consists of a
single line F with F? = —1, § contracts only F, K3 = *Kx + 2F and F
is singular only at a one point, which has a singularity of type A;. In this
case 1X has at best 9 singular points outside F of type A; and X has at
best another 9 singular points of type A,.

Moreover, p is the composition of two double covers: X, B3 Y branched along
a divisor Dy and X B3 X, branched along the ramification of py and p}D; and
with trace zero module p} Oy (—% (D1 -I-C'o)—%.l)g)@(?x1 (C'o), where Co = p~1Cy,
and one of the following happens:

(1) Dy ~Cy+3f and Dy ~ 4Co +6f.
(2) D; ~4Co+9f and Dy ~ 2C, + 2f.

Conversely, let X be a normal surface with at worst canonical singularities
andletY =F,. If X 2, Y is as described in one of 1.1, 1.2, 11, IIL.1, or II1.2,
then p is Galois with Galois group Zy x Zy or Z4 as indicated in 1.1, 1.2, II,
IIL1, or 1112, and there exists a commutative diagram like (x) where @ is the
canonical morphism of X and q is as described in 1.1, 1.2, II, IIL.1, or III.2.

SKETCH OF PROOF. First we study the O-cycle which is the inverse image
of the singular point of W under ¢. Since ¢ is Galois, this study splits into
three cases according to the cardinality of the support of the 0-cycle, which is
4, 2 and 1. In each of these situations, except for one possible exception which
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corresponds to case III and is settled once we obtain a detailed description of the
branch divisors, we prove that X has canonical singularities. This is done by first
showing that it has rational singularities and then bounding the discrepancies of
the intermediate double covers induced by the action of the index 2-subgroups.
Next we show that the morphism §, except in two cases (corresponding to II
and III) is crepant. This step is closely intertwined with the above mentioned
steps. In the process of proving the above, we show that W = S(0,2). Then one
proceeds to study separately the cases when § is crepant and noncrepant. If g
is crepant we apply to p arguments similar to those used to prove Theorems 1
and 2. If § is noncrepant a separate, more subtle analysis is required. |

TWO IMPORTANT IMPLICATIONS. (a) We have constructed examples in [GP1]
to show that all the cases that appear in the above classification do indeed occur.
This shows that there exist families of quadruple covers with unbounded pg, in
sharp contrast to triple covers classified by [K] where p; < 5, and unbounded
irregularity q in sharp contrast with the picture for double covers classified in
[Ho1], where the surfaces are all regular. In fact all Horikawa surfaces are simply
connected.

(b) The existence of non-simple cyclic canonical covers are rare in the case
of surfaces and not easy to construct. The classification shows there indeed exist
bounded families of non-simple cyclic covers.
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WHEN THE CENTRAL NORM EQUALS 2 IN THE
SIMPLE CONTINUED FRACTION EXPANSION OF
A QUADRATIC SURD

R. A. MOLLIN

Presented by M. Ram Murty, FRSC

ABSTRACT. We complete the task, begun in [19], of determining when
the central norm (determined by the infrastructure of the underlying real
quadratic field) is equal to 2 in the simple continued fraction expansion of
the associated quadratic surd.

RESUME. Nous poursuivons le travail amorcé dans 'article [19)], et
étudions le probléme de déterminer quand la norme centrale (déterminée
par l'infracture du corps quadratique réel en question) est égale & 2 dans le
développement en fraction continue de l'irrationnalité quadratique associée
au corps quadratique.

1. Introduction In [19], we showed that when the integer D > 1 is not
a perfect square and D = 2%c where a > 1 and c is odd, then the central norm
(defined in the next section) being 2 for v/D is directly related to the central
norm of /D/23-1 being 2. Then we settled the case for D = 2¢ for all except
the case where c is divisible only by primes congruent to 1 modulo 8. In this
note, we solve that case as well and give a new general criterion for all cases,
thereby completing the project, which was motivated by correspondence with
Irving Kaplansky as outlined in [19].

