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STRONGLY TWO-GENERATED IDEALS IN 
RINGS OF INTEGER-VALUED POLYNOMIALS 

DETERMINED BY FINITE SETS 

SCOTT T. CHAPMAN, K. ALAN LOPER, AND WILLIAM W. SMITH 

Presented by Vlastimil Dlab, FRSC 

ABSTRACT. Let D he an integral domain, E = {ei,...,efc} a finite 
nonempty subset of its quotient field K and Int (JE, D) the ring of polynomi-
als in K[x] which map E into D. A 2-generated ideal / of Int(£, D) is called 
strongly two-generated if each of its nonzero elements can be chosen as one 
of two generators of /. We characterize the strongly two-generated ideals 
of Int(£, D). In the case where D is not a Bezout domain and \E\ > 1, we 
show further that the strongly two-generated ideals of the ring Int(.B, D) 
form a proper nontrivial subgroup of its ideal class group. 

RÉSUMÉ. Soient D un anneau intègre de corps des fractions K, E = 
{ei , . . •, et} une partie non vide finie de K et Int(£, D) l'anneau des poly-
nômes de K\x\ qui envoient E dans D. On dit qu'un idéal / de Int(£, D) 
engendré par 2 éléments est fortement engendré par 2 éléments si chacun de 
ses éléments non nuls peut être choisi pour l'un des deux générateurs. On 
caractérise les idéaux de Int (E, D) fortement engendrés par 2 générateurs. 
Dans le cas où D n'est pas un anneau de Bézout et où \E\ > 1, on montre en 
outre que les idéaux fortement 2-engendrés de l'anneau Int (E, D) forment 
un sous-groupe non trivial de son groupe des classes. 

Let D be an integred domain with field of fractions K. If a two-generated ideal 
I oî a D has the property that the first of its two-generators can be chosen at 
random from the nonzero elements of J, then / is called strongly two-generated. 
A ring in which each two-generated ideal is strongly two-generated is said to have 
the strong two-generator property. If an element a of D can be chosen as one of 
two generators of every two-generated ideal I in which it is contained, then a is 
called a strong two-generator of D. This note is a sequel to the recent paper [2] 
by the current authors, in which we studied the strong two-generator property 
in certedn rings of integer-vedued polynomieds determined by D. In particular, if 
S is a subset of K, then set 

R = lnt{E, D) = {/(x) G K[x] \ f{a) G D for every a G E}. 

For ease of notation, iîE = D, then set Int(D, D) = Int(£>). In [2] we showed for 
finite sets E that the ring Int(.E, D) satisfies the strong two-generator property 
if and only if D is a Bezout domedn. Moreover, if Z) is a Dedekind domain with 
nontrivied class group, we then characterized which elements of lnt{E, D) are 
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strong two-generators. In this current work, E is stiU a finite set but there is no 
hypothesis on the domedn D. We characterize (in Proposition 4) the strongly 
two-generated ideeds of R = Int(.B, D). 

By a residt of Lantz and Martin [6], the strongly two-generated ideals of a 
ring iî form a subgroup of the invertible ideals of iî. Hence, our discussion can 
be cast in the language of the class group. In the case where D is not a Bezout 
domain and |.E| > 1, we show that the strongly two-generated ideals of iî form a 
proper nontrivied subgroup of its ideal class group. We find this result of interest 
since it is not known if there exists a nonprineipal strongly two-generated ideal 
even in the much studied ease E = Z = D. 

NOTATION 1. Given a domedn iî we let ^(iî) denote the monoid of finitely 
generated nonzero ideals, I(iî) the group of invertible ideals and ^(iî) the group 
of nonzero principal ideals. Thus, the class group £ (iî) is the quotient C (iî) = 
I{R)/V{R). As noted earUer, the strongly two-generated ideals form a subgroup 
of I(iî) and we let €2 {R) denote the subgroup of € (iî) represented by the 
strongly two-generated ideals. 

In the ease iî = Int(.B, D), we make use of an additional reduction of the class 
of ideeds needed to describe the class group C (iî). An ideal of iî = Int(E, D) is 
called unitary whenever 7nD ^ (0) (this is equivedent to the condition i-ftTpf] = 
K[X]). One notes that if ̂ ( i î ) denotes the invertible unitary ideals, then îu(iî) 
is a subgroup of I(i î) . The foUowing observation indicates that the class group 
of Int(jE?, D) can be represented by the unitary ideeds. 

LEMMA 2. Let R = Int(.E, D) where E is a non-empty subset of K. If I is 
in l ( i î ) , then there exists an ideal J i n î ^ i î ) where [I\ = [J] in €{R). 

PROOF. The argument for this result is a straight forward modification of 
the argument given in [1, Lemma VIII 1.2] in the case E = D. • 

For unitary ideals of iî in the case where E — {ei,...,efe}, we have the 
foUowing simple description. As in [7], define the polynomial 

F(x) = (x - ei)(x - 62) • • • (x - ejt). 

and for each 1 < r < A; 
, , I W * - ej) 

Mx) = Uj^-ejy 
We have that tpr{er) = 1 and tpr{ej) = 0 when j ^ r. Hence each tpr{x) G 
Int{E, D). The polynomieds (prix) are cedled the Lagrange Interpolation Poly-
nomials. We state here a basic result given in [7]. 

LEMMA 3. ([7, Proposition 5]) Let D be an integral domain and E = {ei, 
. . . , efc} a finite nonempty subset of K. Each unitary ideal I of R = Int(JB, D) 
is uniquely represented as 

(*) I = htpiix) + --- + Iktpk{x) + F{x)K[x] 
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where J i , . . . , / * are nonzero ideals of D. In addition, Ii = Ifa) for each i and 
Ir\D = r\ili 7̂  (0). Conversely, any collection of nonzero ideals Ii,...,Ik in D 
give rise to such a unitary ideal I of R. 

Lemma 3 also illustrates the presence of the "strong HUbert property" for iî; 
namely, if / and J are nonzero uniteiry ideals of iî, then I = J ii and only if 
/(e») = J{ei) for all i. We remark that the Lemma remedns vaUd in the context of 
fractioned ideeds (adjusting the equality toIr\K = nf/j). We note / is invertible 
if and only if each ij = /(e») is invertible. The "if peurt is immediate, but 
for the converse one uses the strong HUbert property: if eeich /(ej) is invertible, 
letting J be the (unique) fractional unitary ideal such that Jfa) = I{ei)~l for 
eeich i, then (iJKe,) = D for each i and hence, by uniqueness, IJ = Int(.E,.D). 
Thus, the Lemma provides a natural mapping 0: I^iR) —• T{D)k and indeed 
gives us that this mapping is a group isomorphism. This idea wiU be considered 
after the following result is given regarding the strongly two-generated ideals. 

PROPOSITION 4. Let D be an integral domain and E = {ei, ...,efc} a 
finite nonempty subset of K. Let I be a unitary ideal of R = Int{E, D) with 
unique representation (*) where Ii,...,Ik are nonzero ideals of D. We have the 
following. 

(1) I is principal if and only if each Ii is principal and Ii = I2 = • • • = Ik-
(2) / is strongly two-generated if and only if each Ii is principal. 

PROOF. (1) (=>) Suppose / = dInt(.B, 2?) where d ^ 0 in D is a principal 
uniteiry ideal of Int(.E, D). For each 1 < i < fc, we have that Ifa) = dD = / j . For 
{<=), assume that /1 = /2 = • • • = ifc = dD for d ^ 0 in D. If J = dInt{E, D), 
then Ifa) = Jfa) for 1 < i < fc and / = dlnt(£;,£>) by the strong Hilbert 
property. 

(2) (=>) Let 7 be a strongly two-generated unitary ideal of Jnt{E, D) with 
unique representation (*). Since .F(x) G I, there exists a g{x) in I with I = 
{F{x),g{x)). Thus Ii = Ifa) = {Ffa),gfa)) = {0,gfa)) = {gfa)) and hence 
each I, is principal. For (<J=), suppose that each ij = fa) is principal and let 
/(x) be a nonzero element of / . Using Lagrange interpolation, one easUy gets a 
polynomial ^(x) in Int(.E, D) with ^(ei) = bi for all i. In fact, one can construct 
such a polynomial where f{x) and g{x) are relatively prime in K[X]. This is 
done in the proof of [2, Theorem 4]. An alternate eirgument is to note that if 
g{x) is a polynomied with ^(ei) = 6i, then gi{x) = g{x) + aF{x) has the same 
property for any constemt a. Then, consider an extension L of K where f{x) 
splits and choose an element a not in the set 

{ - 9{z)/F{z) \zis a root of /(x) with z ^ ei for all i}. 