2. Notation and Preliminaries We write the simple continued fraction
expansions of VD, D € N (the natural numbers), D not a perfect square, by:

\/B - (qO;qls qz,-... ,ql—l,2q0)’
where ¢ = £(v/D) is the period length of v/D.
The jth convergent of o for j > 0 is given by

A; giAj—1+ Aj_2
1 3 _ 101,42y, Q) = 2473 J
( ) Bj (qo U9 qJ) quj_1+Bj_2.
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If we set Py =0, Qo = 1, then for j > 1,

(2) Pj11=¢;Q; - F;,

3) 4= [5’5—‘/5j
i

(4) D= Pj2+1 + QiQj41-

We will also need the following facts (which can be found in most introductory
texts in number theory, such as [14], or see [13] for a more advanced exposition).

(5) A;Bj_1 — Aj1B; = (-1)"7,
(6) Aj-1=P;Bj_1+Q;jBj_2,
) A?—l - ‘BJ?—ID = (‘l)ij-
When £ is even, Py = Py/a41, so by Equation (2),
(®) Qey2 | 2Pyj2s
where Q2 is called the central norm, (via Equation (7)), and
9) ej2 = 2Py/2/Qy/a.

We will need the following in the next section. Note that this result corrects
the oversights in [15, Theorem 1.3, p. 334], (16, Theorem 1.3, p. 101], and [17,
Theorem 1.2, p. 221]. (Fortunately, the correct version below is the one actually
used in those papers, rather than the incorrectly stated ones. The problem only
arises when the norm is not squarefree.)

LEMMA 1. If D > 1 is not a perfect square, then Q; | 2D and Q; | 24;_,
for some j < £ (where the Q;, Aj, and £ are as defined in the previous section
for /D) if and only j = £/2.

Proor. If Q; | 2D and Q; l Aj_1, then by Equation (6) Q; | 2P; (since
ged(Aj—1, Bj-1) = 1 by Equation (5)). Now the proof follows exactly as in [18,
Theorem 2.3, p. 64] (where Q; was assumed therein to be squarefree in order to
achieve the latter divisibility condition).

The converse is proved exactly as in [18, Theorem 2.3, p. 63] since no square-
freeness was needed or assumed therein. [ ]

For work related to the work herein, which helped to inspire this author’s work
along with the aforementioned correspondence with Kaplansky see [1]-[12], and
[21]-[23].

3. The Criterion The following is a general criterion for Qg/2 = 2 (where
¢ is defined in he previous section as are the symbols used below) when D = 2
(mod 4) which completes the general case for reasons cited in the introduction.
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THEOREM 1. Let D = 2c where ¢ > 1 i3 odd (possibly a perfect square) . If
£ is even, then the following are eguivalent.

L Qe2=2.

2. gej2 = Pyy2.

3. There exists a solution to the Diophantine equation z2 — Dy? = £2.

4. There does not ezist a factorization ¢ = ab with 2 < a < b for which there is
a solution to the Diophantine equation az? — by? = 1.

5. There does not exist a divisor a > 2 of D such that a | Agsa-1-

PROOF. The equivalence of 1 and 2 is a consequence of Equation (9). The
equivalence of 1 and 3 was proved in [20], as was the equivalence of 1 and 4. It
remains to show the equivalence of 1 and 5.

Suppose that 5 holds and Q2 = a. Then by Lemma 1, a | 2D and a |
2A¢2-1- If a is odd, then 5 forces a = 1, a contradiction. If @ is divisible
by 4, then by Equation (8), 2 | Py/2, so by Equations (5) and (7), 4 | D, a
contradiction. Hence, a = 2 (mod 4). If a > 2, then (a/2) | D and (a/2) |
Ag/2-1, 50 by 5 a/2 = 1. Conversely, if 1 holds, then by Lemma 1, 5 must hold.

[ ]

The new condition in terms of criteria for Q,/2 = 2 is 5 in Theorem 1. This
completes the work done in [19]. The following completes the proof of a conjec-
ture of Kaplansky begun in that paper.

COROLLARY 1. If D = 2pq where p and q are distinct odd primes, then

1. Ifp=gq =7 (mod 8), then ¢ is even. Also, Qe/2 = 2 if and only if £/2 is even
and Agj2_1 = 2 (mod 4).

2. If p=q =3 (mod 8), then ¢ is even and Qo = 2.

3. If p =1 (mod 8) and g = 3 (mod 8), then £ is even. Also, Qes2 = 2 if and
only if £/2 is odd and Agja—y = 2 (mod 4).

4. If p = 1 (mod 8) and ¢ = 7 (mod 8), with p > 2q, then € is even. Also,
Qey2 =2 if and only if £/2 is even and Agjy_, = 0 (mod 4).

5. If€ is even andp = g = 1 (mod 8), then Q2 = 2 if and only ifged(Ae/2-1,p9)
=1.

PROOF. Parts 1-4 were proved in [19]. Part 5 follows from Theorem 1. W
We conclude with an example that illustrates case 5.

EXAMPLE 1. Let D=2-17-41. Then £ =6 and Qg2 = 2. Here Agjay =
112, which is relatively prime to ¢ = 17 - 41.
If D=2-41-113, then £ =8, Qg2 = 82 and

ged(Agjz_1,¢) = ged(2214, 4633) = 41.
Acknowledgements: The author’s research is supported by NSERC Canada

grant # A8484. Thanks go to Claude Levesque for translating the abstract into
French. Also, thanks to the referee for pointing out some typos.
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PERIODIC INTEGRAL TRANSFORMS
AND C*-ALGEBRAS

S. WALTERS
Presented by G. A. Elliott, FRSC

ABSTRACT. We construct canonical integral transforms, analogous to
the Fourier transform, that have periods six and three. The existence of
this transform is shown to arise naturally from the expectation that the
Schwartz space on the real line, viewed as the Heisenberg module of Rieffel
and Connes over the rotation C*-algebra, should extend to a module action
over the crossed product of the latter by the canonical automorphisms of
orders three and six (which does in fact happen and is shown here).

RESUME. On construit deux transformations intégrales, analogues a la
transformation de Fourier, d’ordre six et trois, respectivement. Ces trans-
formations sont reliées a la théorie des automorphismes canoniques d’ordre
six et trois de |’algebre associées & une rotation irrationelle du cercle.

1. Introduction. It is a well known classical fact that the Fourier trans-
form of a Schwartz function f

) for=[ " f()e(~tz) de,

has period four and extends to a unitary operator on Lz(R). (Throughout the

paper we write e(t) := 2t.) This stems from the fact that f(t) = f(—t). In this
paper we show that if the product tz in (1) is replaced by a suitable quadratic,
then one obtains transforms of period three and six. More specifically, one has
a one-parameter family of heric transforms

@) (HNO) =V [ flo)e(eute - pa) da,

for 4 > 0 and f in the Schwartz space S(R). Thus, H extends to a unitary
operator on L?(R) of period six (i.e., H® = I). (The “ideal” transform is when
p= % as is explained in Remark 2 below.) Note that H is a composition of the
multiplication operator by the complex Gaussian e(—puz?2) and an inverse Fourier
transform (up to scaling), and hence is itself a unitary operator on L?(R) that
leaves invariant S(R).
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THEOREM 1.  One has (H3f)(t) = f(—t) for all f € S(R), so that the transform
H has period siz and extends to a unitary operator on L?(R). Further, its square
H? (the cubic transform) is given by

3) (H21)(0) = Yoke(ut?) [ 1@etaute) .

Therefore, H~! = H® = H3H? and by (3) one gets the formula for the inverse
hexic transform

E0 = Sed?) [ fa)e(-2ut) o

One similarly gets a formula for the inverse cubic transform (H~2f) = (H3H f)(t)
= (Hf)(-1).

REMARK 1. It is interesting to note that although the Fourier transform has
period four, if it is composed with multiplication by a complex Gaussian, as
in (3), it can be made to have period three. Though this may seem a little
surprising, it can be shown that from the C*-algebra point of view it is not (see
Section 3).