The polynomials gi{x) and f{x) wiU have no common roots in L and, hence, 
^i(x) wiU be the desired polynomial. FinaUy, setting J = {f{x),gi{x)) yields an 
unitary ideal with Jfa) = Ifa) for edl i. Hence J = I. m 
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Combining Lemma 2 with Proposition 4 characterizes edl strongly two-
generated ideeds in Int(£, D) when E is finite. 

COROLLARY 5. Let D be an integral domain with quotient field K, E = 
{ei, . . . ,efc} o nonempty finite subset of K and I a finitely generated ideal of 
R = lntiE,D). I is strongly two-generated if and ordy if whenever J is a unitary 
ideal o/Int(i5,.D) such that [i] = [J] in €.{lnt{E,D)), then Jfa) is a principal 
ideal of D for each i. 

We now use the previous results about the unitary ideals, the principal ide-
als, and the strongly two generated ideals to describe the groups C(iî) emd 
€.2 (iî). Lemma 3 provides a group isomorphism X{D)k -» ^ ( i î ) ; on the other 
hand, since every ideal class is represented by a unitary ideed, we have a sur-
jective homorphism ^ ( i î ) —• <£(iî). Combining these produces a surjective 
homomorphism from X{D)k onto C(iî). Proposition 4 yields the kernel of this 
homomorphism is A where 

Ù> = {{I,...,I)\IGV{D)}. 

It is easy to see for any abeUan group G and subgroup H that Gfc/A = G/H x 
Gfc_1 where A = {(a,..., a) | a G H}. Thus, in our appUcation we have 

(t) CiR)^€{D)xI{D)k-1. 

FVom this general statement we note two specied cases. 

THEOREM 6. If D is a Dedekind domain, then 

€{R)^€{D)x{Zx)k-1 

where Zx is a sum of copies of Z under the set X of prime ideals of D. In 
particular, if D is a discrete valuation domain, then €{R) = Zk~l. 

PROOF. This is an immediate appUcation of (f) for in case Dis a Dedekind 
domain we have from the unique factorization of ideals that T{D) = Zx. The 
discrete valuation statement is just a special case. • 

We also note here that in the specied case |.B| = 1 we have £(iî) ^ C(i?). 
Moreover, when \E\ = 1, Proposition 4 impUes that €2 {R) is trivial. 

We now turn our attention to €2 (iî). Proposition 4 yields a natural homo-
morphism 

Iu{R)^€{D)k. 
Since principal ideals map onto the trivial element of €(D)fe, we obtedn a sur-
jective homomorphism 

^•.t{R)-*C{D)k. 
In eiddition, Proposition 4 yields the kernel of * is Ĝ  (iî). This result is sum-
marized as foUows. 
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PROPOSITION 7. C (iî)/€2 (iî) = C {D)k. 

Remeirk: Proposition 7 yields the result established in [2] that when D is a 
Bezout domain every invertible ideal is strongly two-generated (that is, one gets 
£ (iî) = €2 (iî)). To be precise, €2 {R) is a proper subgroup of £ (i?) if and only 
if D is not a Bezout domedn, and it is nontrivied if and only if |i?| > 1. This 
last fact follows immediately from Proposition 4, or from (f) combined with 
Proposition 7. 

We close with an example which illustrates the result of Proposition 7. 

EXAMPLE 8. Let D be an algebraic ring of integers with nontrivial class 
group (such as D = 7L[y/—5\) and let E be any two element subset of K. Pick 
nonzero nonunit a and P in D such that a and /3 are not associates. Let I3 
be any nonprineipal finitely generated ideal of D. Consider the following three 
ideals in lnt{E, D). 

I = aDipi{x) + aDtp2{x) + F{x)K[x] 

I* = aDtpi{x) + pDtp2{x) + i^xJiiTIx] 

I* = aDtpi{x) + htp2{x) + F[x].K"[x]. 

Then 

1. 7 is a principal ideal oflnt{E,D) and hence [I] = 0 in <£.{Int{E,D)). 
2. I* is a strongly two-generated ideal ofInt{E, D) which is not a principal ideal. 

Hence [I*] lies in £2(Int(£;,L>))\{0}. 
3. 7* is finitely generated but neither principal nor strongly two-generated. Since 

under our hypothesis Int(i?, D) is a Priifer domain (see [7, Theorem 8]), 7* 
is invertible and thus [I*] lies in€{]nt{E,D))\e2 {lnt{E,D)). 
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PALINDROME-POLYNOMIALS WITH ROOTS 
ON THE UNIT CIRCLE 
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ABSTRACT. Given a polynomial /(x) of degree n, let fr{x) denote its 
reciprocal, i.e., fT{x) = x n / ( l /x ) . If a polynomial is equal to its reciprocal, 
we call it a palindrome since the coefficients are the same when read back-
wards or forwards. In this mathematical note we show that palindromes 
whose coefficients satisfy a certain magnitude-condition must have a root 
on the unit circle. More exactly our main result is the following. If a palin-
drome / ( i ) of even degree n witb real coefficients co, c i , . . . , Cn satisfies the 
condition |efc| > |e„/2|cos(ir/([^i]El+2))> forsomefc € { 0 , l , . . . n / 2 - l } , 
then f(x) has unimodular roots. In particular, palindromes with coefficients 
0 and 1 always have a root on the unit circle. 

RéSUMé. Soit /(x) un polynôme de degré n. Soit / r (x) = x n / ( l / x ) . 
Le polynôme /(x) s'appelle polynôme réciproque si / r (x) = /(x). Dans 
cet article nous prouvons que les polynômes réciproques dont les coeffi-
cients possèdent une certaine propriété, ont des zéros sur le cercle unité, 
c'est-à-dire ont des zeros de valeur absolue 1. Notre principal résultat est 
le théorème suivant. Soit /(x) un polynôme réciproque dont le degré n 
est pair et dont les coefficients co,£i,.. . ,£n sont des nombres réels tels 
que |efc| > |eny2|cos(a,/([n?j_jb] + 2)), pour au moins une valeur de fe £ 
{0 ,1 , . . . n/2 — 1}. Tel polynôme /(x) possède des zéros de valeur absolue 1. 
Pour consequence, chaque polynôme réciproque avec des coefficients 0 et 1 
a des zéros sur le cercle unité. 

1. Introduction. We arrive at em interesting geometric property of pal-
indrome-polynomials, i.e., of polynomials whose coefficients are the seune when 
read backwards or forwards, by investigating polynomials with coefficients 0 
and 1 or (0, l)-polynomials. They are interestmg because of their appUcations 
in various areas of pure and appUed mathematics including algebra, number 
theory, combinatorics, and coding theory. Computer-assisted experiments lead 
us to conjecture that (0, l)-paUndromes necessarily have at least one unimodular 
root, that is, have a root of absolute value 1. In the sequel we wUl prove not 
only that this conjecture is true but that palindromes with real coefficients often 
have roots on the unit circle. This introductory section is dedicated to setting 
up notations and terminology. The second section contedns the main results of 
the eirticle. We begin by defining the notion of pedindrome. Given a polynomial 
f{x) of degree n, let / r (x) denote its reciprocal, i.e., / r (x) = x n / ( l /x) . If a 
polynomial is equed to its reciproced, we cedl it a po/indrome-po/j/nomia/or simply 
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a palindrome. In the next section we establish rather easUy the following. Let 
f{x) G 1SL[X] be a palindrome having even degree n and null middle coefficient. 
Then the polynomial f{x) has unimodtdar roots, (Lemma 2). Note that the 
existence of unimodular roots is interestmg only for palindromes of even degree, 
because if the degree is odd, obviously - 1 is a root. By lBi[X] we denote the ring 
of polynomieds of one veiriable with coefficients in IS, the field of reed numbers. 
If the middle coefficient is not null, a pedindrome with real coefficients may lack 
unimodular roots, (consider e.g., fix) = x2 — 3x + 1). It turns out that the 
relative size of the middle coefficient with respect to the other coefficients is 
important for the existence of unimodular roots. Our proof reUes on inequedities 
for the coefficients of non-negative trigonometric polynomials due to Szego and 
Egervâry and Szész. For eeich reed x let [x] denote the largest integer which is 
less them or equed to x. The main result proved in Section 2 is the foUowing. 

Let f{x) = J^k=oekxki wMh €j — en-j, Vj = 0,1,. . . ,n/2 be a palindrome 
having even degree n. If there exists Â; € {0,1, . . . , n/2 — 1} such that 

N- | e" / 2 | c œ(yé^)' 
then f{x) has unimodular roots (Theorem 1). 

In particular, (0, l)-pedindromes of any degree have roots on the unit circle, 
(CoroUary 1). 

Another consequence of Theorem 1 is the foUowing. 
Let f{x) be a palindrome with real coefficients, having even degree n. Jy2|en| > 

|€n/2|» then f{x) has unimodular roots (CoroUeuy 2). 

2. Palindromes and their zeros. Our approach is based on the foUowing 
classical construction. Denoting u = x + 1/x we associate to each palindrome 
fix) G ^L[X] having even degree n the polynomial g{u) uniquely determined by 
the foUowing identity. 

(1) fix) = xn'2g{u) 

Several comments are in order here. For each fc = 1,2,... we denote o-fc(x) = 
xk + l/xk. For A; = 0 we set o-o(x) = 1. Observe that oi(x) = u and that the 
foUowing identity holds. 

(2) uk=crk{x)+ ^ Ok-2j{x)(.j fc = 2,3, . . . 

Let f{x) = 5Zfc=o €fca;fc' ^ k €j = €n-j, Vj = 0 , 1 , . . . , n/2. Note that 
n/2 

(3) f{x) = xn/2h{x), wheieh{x) = ^2ek<rn/2-kix)-
fc=0 
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Equations (2) and (3) prove that g{u) exists and is uniquely determined. After 
these prepeurations we can prove the foUowing lemma, which appears also in [4], 
in essentially the same form. We include it with proof, to medce the paper self-
contained. 

LEMMA 1. Let f{x) G R[X] and g{u) G R[U] be as above. The polynomial 
f{x) has a unimodular root if and only if the polynomial g{u) has a real root in 
the interval [—2,2], respectively if and only if the following cosine polynomial has 
real zeros. 

n / 2 - l 

(4) <p{x) = en/2+ Yl 2efccos((n/2-A:)x) 
fc=0 

PROOF. If z = ex9 is a unimodular root of f{x) then u = 2cos0 is a root of 
g{u) and clearly - 2 < u < 2. Conversely ifg{u) has a root, u G [-2,2], then there 
exists 0 e R such that 2 cos 6 = u. Let z = ete, then z is a unimodular root of 
f{x). The fact that the existence of unimoduleir roots for the pedindrome under 
consideration is equivalent to the existence of zeros for the cosine polynomied 
in (4) is an immediate consequence of the considerations above, equality (3), 
emd the fact that if x = eie then ajt(x) = 2cosA;fl for fc > 1. • 

Based on the previous remarks we can prove the existence of unimoduleir 
roots for arbitrary palindromes with reed coefficients, having even degree emd 
null middle-term. More exeictly the foUowing is true. 

LEMMA 2. Let f{x) G R[X] be a palindrome having even degree n and such 
that €n/2 = 0. Then the polynomial f{x) has unimodular roots. 

PROOF. By Lemma 1 it will suffice to show that a cosine polynomial of the 
form 

n / 2 - l 
¥>(*)= X l efc c os((n/2 - fc)x) 

fc=0 

with reed coefficients efc, necessarily has a zero in the interval [0,2*-]. The latter 
is an immediate consequence of the fact that the integral of tp{x) on [0,27r] equals 
0 and tp{x) is a continuous function. • 

As we observed in the introduction, if the middle coefficient is not nuU, a 
palindrome with real coefficients may fail to have unimoduleir roots. However, 
the relative size of the middle coefficient with respect to the other coefficients 
matters here. The crucial inequedity needed in the proof of our next result states 
that the coefficients of a non-negative trigonometric polynomial 

1 n 

2 + Yliak cos kx + Min fcx) > 0 x € [0,27r] 
fc=i 
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have the property 

^ a | + ^ < c o s , n , 7 r
+ 2 fc = l ,2, . . . ,n; 

see Egervâry and Szész [2], Szegô [6]. For further inequalities see Alzer [1], 
Losonczi [5]. In particular, for pure cosine polynomials, (where bi =b2 = ••• = 
bn = 0) we have 

|gfc|<cos r n 1 fc = l ,2, . . . ,n. 

THEOREM 1. Let f{x) be a palindrome with real coefficients, having even 
degree n, such that for some fc 6 {0,1,. . . ,n/2 — 1} the following condition is 
satisfied 

(5) l£fc'^C03(r^7rT^)'6"/2l-
v lïïT^ibl'f'z/ 

Such a palindrome has unimodular roots. 

PROOF. The case en/2 = 0 is covered by Lemma 2. Let us consider the case 
en/2 ¥* 0- Since /(x) and —/(x) have the same roots we can assume without loss 
of generality that en/2 > 0. Denote by tp{x) the cosine polynomial in equality (4). 
Since the integral of ̂ (x) on [0,27r] is positive, it foUows that tp{x) attains positive 
values on that interved. Thus, the only way it cem have no zeros would be if it is 
a positive cosine polynomial. Assume by contradiction that this is the case, emd 
observe that the foUowing cosine polynomial, $(x), is also positive. 

n/2-l 
# c ) = l / 2+ Y* — cos((n/2 - fc)x) 

k=!> 6 n / 2 

Let J = mm{^(x) : x G [0,2*]}. Observe that 0 < <J < 1/2. Indeed, (i>{x) - 1/2 
is not the null function on [0,2*] and has nuU integral on that interval, thus 
^(x) —1/2, being a continuous function, must assume both positive and negative 
values. Therefore the foUowing cosine polynomied is non-negative on IR: 

W + ^ t ^ ^ c o s i W - V x ) . 

By the Egervâry-Szasz Inequality, in such a case one should have the following 
inequality satisfied for each fc e {0,1, . . . , n/2 — 1} 



PALINDROME-POLYNOMIALS WITH ROOTS ON THE UNIT CIRCLE 43 

This leads to the fact that for each fc 6 {0,1,. . . ,n/2 - 1} one can write 

< cosf j ^ ) (1 - 25) < cosf —-75^ ), Cfc 

=n/2 [jéh]+*; M ^ I 
which is contradictory under our assumptions. 

COROLLARY 1. Let f{x) be a palindrome with real coefficients, having even 
degree n, such that 

max{lefc| : fc € {0,1, . . . , n/2 - 1} } > |en/2|. 

Such a palindrome has unimodular roots. In particular, (0,1)-palindromes of any 
degree have roots on the unit circle. 

PROOF. The statement above is a direct consequence of Theorem 1 and the 
well-known fact that 

C O S(r E o ) - 1 ' *€{ 0 , l , . . . , n / 2 - l } -
V [n/2-fci+ 2 / 

COROLLARY 2. Let f{x) be a palindrome with real coefficients, having even 
degree n. If 

(6) 2|en| > |€n/2| 

then f{x) has unimodular roots. 

PROOF. Enter fc = 0 in inequedity (5) and recall that e„ = eo- • 
The author of [3] proves that palindromes of the form 

[î] 
(7) l{zn + zn-1 + • • • + z + 1) + J ] afc(zn-* + zk) 

fc=i 

have all their roots on the unit circle if their coefficients satisfy the foUowing 
condition 

(8) |J| > 2 53 H . 
*:=! 

Palindromes of the form (7) are important because of their role in the investi-
gation of spectred properties of the Coxeter transformation of certedn oriented 
graphs. If one needs palindromes of form (7) to have some, (not necesseirily aU), 
roots on the unit circle, then the following less restrictive version of condition (8) 
can be proved. 
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COROLLARY 3. Even-degree palindromes of the form (7) have unimodular 
roots if 

(9) \l\ > 2|aB/2|. 