REMARK 2. By analogy with the fact that e~™" is invariant under the Fourier
transform, one can easily check that e~™(V3-Dus® ig invariant under H (and
hence also under the cubic transform). (It can be checked that this is the only
function among the Gaussian exponentials, up to scalars, that is invariant under
the cubic or hexic transform.) The reason we referred to p = 1/2 as the “ideal”
case is that in this case one has }(v/3 — i) = i~1/3 is of modulus 1 so that one

: ; ; —pi=i/3,2
has the invariant Gaussian e™™ %,

REMARK 3. The Fourier transform is a “canonical” transform in the sense that it
intertwines the translation and phase multiplication operators in the well known
way. Similarly, the hexic transform, with g = %, is also canonical. In fact,
letting (T f)(t) = f(t — z) and (E;f)(t) = e(—=at) f(t), one checks the following
relations (see Section 3 below):

TzH = HEI, EzHTz = 6(—%2?2)T3H.
Since the group SL(2,Z) is known to contain finite order elements only of orders
2, 3, 4, and 6, it follows that a periodic canonical transform can only have these

orders. This therefore gives us canonical transforms for each allowed order.

REMARK 4. It may be worthwhile investigating properties that the above trans-
forms have that are analogous to those that are well known to hold of the
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Fourier transform (as for example in Rudin [8]). For example, is there a mul-
tiplication # on the space of Schwartz functions (or L' functions) such that
H(f#g) = H(f)H(g)? (For the Fourier transform this multiplication is convo-
lution.) It may also be of interest to explore the extension of the transforms H
and H? to R", or even to locally compact Abelian groups.

An application of Theorem 1 is the existence of finitely generated projective
modules over crossed products 6 := Ag X, Zg and 39 := Ag X 2 Z3, Where Ay
is the rotation C*-algebra and p is the canonical order six automorphism on Ay
(see Section 3). These modules will give rise to primary classes in the corre-
sponding Ko-groups Ko(6¢) and Ko(3). We write 63° and 33° for the respective
canonical smooth dense *-subalgebras. It is well known [5] that there are natural
isomorphisms K, (6¢) = K.(65°) and K.(3s) = K.(35°). (See Section 3.)
THEOREM 2. Under the action (2), the Schwartz space S(R) is a finitely gener-
ated projective right module Mg over 63° (thus giving rise to a class in Ko(63°)).
Similarly, under the action of the order three unitary given by (3), the Schwartz
space S(R) is a finitely generated projective right module M3 over 33° (thus
giving rise to a class in Ko(33°)). Further, one has

0 6
T.[MG] = 67 T‘[M3] = §)

forj=0,1,...,5, where 7. is the induced map by the canonical trace T on Kg.

In (1], Buck and the author compute the Connes-Chern characters of the
hexic and cubic modules Mg, M3 and show that there are explicit injections
Z' — Ky(6p) and Z8 — Ky(3p) for each § > 0. The author believes that, just
as in the Fourier case [10], these injections will turn out to be isomorphisms (at
least for a dense G; set of 6).

The author wishes to thank George Elliott for making some helpful sugges-
tions.

2. Proof of Theorem 1. We will make free use of the following identity

/ = e(Az) e~™" dg = ie"”‘z/ b
Vb

—00

which holds for b, A € C, Re(b) > 0, and Vb is the principal square root.
The theorem follows once we show that:

(A) the set of Gaussians f,(z) := e(—az)e‘z”“”a, where o € R, is a total set
in L?(R),

(B) (Hfa)(t) = fa(—t) for all ¢, a,

(C) equality (3) holds for each f,.

PROOF OF (A). It is enough to show that if g € L?(R) is such that

/ - g(z)e(~az)e~™*" dz = 0

—00
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for each o, then g = 0. Setting g(z)e~2"#*" = h(z) we note that h is in L(R)
since it is a product of two L? functions. Hence one has

0= / " hlsiel—on) de = g}

for each . Therefore, A = 0 and hence h = 0, i.e., g = 0. This proves (A) and
shows that the set of linear combinations of functions of the form f, is a dense
subspace of L2(R).

PROOF OF (B). One has
(Hfa)(t) =182 / e(—az)e~2™%" ¢(2utz — pa?) dz

o0
—00

= M rut-o/uari).