PROOF. Note that the middle coefficient of such a palindrome is 2an/2 + I 
and that if (9) holds then 

^ ^ + I |<2 |o n / 2 H- | / |<2 | i | , 

that is, (6) holds, and hence the pedindrome under consideration must have 
unimodular roots. • 

The statement in Theorem 1 does not extend to palindromes with complex 
coefficients. Indeed, consider f{z) = z2 + iz + 1. The condition in Theorem 1 
is sufficient, but not necessary, for the existence of unimoduleir roots. Indeed, 
consider h{x) = —2x4 — 2x3 + 5x2 — 2x — 2 and use Lemma 1 to show that it 
has unimodular roots. Obviously this paUndrome does not satisfy the condition 
in Theorem 1. 
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CLASSIFICATION OF QUADRUPLE 
CANONICAL COVERS: GALOIS CASE 

FRANCISCO JAVIER GALLEGO AND BANGERE P. PURNAPRAJNA 

Presented by M. Ram Murty, FRSC 

RéSUMé. Le but de cet article est de décrire la classification obtenue 
dans [GP1] des revêtements galoisiens de degré 4 des surfaces de degré 
minimal qui sont définis par le morphisme canonique. Cette classification 
montre que ces revêtements sont ou bien bidoubles ou bien cycliques non 
simples. S'ils sont des revêtements bidoubles, alors ils sont tous, à une 
exception près, des produits fibres de revêtements doubles. À partir de cette 
classification, on déduit des implications importantes, comme l'existence de 
familles d'un genre géométrique non borné et aussi, l'existence de famiUes 
avec irrégularité non bornée. Cette situation est très différente de celle des 
revêtements canoniques doubles et triples. 

The purpose of this research announcement is to describe the resultsin [GP1] 
on the classification of Galois quadruple canoniced covers of surfaces of minimal 
degree W (i.e., em embedded projective edgebredc surface whose degree is equal 
to its codimension in projective space plus 1.) Let X be a surfeice of genered 
type with a base point free cemoniced bimdle Kx. We say X ^*W isa canonical 
cover otWiftp is induced by the complete lineeir series \Kx\- Note that, since 
W maybe singuleur, the Galois canonical covers of this article need not be flat, 
though they are always finite. 

The earlier work on the classification of double covers is due to Horikawa in 
[Hoi], [Ho2] and for triple covers to Konno [KJ. The surfaces of genered type 
with a base point free cemoniced bundle which eidmit a morphism to a surface 
of minimed degree play a fundamental role in numerous contexts including the 
classification of surfaces of general type with low K% ([Hoi], [Ho2]) and their 
moduli, the construction of new examples of surfaces of genered type by various 
authors, the mapping of the so-called geography of surfaces of general type and 
the study of the generators of the canoniced ring of a variety of general type, 
among other things. 

The classification done in [GPl] yields important implications and we wiU 
mention only two of them (due to space constrednts) at the end of this article. 
Our work together with that of Horikawa and Konno seems to reveal a striking 
numerology depending on the degree n of the cover. There exist many more 
canonical covers if n is even: pfl is imbounded for n = 2,4 whUe ps < 4 if n = 3. 
On the other hand pa is bounded if W is singular, tp is Gedois and n < 4. This 
seems to point out to the non-existence of higher degree canonical covers when W 
is singular. This together with other facts, like the nonexistence of regular Galois 
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canoniced covers of prime degree n > 5 (proved in [GPl]), suggests obstacles to 
the existence in general of canonical covers of higher degree. 

We fix now some notation and conventions. Throughout this article W will 
be an embedded projective edgebraic surface of minimed degree and X wiU be 
a projective algebraic normal surface of general type with at worst canonical 
singularities. By Fe we denote the Hirzebruch surfeice with e, Co emd / as in 
Hartshome [H]. By S{a,b) we denote a rational normal scroU (which can be a 
cone) as in Eisenbud-Harris [EH]. This scroU is the image of Fg by the complete 
linear series |Co-f m/| , withc= |6—a|, m > e + 1 if e = 0,1 and m > e if e > 2. 
If o = 5, the Unear series |mCo+/[ also gives a minimed degree embedding of FQ, 
equivalent to the previous one by the automorphism of F 1 x P 1 = FQ swapping 
the factors. In this case the convention wiU always be to choose CQ and / so 
that the surface is embedded by |Co + m/|. 

We first summarize the results dealing with the classification of canonical 
Galois covers of smooth surfaces of minimal degree, starting with the case in 
which the Galois group is Zj x Z2 (these are also called bi-double covers). 

THEOREM 1. Let W be a smooth surface of minimal degree. If X ^* W is a 
canonical Galois cover with Galois group Z2 x Z2, then W is either linear P 2 

or a smooth rational normal scroll and X is the product fibered over W of two 
double covers ofXi Q W and X2^W and tp isthe morphism Xi x W-X2 "* ^ • 
Let D2 and Di be the branch divisors ofpi, P2 and if W is a rational normal 
scroll, let D2 ~ 2a2Co+262/ and Di ~ 2oiCo-l-26i/. Then we have in addition: 

I. IfW = P2, then Di and D2 are quartics. In this case X is regular. 
II. If W is a rational normal scroll and X is regular, then W = S{m — e,m), 

0 < e < 2 , m > e + l and ai = 1, a2 = 2,61 = m + 1 and 62 = e + 1 . 
III. If X is an irregular surface, then W = 5(m, m) and one of the following 

happens: 
(1) oi = 0, 02 = 3, 61 = m + 1, 62 = 1- -fn this case, q{X) = m; 
(2) oi = 0, 02 = 3, 61 = m + 2, 62 = 0. In this case, q{X) = m + 3; 
(3) ai = 1, 02 = 2, 61 = m + 2, 62 = 0. In this case, q{X) = 1. 

Conversely, if X ^W isthe fiber product over W of two double covers Xi^*W 
and X2 Q W, branched respectively along divisors D2 and Di as in one of the 
above cases, then X -^W is a Galois canonical cover with Galois group Z2 x Z2. 

SKETCH OF PROOF. Since W is smooth, if Jf -^ W is Galois of degree 4, then 
tp is fiat and tp*Ox spUts as a vector bundle as Ow ® Li ® L2 ® L3, with Li, L2 
and L3 line bundles. This implies in particular, that if W is isomorphic to P 2 , 
X is regular. The subalgebras Ow ® ̂ t correspond to three intermediate degree 
2 covers pi induced by the three index 2 subgroups of Z2 x Z2. The general 
description of the branch divisors of tp and of the intermediate covers, and of the 
multiplicative structure of tp^Ox is weU-known (see [HM].) Using this general 
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description we first show that a bidouble cover is a fibered product if and only 
if Li® L2 = L3. Using relative duality we show that, if y) is a canonical cover, 
then 

(1) L3 = Li®L2=uw{-l) 

and in particular, a fiber product. If W is isomorphic to P 2 , then it has to 
be Unear P 2 and not the Veronese surfeice. This foUows as the spUtting type of 
tp»Ox is incompatible with the one proved in Lemma 2.3, [GP2]. This lemma also 
gives the brandi divisors when W is linear P2. If W is a scroU, one determines 
the branch divisors of the double covers through a detailed study of the different 
possibiUties which arise, the key ingredients in the argument being (1), the fact 
that tp is induced by a complete Unear series and the computation of Hx{Ox) 
from the cohomology of the Li's. This emalysis gives for instance, that, if X is 
regular, then 

p.Ox = OY®OY ( -CO - (m +1) / ) ® Oy (-2Co - (e + 1)/) 

0 Oy ( -3CO - (m + e + 2)/). 

From such a description it is easy to find out the linear equivalence classes of the 
branch divisors. Finedly, the bound e < 2 on W ~ Fe comes from the restrictions 
imposed on the fixed part of the branch divisors by the fact that X is normed. 
Knowing the branch divisors edlows us to determine exactly the Lj's and from 
them the irregularity of X. • 

We study now canonical cycUc covers (i.e., those with Gedois group Z4) of 
smooth surfaces of minimal degree. Among other things, next theorem together 
with Theorem 3 shows the nonexistence of simple cyclic canonical quadruple 
covers of surfaces of minimal degree. 

THEOREM 2. Let W bea smooth surface of minimal degree r and letX ^W be 
a canonical Galois cover with Galois group Z4. 37ien tp isthe composition of two 
double covers Xi^Y branched along a divisor D2 and X ^ Xi, branched along 
the ramification ofpi andplDi and with trace zero module PiOwi—2^1 ~ 4^2) 
and W, Di and D2 satisfy 

I. W = 'P2, Di is a conic and D2 is a quartic. 
II. W = S{m - e,m), 0 < e < 2 , m > e + l, D i ~ (2m - e + 1)/ and 

L>2 ~ 4Co + (2e + 2)/ . 
III. W = 5(1,1) (i.e., W is quadric hypersurface in P3), Di ~ 3Co ond D2 ~ 

2Co-l-4/. 