T Vit

Applying H again gives

;1/3 0o .
(@)  (H*fa)(t) = V2 e~ 2ue—0)/ Qe+ g(9t7 — 4z?) do

Viti Joo
- iiz\/T?e(C) /_ ” e((2ut+ D)z)e="P do

V(1 +9)8

= Me(c)e—ﬂ?ut-w)’/ﬁ — g e(C)e—w(2pt+D)’/ﬁ
p

where

B=p(1+1i), C=$(i+1)a2, p=_-("2+1)m

A third iteration gives
>
(H3f,)(t) = /2ue(C) [ e ™Cme+DV/Bo(opty — na?) d
-0

za® o0 2
= /2pe™ F / e((2pt — ia)z)e~ 24" dx
-0
= o= H o m(2ut—ia)*/(2m) _ e(at)e=2He".
Therefore, (H3f,)(t) = fa(—t) is the usual flip map. Since this holds for all

a, and {f,} is a total set of functions in L?(R), this relation holds for all L?
functions on R. Hence HE is the identity.
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PROOF OF (C). The right hand side of (3) evaluated at f, is

V2u —n(2ut—a)?
VL e(ut?) / e(~az)e~2"<" e(2ptz) do = L o(ut2)ement-r?/2u
and it is easy to check that this is exactly (4), namely (H2£,)(t). This completes
the proof of Theorem 1.

3. Application to C*-algebras. The following shows how by means of
C*-algebras one can discover the above transforms.

Let & > 0, A = e(#), and consider the rotation C*-algebra Ay generated by
unitaries U, V satisfying VU = AUV. The (noncommutative) hezic transform of
Ag is the canonical order six automorphism p defined by

p(U)=V, p(V)=Ar"12U-1v.

Its square & := p? is the canonical order three automorphism, which we call the
cubic transform, and p® is the usual flip automorphism studied in great detail
in [2], [3], and [4]. The corresponding crossed product 6g := Ag %, Zg is the
universal C*-algebra generated by unitaries U, V, W enjoying the commutation
relations

(5) VU=XUV, WUW =V, WVW l=)\"12y-ly, wé=1.

One may view the crossed product 3p = Ag %, Z3 as the C*-subalgebra of 64
generated by U, V, and W2. We write 63° and 33° for their respective canonical
smooth dense *-subalgebras. (For example, the elements of 63° consist of sums
of terms of the form aW7 where a € A$.) Using Rieffel’s Theorem 2.15 [7] (with

an appropriate lattice group in R x IR) one obtains a smooth Heisenberg module
structure on the Schwartz space S(R), with A3® acting on the right, given by

(FU)®) = f(t-a), (FV)() = e(-at)f(2),

where o = V8. To extend this action so as to obtain a right 63°-module action
on S(R), we need W to act as an integral transform

(o= [ " f@)K (2, 1) ds,

for suitable kernel function K, so that the relations (5) are satisfied. Rewrite
the commutation relations in (5) involving W in the form

(6) WU =VW, VW =X2UWV, Wé=1.

For the second of these relations one has

(FUWV)(O = e(-at)(FUW)() = e(—t) [ " f@)K(e+ o t)do
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vy = | "~ e(~a2)f(2)K (2 ¢) d.

Hence, doing the same thing for the first relation in (6), one gets the relations
K(z,t — a) = e(—az) K(z,t), A2 K(z+ a,t) = e(ot — az) K(z, t).

Now it is easy to check that the kernel function K (z,t) = i'/%e(tz — 12?) (of
the transform H above with g = 'i) satisfies these relations. Therefore, by
Theorem 1 we can define the right action of W on S(R) by:

(fW)(¢t) = i*/6 [: f(:z:)e(tz - %22) dz,

so that the three relations in (6) hold. This, together with the above actions of
U, V gives rise to a right 63° module structure on S(R). We shall denote this
module by Mg and call it the heric module. Also by Theorem 1, one has the
order three action

(FW2)(2) =i‘1/6e(%t2) /_ ” f(a:)e(—ta:)dz=i’1/6e(%t2)f(t),

which makes S(R) into a right 33°-module—we call it the cubic module and
denote it by Mj. In view of Rieffel’s inner product formulas (7], the Ag°-valued
inner on the Heisenberg module S(R) can be defined by

(fv 9>A3° = Z(f$g)A3° (ms n) -vrum,

m,n

where f,g € S(R) and
(f,9)ap(m,n) = /_ " f(t + am)g(t)e(—ant) dt.