In cases I, II ond III, X is regular and X is singular having at best 4(r +1) 
singular points of type Ai. 

IfXis irregular, then q{X) = 1, X is singular having at best 4(r+4) singular 
points of type Ai and 
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W. W = S{m, m), m > 1, L>i ~ (2m + 4)/, D2 ~ 4Co. 

Conversely, if X ^ W is the composition of two double covers Xi ^ Y 
branched along a divisor D2 and X -* Xi, branched along the ramification ofpi 
andpJDi and with trace zero module plOw{-^Di — 5.D2), with Di and D2 as 
in one of the above cases, then X —*W is a Galois canonical cover with Galois 
group Z4. 

SKETCH OF PROOF. We first prove that tp cannot be simple cycUc. If it were, 
<p»Ox = Ow © L ® L®2 ® L®3 for some Une bundle L and ux = ww ® L~3. 
An analysis of the branch divisor together with the fact that tp is induced by 
the complete canonical series of X yields a contradiction. A cover with Gedois 
group Z4 is a composition of two double covers which corresponds to the index 
2 subgroup of Z4. The bundle <p,Ox splits as Ow ® Li © L2 ® L3 by the 
action of Z4, as direct sum of eigenspaces, where Li, L2, La corresponds to 
eigenspaces associated to i, - 1 and -i respectively. The genered description of 
the multipUcative structure of ip,Ox emd its relation with the branch locus of the 
double covers is summarized in [GPl] (see also [PA] and [HM]). Using relative 
duedity, we show that if <p is a canonical cover, then (1) holds also in this case. 
This simplifies the multipUcative structure of tptOx for an arbitreiry cycUc cover 
of degree 4. For instemce, if W is a scroU and X is regular, we obtain a spUtting 
for ip*Ox as in Theorem 1 emd, from it, the description of the branch divisors. 
One shows that the bound e < 2 when W ~ Fe is imposed by the normality 
of X. A more involved anedysis when X is irregular gives us the description of 
the branch divisors in this case. The number and type of singular points that X 
possesses comes from the intersection between the branch divisors. • 

Finedly we classify Galois quadruple canonical covers of singular surfaces W of 
minimal degree. The proof is much more subtle than the smooth case and it uses 
the classification of the smooth case together with some ideas on how to "control 
the singularities" to be made precise later. First we construct a commutative 
diagreun. 

Let W be a singular rational normal scroU and let X -^ W be a canoniced 
cover. Let w the singular point of W and let V -^ W be the minimed desingu-
larization of W. Then there exists the foUowing commutative square: 

X —?-» X 
(*) JP v 

Y -^—> W 
where X is the normalization of the reduced part ofXxwY, which is irreducible, 
and p and q are induced by the projections from the fiber product onto each 
factor. Note that if ^ is a Galois cover with Galois group G so is p. 
THEOREM 3. Let W be a singular rational normal scroll and let X -^W be a 
Galois, quadruple canonical cover. Let X, Y, q, q and p be as in commutative 
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diagram {*). Then W = 5(0,2) (and hence, Y = F2), the (normal) surface X 
has at worst canonical singularities and X is regular. Moreover 

I. Ifqis crêpant, then X is the canonical model of X and one of the following 
happens: 
(1) / / G = Z2 x Z2, then X is the product over Y of two double covers 

branched along divisors D2 and Di which are linearly equivalent to 
2Co + 6/ and 4Co + 6/ respectively. 

(2) If G = Z^, then p is the composition of two double covers: Xi Q Y 
branched along a divisor D2 linearly equivalent to 4Co + 6/ and X ^ 
Xi, branched along the ramification of pi andplDi, with Di linearly 
equivalent to 3 / , and with trace zero module pîOy(—Co — 3/). TTien X 
has at best 12 singular points of type Ai, 3 of them lying on the line F, 
inverse image of Co, and 9 outside F, and X has only one point, which 
is sinjjtdar, lying over w and has at best another 9 singular points of 
type Ai. 

II. If q is noncrepant and G = Z2 x Z2, then X is the normalization of the 
fiber product over Y of two double covers of Y each branched along a divisor 
linearly equivalent to 4Co + 6f. In this case tp-l{w} consists of two smooth 
points and X —* X is the blowing up of X at these two points. 

III. Ifqis noncrepant and G = Z4, then the inverse image of Co consists of a 
single line F with F2 = -±, q contracts only F, Kx = q*Kx + 2F and F 
is singular only at a one point, which has a singularity of type Ai. In this 
case IX has at best 9 singular points outside F of type Ai and X has at 
best another 9 singular points of type Ai. 

Moreover, p is the composition of two double covers: Xi^Y branched along 
a divisor D2 and X —* Xi, branched along the ramification ofpi and pîDi and 
with trace zero modulep*iOYi-^{Di+Co)-\D2)®Ox1 {Co), where Co = p'^Co, 
and one of the following happens: 

(1) £>! ~ Co + 3 / and L>2 ~ 4Co + 6/. 
(2) Di ~ 4Co + 9/ ond D2 ~ 2Co + 2f. 

Conversely, let X be a normal surface with at worst canonical singularities 
and letY = ¥2. If X -^ Y is as described in one of 1.1, 1.2, II, III.1, or III.2, 
then p is Galois with Galois group Z2 x Z2 or Z4 as indicated in Ll, 1.2, II, 
III.l, or III.2, and there exists a commutative diagram like {*) where tp is the 
canonical morphism of X and q is as described in 1.1, 1.2, II, III.l, or III.2. 

SKETCH OF PROOF. First we study the 0-cycle which is the inverse image 
of the singular point of W under tp. Since tp is Gedois, this study spUts into 
three cases according to the cardinedity of the support of the 0-cycle, which is 
4, 2 and 1. In each of these situations, except for one possible exception which 
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corresponds to case III and is settled once we obtedn a detailed description of the 
branch divisors, we prove that X has canonical singularities. This is done by first 
showing that it has rational singuleurities and then bounding the discrepancies of 
the intermediate double covers induced by the action of the index 2-subgroups. 
Next we show that the morphism q, except in two cases (corresponding to II 
and III) is crêpant. This step is closely intertwined with the above mentioned 
steps. In the process of proving the above, we show that W = 5(0,2). Then one 
proceeds to study separately the cases when q is crêpant and noncrepant. If q 
is crêpant we apply to p arguments simUar to those used to prove Theorems 1 
and 2. If q is noncrepant a separate, more subtle anedysis is required. • 

Two IMPORTANT IMPLICATIONS, (a) We have constructed examples in [GPl] 
to show that all the cases that appear in the above classification do indeed occur. 
This shows that there exist families of quadruple covers with unbounded pa> in 
sharp contrast to triple covers classified by [K] where p s < 5, and unbounded 
irregularity q in sharp contrast with the picture for double covers classified in 
[Hoi], where the surfaces are edl regular. In feict edl Horikawa surfaces are simply 
connected. 

(b) The existence of non-simple cyclic cemoniced covers are reire in the case 
of surfaces and not easy to construct. The classification shows there indeed exist 
bounded famiUes of non-simple cycUc covers. 
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WHEN THE CENTRAL NORM EQUALS 2 IN THE 
SIMPLE CONTINUED FRACTION EXPANSION OF 

A QUADRATIC SURD 

R. A. MOLLIN 

Presented by M. Ram Murty, FRSC 

ABSTRACT. We complete the task, begun in [19], of determining when 
the central norm (determined by the infrastructure of the underlying real 
quadratic field) is equal to 2 in the simple continued fraction expansion of 
the associated quadratic surd. 

RÉSUMÉ. Nous poursuivons le travail amorcé dans l'article [19], et 
étudions le problème de déterminer quand la norme centrale (déterminée 
par l'infracture du corps quadratique réel en question) est égale à 2 dans le 
développement en fraction continue de l'irrationnalité quadratique associée 
au corps quadratique. 

1. Introduction In [19], we showed that when the integer D > 1 is not 
a perfect squeire and D = 2ac where a > 1 and c is odd, then the centred norm 
(defined in the next section) being 2 for y/D is directly related to the centred 
norm of \/D/2a-1 being 2. Then we settled the case for D = 2c for all except 
the case where c is divisible only by primes congruent to 1 modulo 8. In this 
note, we solve that case as weU emd give a new genered criterion for all cases, 
thereby completing the project, which was motivated by correspondence with 
Irving Kaplansky as outlined in [19]. 

2. Notation and Preliminaries We write the simple continued fraction 
expansions of y/D, D GN (the natured numbers), D not a perfect square, by: 

vD = (9o; 9i. 92. • • •. 9<-i. 290), 
where i = t{VD) is the period length of VD. 

The j t h convergent of a for j > Ois given by 

(1) ^ = (9o;9 i .92 , - .9 J ) = ^ - 1 ^ J " 2 

±fj ÇjLfj-l + LSj-2-
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(3) qj = 
\ 

If we set Po = 0, Qo = 1, then for j > 1, 

(2) Pj+i = qjQj-Pj, 

Pj + yfD 
. QJ 

(4) D = P2
+I + QJQJ+I. 

We wiU also need the foUowing feicts (which can be found in most introductory 
texts in number theory, such as [14], or see [13] for a more advanced exposition).' 

(5) AjBj-i-Aj.lBj = {-iy-1, 

(6) AJ.I = PJBJ-I + QJBJ.2, 

i^) A2j_1-BliD = {-iyQj. 

When £ is even, P^ = Pe/2+i, so by Equation (2), 

(8) Qe/2 | 2Pt/2, 
where Qi/2 is caUed the central norm, (via Equation (7)), and 

(9) qt/2 = 2Pe/2/Qt/2-
We will need the following in the next section. Note that this result corrects 

the oversights in [15, Theorem 1.3, p. 334], [16, Theorem 1.3, p. 101], and [17, 
Theorem 1.2, p. 221]. (Fortunately, the correct version below is the one actually 
used in those papers, rather than the incorrectly stated ones. The problem only 
arises when the norm is not squarefree.) 

LEMMA 1. If D >1 is not a perfect square, then Qj | 2D and Qj | 2Aj_i 
for some j < £ {where the Qj, Aj, and £ are as defined in the previous section 
for VD) if and only j = £/2. 

PROOF. If Qj \ 2D and Qj \ Aj-i, then by Equation (6) Qj \ 2Pj (since 
gcd(Aj_i, J5j_i) = 1 by Equation (5)). Now the proof foUows exactly as in [18, 
Theorem 2.3, p. 64] (where Qj was assumed therein to be squarefree in order to 
achieve the latter divisibUity condition). 

The converse is proved exactly as in [18, Theorem 2.3, p. 63] since no square-
freeness was needed or assumed therein. • 

For work related to the work herein, which helped to inspire this author's work 
along with the aforementioned correspondence with Kaplansky see [1]-[12], and 
[21]-[23]. 

3. The Criterion The foUowing is a genered criterion for Qi/2 = 2 (where 
£ is defined in he previous section as are the symbols used below) when D = 2 
(mod 4) which completes the genered case for reasons cited in the introduction. 
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THEOREM 1. Let D = 2c where c > 1 is odd {possibly a perfect square) . If 
£ is even, then the following are equivalent. 
1. Qi/2 = 2. 
2. qi/2 = Pi/2-
3. There exists a solution to the Diophantine equation x2 — Dy2 = ±2. 
4. There does not exist a factorization c = ab with 2<a <b for which there is 

a solution to the Diophantine equation ax2 -by2 = ±1. 
5. There does not exist a divisor o > 2 ofD such that a | Ai/2-1. 

PROOF. The equivedence of 1 and 2 is a consequence of Equation (9). The 
equivedence of 1 and 3 was proved in [20], as was the equivalence of 1 and 4. It 
remedns to show the equivedence of 1 and 5. 

Suppose that 5 holds and Qt/2 = a. Then by Lemma 1, a | 2D and a | 
2Ai/2-i. If a is odd, then 5 forces a = 1, a contreidiction. If a is divisible 
by 4, then by Equation (8), 2 | P^, so by Equations (5) and (7), 4 | D, a 
contradiction. Hence, o = 2 (mod 4). If o > 2, then (a/2) | D and (a/2) | 
A</2-i, so by 5 o/2 = 1. Conversely, if 1 holds, then by Lemma 1, 5 must hold. 

• 
The new condition in terms of criteria for Qe/2 = 2 is 5 in Theorem 1. This 

completes the work done in [19]. The foUowing completes the proof of a conjec-
ture of Kaplansky begun in that paper. 

COROLLARY 1. If D = 2pq where p and q are distinct odd primes, then 
1. Ifp = q = 7 (mod 8), then £ is even. Also, Qi/2 = 2 if and only if£/2 is even 

and Ai/2-1 = 2 (mod 4). 
2. Ifp = q = S (mod 8), then £ is even and Qi/2 = 2. 
3. / / p = 1 (mod 8) and g = 3 (mod 8), then £ is even. Also, Qi/2 = 2 if and 

only if £12 is odd and Ai/2-1 — 2 (mod 4). 
4. If p = 1 (mod 8) and q = 7 (mod 8), with p > 2q, then £ is even. Also, 

Qe/2 = 2 if and only if £/2 is even and Ai/2-1 — 0 (mod 4). 
5. If£ is even andp = q = l (mod 8), then Qi/2 = 2 if and only ifgcd{At/2-i,pq) 

PROOF. Parts 1-4 were proved in [19]. Part 5 foUows from Theorem 1. • 
We conclude with an exeimple that iUustrates case 5. 

EXAMPLE 1. Let D = 2-17- 41. Then £ = 6 and Qi/2 = 2. Here A^-i = 
112, which is relatively prime to c = 17 • 41. 

If D = 2-41-113, then £ = 8, Qi/2 = 82 and 

gcd{Ae/2-i,c) = gcd(2214,4633) = 41. 
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PERIODIC INTEGRAL TRANSFORMS 
AND C*-ALGEBRAS 

S. WALTERS 

Presented by G. A. EUiott, FRSC 

ABSTRACT. We construct canonical integral transforms, analogous to 
the Fourier transform, that have periods six and three. The existence of 
this transform is shown to arise naturally from the expectation that the 
Schwartz space on the real line, viewed as the Heisenberg module of Rieffel 
and Connes over the rotation C'-algebra, should extend to a module action 
over the crossed product of the latter by the canonical automorphisms of 
orders three and six (which does in fact happen and is shown here). 

RÉSUMÉ. On construit deux transformations intégrales, analogues à la 
transformation de Fourier, d'ordre six et trois, respectivement. Ces trans-
formations sont reliées à la théorie des automorphismes canoniques d'ordre 
six et trois de l'algèbre associées à une rotation irrationelle du cercle. 

1. Introduction. It is a well known classical fact that the Fourier trans-
form of a Schwartz function / 

(1) / ( * ) = / fix)ei-tx)dx, 
J—oo 

has period four and extends to a unitary operator on L2(1R). (Throughout the 
paper we write e{t) := e27"'.) This steins from the fact that f{t) = f{-t). In this 
paper we show that if the product tx in (1) is replaced by a suitable quewiratic, 
then one obtedns transforms of period three and six. More specificedly, one has 
a one-parameter famUy of hexic transforms 

(2) {Hf){t) = i 1 ^ y ^ H f{x)e{2ptx - px2) dx, 
J—oo 

for p > 0 and f in the Schwartz space S{R). Thus, H extends to a unitary 
operator on L2(K) of period six {i.e., H6 = I). (The "ideal" transform is when 
/t = | as is expledned in Remark 2 below.) Note that J7 is a composition of the 
multiplication operator by the complex Gaussian e{—px2) and an inverse Fourier 
transform (up to scaling), and hence is itself a unitary operator on L2(R) that 
leaves invariemt <S(R). 

Received by the editors on June 22, 2003. 
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THEOREM 1. One has {H3f){t) = f{-t) for all f G 5(R), so that the transform 
H has period six and extends to a unitary operator on L2(R). Further, its square 
H2 (the cubic transform) is given by 

(3) {H2f){t) = ^§e{pt2) H f{x)e{2ptx) dx. 