The associated 65° and 33°-valued inner product (, )eg, { , )3g> are defined by
symmetrization

5 2
(f9)6 = D _(F,aW ) ae Wi, (f,9)sp =D (f,gW ) s WH.

j=0 =0

With these inner products, and exactly as was done in the proof for the Fourier
module in [9], one sees that the hexic and cubic modules are finitely generated
projective, giving classes in the corresponding Kp-group, and therefore one ob-
tains Theorem 2.
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ON THE INFINITE-DIMENSIONAL
HOLOMORPHIC STRUCTURE ON
TOPOLOGICAL BUNDLES

E. BALLICO
Presented by Vlastimil Dlab, FRSC

ABSTRACT. Let (X,d) be a complete metrizable space, f: X —» C a
continuous map and E a topological vector bundle on X. Here we prove the
existence of a complex Banach space V and a continuous closed injective
map j: X — V such that j(X) is the zero-locus of a family of holomorphic
functions on V, f is holomorphic and E is a holomorphic vector bundle
with respect to the complex structure on X induced by j.

RESUME.  Soient (X,d) une espace metrizable complete, f: X — C
une application continue et E une fibré vectoriel topologique sur X. Nous
prouvons ici 'existence d'un espace de Banach complexe V et d’une appli-
cation injectif, continue et fermé j: X — V tel que j(X) soit ’ensemble
des zeros d'une ensemple des fonctions analytiques et E soit une fibré ana-
lytique pour la structure complexe de X donnée par j.

1. Introduction In [2] A. Douady introduced Banach analytic spaces
and Banach analytic sets (i.e., zero-sets of holomorphic functions on a com-
plex Banach manifold) to solve an important moduli problem concerning finite-
dimensional complex analytic geometry. In [3] (or see [9], Prop. II.1.3) he re-
marked that Banach analytic sets are not a reasonable field of research (just by
itself) because every compact metric space K is homeomorphic to the zero-set
of a family of holomorphic function on a complex Banach space. He also con-
jectured that the same is true for any complete metric space. This conjecture
was proved by V. Pestov in a stroger form (i.e., in a “metric form”) in [8]. Here
we will use the methods of (7] and [8] to prove the following results concerning
the existence of analytic structures on topological vector bundle (see Theorem 1)
and the realization of any continuous complex valued function on a metric space
X as a holomorphic function on a certain analytic structure on X (see Lemma
2). In section 2 we will prove the following result.

THEOREM 1. Let X be a complete metrizable space and E;, 1 < i < n,
finitely many topological vector bundles on X. Then then there exist a complex
Banach space V' and a continuos injective map u: X — V such that j(X) is the
zero-locus of a family of holomorphic functions on V and the topological vector
bundles u='*(E;), 1 < i < n, on u(X) have a holomorphic structure.
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To prove Theorem 1 we will use the following result.

LEMMA 2. Let (X,d) be a complete metric space and Lip(X) the algebra
of all complez valued Lipschitz functions on X. Fiz a finite set S of continuous
complex valued functions on X and call A the algebra of all complex valued
functions on X generated by Lip(X) U S. Then then there erist a complex
Banach space V and a continuous injective map u: X — V such that u(X) is
the zero-locus of a family of holomorphic functions on V and for everya € A
the continuous function u~1*(a): uw(X) — C is holomorphic.