Therefore, i î " 1 = H5 = H3H2 and by (3) one gets the formula for the inverse 
hexic transform 

(ff-VK*) = ^Se{pt2) H f{x)e{-2ptx)dx. 
1 ' J-oo 

One similarly gets a formula for the inverse cubic transform {H~2f) = {H3Hf){t) 
= {Hf){-t). 

REMARK 1. It is interesting to note that although the Fourier transform has 
period four, if it is composed with multiplication by a complex Gaussian, as 
in (3), it can be made to have period three. Though this may seem a little 
surprising, it can be shown that from the C*-edgebra point of view it is not (see 
Section 3). 

REMARK 2. By analogy with the feict that e -*1 is invariant under the Fourier 
transform, one cem easily check that e-*(v3-«)M:c ^ invariant under H (and 
hence edso under the cubic transform). (It can be checked that this is the only 
function among the Gaussian exponentials, up to scedars, that is inveiriant under 
the cubic or hexic transform.) The reason we referred to p = 1/2 as the "ideed" 
case is that in this case one has | ( \ /3 — i) = i-1^3 is of modulus 1 so that one 
has the invariant Gaussian e-"* x . 

REMARK 3. The Fourier transform is a "canonical" transform in the sense that it 
intertwines the translation and phase multipUcation operators in the weU known 
way. Similarly, the hexic tremsform, with p = \, is also canonical. In fact, 
letting (Tjc/Xf) = f{t - x) and {Exf){t) = e{-xt)f{t), one checks the following 
relations (see Section 3 below): 

TXH = HEX, EXHTX = ei-^x2)TxH. 

Since the group SL(2, Z) is known to contain finite order elements only of orders 
2, 3, 4, and 6, it foUows that a periodic canonical transform can only have these 
orders. This therefore gives us canonical transforms for each edlowed order. 

REMARK 4. It may be worthwhile investigating properties that the above trans-
forms have that are anedogous to those that are weU known to hold of the 
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Fourier transform (as for example in Rudin [8]). For example, is there a mul-
tipUcation # on the space of Schwartz functions (or L1 functions) such that 
H{f#g) = H{f)H{g)? (For the Fourier transform this multipUcation is convo-
lution.) It may edso be of interest to explore the extension of the transforms H 
and H2 to Rn,or even to locaUy compact Abelian groups. 

An application of Theorem 1 is the existence of finitely generated projective 
modules over crossed products 69 := Ae *p Ze and 3$ := Ag "Ap* Z3, where Ag 
is the rotation C*-algebra and p is the canoniced order six automorphism on Ag 
(see Section 3). These modules will give rise to primary classes in the corre-
sponding ATo-groups Ko{§g) and .Kb(3e). We write 6g° and 3§° for the respective 
canonical smooth dense «-subalgebras. It is weU known [5] that there are natured 
isomorphisms K^Qg) = K,{&f) and K.{3g) = K.ffî). (See Section 3.) 
THEOREM 2. Under the action (2), the Schwartz space «S(K) is a finitely gener-
ated projective right module Me over Qf (thus giving rise to a class in Kofif))-
Similarly, under the action of the order three unitary given by (3), the Schwartz 
space <S(K) is a finitely generated projective right module M3 over 3g0 (thus 
giving rise to a class in Ko{Zf)). Further, one has 

r.[M6] = l, T,[M3]=e-, 
for j = 0,1,. ..,5, where r, is the induced map by the canonical trace r on Ko. 

In [1], Buck and the author compute the Connes-Chem characters of the 
hexic emd cubic modules Me, M3 and show that there are expUcit injections 
Z10 -» Ko{6g) and Z8 -• ^o(3fl) for each ^ > 0. The author believes that, just 
as in the Fourier case [10], these injections wiU turn out to be isomorphisms (at 
least for a dense G s set of Ô). 

The author wishes to themk George Elliott for making some helpful sugges-
tions. 

2. Proof of Theorem 1. We will make free use of the following identity 

/ e(Ax) e-*bx2 dx = - ^ e - ' ^ 6 

J-00 Vb 

which holds for b,AGC, Re(6) > 0, emd Vb is the principed square root. 
The theorem follows once we show that: 

(A) the set of Gaussians fa{x) := e{-ax)e~2n'tx , where a 6 R, is a total set 
in L2{R), 

(B) {H3fa){t) = fa{-t)foTallt,a, 
(C) equedity (3) holds for each fa. 

PROOF OF (A). It is enough to show that if 5 G L2(R) is such that 

gixW-ax^-2*"*2 dx = 0 
j—( 
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for each a, then g = 0. Setting g{x)e-2vtiX* = h{x) we note that h is in L1{R) 
since it is a product of two L2 functions. Hence one has 

/

oo 
h{x)e{-ax) dx = h{a) 

•oo 

for each a. Therefore, h = 0 and hence h = 0, i.e., g = 0. This proves (A) emd 
shows that the set of linear combinations of functions of the form fa is a dense 
subspace of L2(R). 

PROOF OF (B). One has 

{Hfa){t) = il'*j2ii r e{-ax)e-2^x3e{2ptx - px2) dx 
J—oo 

/

oo 
e{{2pt-a)x)e-2^l+i>3dx 

•oo -oo 

..•i/e 

VT+t 

Applying H again gives 

e-ir(2,rf-a)3/(2|«(l-H)). 

(4) {H2fa){t) = i-£S- H e-"^-Q)2/(2M(i+0)e(2/ite - px2) dx 

= ^ î ^ e ( C ) H ei{2pt + D)x)e-^x3dx 
y l + t J-co 
I 1 / 3 ^ M . / ^ . - ^ u t + i ^ / f l i1/3 

eiQe-'W+W = t—e^e-^2^0^^ 
v/(ïTp VI 

where 
fi = ni\ + i), C=±i{i + l)a2, D=z(!+l)a . 

A third iteration gives 

(^3/Q)(f) = y/2iie{C) H e-^2'lx+D^^e{2ptx - px2)dx 
J—oo 

= v ^ e " ^ / e ((2Att - ia)x) e" 2 ' "^ dx 
J—oo 

= e - ^ e-7r(2pt-ia)2/(2M) = eiafy-W. 

Therefore, {H3fa){t) = fa{—t) is the usual flip map. Since this holds for edl 
a, and {fa} is a toted set of functions in L2(R), this relation holds for edl L2 

functions on R. Hence H6 is the identity. 
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PROOF OF (C). The right hand side of (3) evaluated at fa is 

^e{pt2) H e{-ax)e-2^e{2ptx)dx = 4E<^y~<2'lt~a?'2>i 

ï ' J-oo î 

and it is easy to check that this is exactly (4), neunely (iif2/Q)(t). This completes 
the proof of Theorem 1. 

3. Application to C*-edgebras. The following shows how by meeins of 
C*-algebras one can discover the above transforms. 

Let 9 > 0, X = e{6), and consider the rotation C-edgebra Ag generated by 
unitaries U, V satisfying VU = XUV. The (noncommutative) hexic transform of 
Ag is the canonical order six automorphism p defined by 

p{U) = v, p{V) = x-wu-iy. 

Its square K := p2 is the canoniced order three automorphism, which we call the 
cubic transform, and p3 is the usued flip automorphism studied in great detedl 
in [2], [3], emd [4]. The corresponding crossed product 6g := Ag Xp Zg is the 
universed C'-algebra generated by unitaries U, V, W enjoying the commutation 
relations 

(5) vu = xuv, wuw-1 = v, wvw-* = x-^u-W, W6 = I. 

One may view the crossed product 3^ = A^ x^ Z3 as the C'-subedgebra of 6g 
generated by U, V, and W2. We write 6f and 3g0 for their respective cemoniced 
smooth dense «-subalgebras. (For example, the elements of 6f consist of sums 
of terms of the form aWj where a 6 Ag0.) Using Rieffel's Theorem 2.15 [7] (with 
an appropriate lattice group in R x R) one obtains a smooth Heisenberg module 
structure on the Schwartz space <S(R), with Af acting on the right, given by 

ifU){t) = fit - a), ifV)it) = e{-at)fit), 

where a = y/9. To extend this action so as to obtain a right 6^°-module action 
on 5(E), we need iy to act as an integral transform 

{fW){t)= T f{x)K{x,t)dx, 
J—oo 

for suitable kernel function K, so that the relations (5) are satisfied. Rewrite 
the commutation relations in (5) involving W in the form 

(6) WU = VW, VW = X^2UWV, W6 = I. 