2. The proofs Proof of Lemma 2. The notion of a free Banach space
was introduced in [1] and througly investigated in [4]. For all z,y € X, set
d'(z,y) := d(z,y) + Lses |f(2) — ()| It is easy to check that d' is a metric
on X equivalent to the metric d. Since d' > d, X is complete for the metric
d'. Since d' > d, every Lipschitz function on (X,d) is a Lipschitz function for
(X,d'). Every function f; is a Lipschitz function with Lipschitz constant one
with respect to the metric d’. Fix any Q € X and let Bx 4 g be the free
Banach space of (X, d’) with respect to @ and j: X — Bx 4 o the embedding
constructed in [8]. Let g: X — C be any Lipschitz function on (X,d’) and call
L > 0 any Lipschitz constant for g. Hence the function g/L is a nonexpanding
map on (X,d’) in the sense of [8]. By the defining property of the free Banach
space Bx g, (“property 2” before the Lemma at page 70 of [8]), there is a
continuous linear map h: Bx 4,9 — C such that g/L = h — g(Q)/L. There is
an embedding j: X — Bx g ¢ with j(Q) = 0. Since (X, d’) is complete, j(X) is
closed in Bx 4,0 ([7], Theorem 2). First assume that X has diameter at most
two with respect to d'. In this case j(X) is defined in Bx 4o by a quadratic
map from Bx 4 o to another Banach space ([7], Theorem 3) and hence it is
a closed analytic subset of Bx 4,g. We just saw that every Lipschitz function
on (X,d’) is induced by a holomorphic function on j(X) with respect to this
complex structure. The general case in which (X, d') may have infinite diameter
is reduced to the previous case using a contraction map on the Banach space
Bx,,q ([7], Lemma 2 and proof of the Main Theorem at p. 1047).

Proof of Theorem 1. Let Cx be the sheaf of all complex valued continuous
functions on X. Set r; := rank(E;). By a theorem of Nagata and Smirnov
any metric space is paracompact. Hence every topological vector bundle on X
is isomorphic to the pull-back of the tautological quotient bundle on a suitable
complex Grassmannian G by a continuous map X — G ([5], Corollary 5.3 and
Theorem 5.5). Thus there are integers a; > 0, b; > 5, 1 < i < n, and an
a; X bi-matrix of continuous complex valued functions M; = (f;;jx), 1 <@ < n,
1< j<ail < h < b, such that the associated map f;: Cj‘?m‘ — CP™ has
constant rank n; — r; and Coker(f;) & F; as topological vector bundles. The
proof of Lemma 2 shows how to define an equivalent metric d’ on X such that all
continuous functions fi;jn, 1 <i<n,1<j < n; 1 <h < ny, are Lipschitz with
respect to the metric d’. By Lemma 2 there is an embedding u of X in a Banach
space B with u(X) closed analytic subset of B and such that all continuous
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functions f;;;» are holomorphic with respect to the holomorphic structure on X
induced by u. The vector bundles Coker(f;), 1 < i < n, are holomorphic with
respect to the holomorphic structure on X induced by .

REFERENCES

R. Arens and J. Eells, On embedding uniform and topological spaces, Pacific J. Math.
6 (1956), 397-403.

2. A. Douady, Le probléme des modules pour les sous-espaces analytiques compacts d’un

o

® ® N oo

espace analytique donné, Ann. Inst. Fourier (Grenoble), 16 (1966), 1-95.

A. Douady, A remark on Banach analytic spaces, in: Symposium on infinite dimen-
sional topology, pp. 41-42, Annals of Math. Studies No. 69, Princeton University Press,
Princeton, NJ, 1972.

J. Flood, Free locally convez spaces, Dissert. Math. 221, PWN, Warczawa, 1984.

D. Husemoller, Fiber bundles, Springer-Verlag, New York-Heidelberg-Berlin, 1975.

J. Mujica, Complez Analysis in Banach Spaces, North-Holland, Amsterdam-New York-
Oxford, 1986.

V. G. Pestov, Free Banach spaces and representations of topological groups, Functional
Anal. Appl. 20 (1986), 70-72.

V. Pestov, Douady’s conjecture on Banach analytic sets, C. R. Acad. Sci. Paris, Sér.
1, 319 (1994), 1043-1048.

J.-P. Ramis, Sous-ensembles analytiques d’une variété banachique compleze, Ergeb.
Math. Grenzgeb. 53, Springer-Verlag, Berlin, 1970.

Department of Mathematics
University of Trento

38050 Povo (TN), Italy
email: ballico@science.unitn.it


mailto:ballico@acience.unitn.it