For the second of these relations one has 

ifUWV)it) = e{-at){fUW){t) = e{-at) H f{x)K{x + a,t)dx 
J—oo 
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and 
ifVW){t)= r e{-ax)f{x)K{x,t)dx. 

J—oo 

Hence, doing the seime thing for the first relation in (6), one gets the relations 

K{x,t-a) = e{-ax) K{x,t), X1'2K{x + a,t) = e{at - ax) K{x,t). 

Now it is easy to check that the kernel function K{x, t) = ilf6e{tx — 5a;2) (of 
the transform H above with /t = 5) satisfies these relations. Therefore, by 
Theorem 1 we can define the right action of W on 5(R) by: 

ifW)it) = i1 '6 £ ^ f{x)e{tx - \x2) dx, 

so that the three relations in (6) hold. This, together with the above actions of 
U, V gives rise to a right 6g° module structure on <S(R). We shedl denote this 
module by Mo and call it the hexic module. Also by Theorem 1, one has the 
order three action 

ifW2){t) = r^e^-t2) J°0J{x)e{-tx)dx = i-1'*e[\t2)m, 

which makes <S(R) into a right 3g0-module—we cedl it the cubic module and 
denote it by M3. In view of Rieffel's inner product formulas [7], the Ag'-valued 
inner on the Heisenberg module 5(R) cem be defined by 

{f,9)Ar = D / ' ^ r K » ) •yni /m. 
m,n 

where/,pe<S(R) and 

if,9)Af'{,m,n)= / f{t + am)g{t)e{-om,t)dt. 
J—oo 

The associated 6g° and 3g°-valued inner product ( , )6|0) { > >3f are defined by 
symmetrization 

5 2 

j=0 j=0 

With these inner products, and exactly as was done in the proof for the Fourier 
module in [9], one sees that the hexic and cubic modules are finitely generated 
projective, giving classes in the corresponding Ko-group, and therefore one ob-
tains Theorem 2. 
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ON THE INFINITE-DIMENSIONAL 
HOLOMORPHIC STRUCTURE ON 

TOPOLOGICAL BUNDLES 

E. BALLICO 

Presented by Vlastimil Dlab, FRSC 

ABSTRACT. Let (X,d) be a complete metrizable space, / : X —» C a 
continuous map and E a topological vector bundle on X. Here we prove the 
existence of a complex Banach space V and a continuous closed injective 
map j : X -*V such that j{X) is the zero-locus of a family of holomorphic 
functions on V, f is holomorphic and JS is a holomorphic vector bundle 
with respect to the complex structure on X induced by j . 

RÉSUMÉ. Soient (X,d) une espace metrizable complete, f: X -* C 
une application continue et E une fibre vectoriel topologique sur X. Nous 
prouvons ici l'existence d'un espace de Banach complexe V et d'une appli-
cation injectif, continue et fermé j : X —» V tel que j{X) soit l'ensemble 
des zeros d'une ensemple des fonctions analytiques et E soit une fibre ana-
lytique pour la structure complexe de X donnée par j . 

1. Introduction In [2] A. Douady introduced Banach analytic speices 
and Bemach anedytic sets (i.e., zero-sets of holomorphic functions on a com-
plex Banach manifold) to solve an important moduli problem concerning finite-
dimensioned complex analytic geometry. In [3] (or see [9], Prop, n.1.3) he re-
marked that Banach analytic sets are not a reasonable field of research (just by 
itself) because every compeict metric space K is homeomorphic to the zero-set 
of a family of holomorphic function on a complex Banach space. He edso con-
jectured that the same is true for any complete metric space. This conjecture 
was proved by V. Pestov in a stroger form (i.e., in a "metric form") in [8]. Here 
we will use the methods of [7] and [8] to prove the following results concerning 
the existence of anedytic structures on topologiced vector bundle (see Theorem 1) 
and the reedization of any continuous complex valued function on a metric space 
X as a holomorphic function on a certain analytic structure on X (see Lemma 
2). In section 2 we wiU prove the following result. 

THEOREM 1. Let X be a complete metrizable space and Ei, 1 < i < n, 
finitely many topological vector bundles on X. Then then there exist a complex 
Banach space V and a continuas injective map u: X —*V such that j{X) is the 
zero-locus of a family of holomorphic functions on V and the topological vector 
bundles u~1*{Ei), 1 <i <n, on u{X) have a holomorphic structure. 

Received by the editors on January 10, 2004. 
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AMS subject classification: 32K05, 32L05. 
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To prove Theorem 1 we will use the foUowing result. 

LEMMA 2. Let {X,d) be a complete metric space and Lip(X) the algebra 
of all complex valued Lipschitz functions on X. Fix a finite set S of continuous 
complex valued functions on X and call A the edgebra of all complex vedued 
functions on X generated by Lip(X) U 5. Then then there exist a complex 
Banach space V and a continuous injective map u: X —* V such that u{X) is 
the zero-locus of a family of holomorphic functions on V and for every a G A 
the continuous function u~1*(a): u{X) —* C is holomorphic. 

2. The proofs Proof of Lemma 2. The notion of a free Banach space 
was introduced in [1] and througly investigated in [4]. For all x,y G X, set 
d'{x,y) := d{x,y) + j^fes \fix) ~ /(#)!• ^ i s e a sy t o check that d' is a metric 
on X equivalent to the metric d. Since d' > d, X is complete for the metric 
d'. Since d' > d, every Lipschitz function on {X, d) is a Lipschitz function for 
{X,d'). Every function /» is a Lipschitz function with Lipschitz constant one 
with respect to the metric d'. Fix any Q G X and let Bx,d',Q be the free 
Bemach space of (-X^d') with respect to Q and j : X —* Bx,d',Q the embedding 
constructed in [8]. Let g: X —* Che any Lipschitz function on {X,d') and call 
L > 0 any Lipschitz constant for g. Hence the function g/L is a nonexpanding 
map on {X, d') in the sense of [8]. By the defining property of the free Banach 
space Bx,d>,Q ("property 2" before the Lemma at page 70 of [8]), there is a 
continuous Unear map h: Bx,d',Q -* C such that g/L = h — g{Q)/L. There is 
an embedding j : X —> Bx,d',Q with j{Q) = 0. Since {X,d') is complete, j{X) is 
closed in Bx,d',Q ([7], Theorem 2). First assume that X has dieimeter at most 
two with respect to d'. In this case j{X) is defined in Bx,d',Q by a quadratic 
map from Bx,d',Q to another Banach space ([7], Theorem 3) and hence it is 
a closed anedytic subset of Bx,d',Q. We just saw that every Lipschitz function 
on {X,d') is induced by a holomorphic function on j{X) with respect to this 
complex structure. The genered case in which {X, d!) may have infinite diameter 
is reduced to the previous case using a contrewtion map on the Banach space 
Dx,d',Q ([7], Lemma 2 and proof of the Medn Theorem at p. 1047). 

Proof of Theorem 1. Let Cx be the sheaf of edl complex vedued continuous 
functions on X. Set rj := rank(i?i). By a theorem of Nagata and Smirnov 
any metric space is paracompact. Hence every topologiced vector bundle on X 
is isomorphic to the pull-beick of the tautological quotient bundle on a suitable 
complex Grassmemnian G by a continuous map X —* G ([5], CoroUary 5.3 and 
Theorem 5.5). Thus there are integers Oj > 0, 6j > r ,̂ 1 < i < n, and an 
a» x bj-matrix of continuous complex vedued functions Mi = {fi.j,h), 1 < t < n, 
1 < j < a,i, 1 < h < bi, such that the associated map /*: Cf"4 - • Cf"* has 
constant rank n^ - r* and Coker (/<) = ^ as topological vector bundles. The 
proof of Lemma 2 shows how to define an equivalent metric d' on X such that all 
continuous functions fi.j,h, I < i < n, 1 < j < n^ I < h < nt, axe Lipschitz with 
respect to the metric d'. By Lemma 2 there is an embedding u of X in a Bemach 
space B with u{X) closed anedytic subset of B and such that all continuous 
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functions fij^h are holomorphic with respect to the holomorphic structure on X 
induced by u. The vector bundles Coker(/i), 1 < i < n, eure holomorphic with 
respect to the holomorphic structure on X induced by u. 
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