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PERTURBATION D’UNE INCLUSION DIFFEBENTIELLE
NON CONVEXE AVEC VIABILITE

SAID SAJID

Présenté par Vlastimil Dlab, FRSC

ABSTRACT.  We establish the existence of viable solutions of a class of
multivalued differential equation with Carathéodory nonconvex right-hand
side.

REsUME. On établit I’existence de solutions d’une classe d’équations
différentielles multivoques avec contrainte sur I’état dont le second membre
est de Carathéodory et non convexe.

1. Introduction. Dans la littérature, I’existence de solutions d’équations
différentielles du premier ordre avec contrainte sur 1'état est obtenue grace a des
conditions tangentielles telles le champs de vecteurs est contenu ou rencontre le
cone contingent. Dans cette note, on présente un résultat d’existence de solution
viable d’une inclusion différentielle dont le second membre est de Caratheodory
et non convexe. .

Dans tout ce qui suit, H est un espace de Hilbert séparable, B(H) 1’ensemble
des parties convexes faiblement compactes d’intérieur non vide de H muni de
la distance de Hausdorff h, pour tout intervalle J, AC(J, H) et L!(J) désignent
I’espace des applications absolument continues de J dans H muni de la topologie
de la convergence uniforme et ’espace des applications réelles intégrables sur
J. Pour toute partie non vide A d’un espace de Banach E, on note par 0A,
int A, ext A, xa, A, d(., A) et T4(.) la frontiére, I'intérieur, 'ensemble des points
extremaux, la fonction caractéristique, 'adhérence de A, la distance & A et la
projection sur A respectivement. Pour tout » > 0 et z € E, on note par B(z,r)
la boule de centre z et de rayon r.

2. Hypothéses et résultat principal. Soient K un convexe fermé non
vide de H, zo € K, f:[0,T] x K — H et F:[0,T] x K — B(H). On considére les
hypothéses suivantes :

(H,) Vz € K, t — f(t,z) est mesurable et f(t,z) € Tk (z)V(t,z) € [0,T] x K.
(Hg) 3k € L}([0,T)), Vt € [0, T}, ¢ — f(t,z) est k(t)-lipschitzienne.
(Hs) 3g € L}([0,T)), V(t,2) € [0,T] x K[|f (¢, z)|| < g(¢)-
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(H4) F est continue pour la distance de Hausdorff.
(Hs) 1 existe un convexe compact non vide D de H tel que Y(t,z) € [0,T] x K,
on a { (int F(t,z)) NTx(z) ND # 0
co[(ext F(t,z)) N Tk (z) ND] = F(t,z) N Tk (z) ND.

REMARQUE. Si K est un convexe compact non vide et non réduit & un sin-
gleton de H. Alors (Hs) est satisfaite dans le cas suivant :

D={z-y:(z,9) € K xK} et F(t,z)=np(z)+ d(0,8riD)B(0,1)

ol 0riD est la frontiére relative de D.

En outre, si H est de dimension finie, alors (Hs) est satisfaite dans le cas ol
F est uniformément borné et F(t,z) C Tx(z) VY(t,z) € [0,T] x K.

Sous les hypothéses (H;)—(Hs) on a :

THEOREME 2.1. Il eziste Ty € )0, T] et z € AC([0, To), H) tels que

{:’c(t) € f(t,z(t)) + ext F(t,z(t)) p.p sur [0,To),
z(0) = zo,z(t) € K vt € [0, Tp)-

REMARQUE. Si K = H alors on a l'existence de solutions seulement sous
(Hy), (H2), (Hs) et les conditions suivantes :
(C1) F est continue pour la distance de Hausdorff.
(Ca) 3 € LX([0,T1), V(t,2) € [0,T] x K, h(F(t,2), {0}) < I(¢).

COROLLAIRE 2.2. Soit C une multifonction mesurable de [0, T)] & valeurs con-
vexes fermées non vides dans H telle que l'application t — h(C(t),{O}) soit
intégrable. Si K = H et si F vérifie (C1) et (C3), alors il existe Ty € ]0,T] et
y € AC([0,T1], H) tels que :

(t) € C(t) + ext F(t,y(t)) p-p sur [0, To],y(0) = .

Dans tout ce qui suit et pour des raisons techniques on pose I = [0,7] et on
définit sur I x H la multifonction G(¢,z) = F(t, 7k (z)). Il est claire que G hérite
toutes les propriétés de F.

3. Fonctionnelles semi-continues supérieurement. Les techniques de
démonstrations reposent sur le théoréme de Baire appliqué & des ensembles en-
gendrés par des fonctions semi-continues supérieurement. A cet effet, on introduit
la fonction de Choquet.

PROPOSITION 3.1. 1l existe une fonctionnelle dg:I x I x H — [—o0, +00| :
(i) 0 < dg(t,z,y) < R? ¥(t,2,y) € gr(G) et [yl < R, R> 0. gr(G) désigne le
graphe de G.
(i) dg(t,z,y) = 0 si et seulement si y € ext G(t,z).

Pour la preuve, voir [2] et [3].
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PROPOSITION 3.2. La fonction (z,y) — d(y, Tk(z)) définie sur K x H est
semi-continue supérieurement.

PREUVE. Voir [1, Th. 1, p. 220 et Cor. 1, p. 52].

LEMME 3.3. Pour toute fonction absolument continue f:I — H, on a :
d .
7400, K)] < d(f(t),Tx (wx(f(t)))) p-p sur L.

PREUVE. Voir [1, Cor. 1, p. 179].
4, Preuve du résultat principal.

PROPOSITION 4.1. Soit Q: I x H — B(H) une multifonction continue. Alors
pour tout y € H, {(t,z) €I x H : y € int Q(t,z)} est un ouvert de I x H.
La démonstration repose sur ’égalité: VC, D € B(H), h(C, D) = h(8C,8D) et
la continuité de 1'application (¢, z,y) — d(y, 8Q(t, z)).
LEMME 4.2. Il eziste Ty € |0, T et z1(.) € AC([0,To), H) tels que
(i) z1(.) = f(.,'rrx (xl(.))) soit une constante sur [0, Tp] et z1(0) = zo.
(i) Vt € [0, To), #1(t) — f(t,1rK (zl(t))) € (int G(t,zl(t))) N Tk (zo) N D.
IDEE DE LA DEMONSTRATION. On choisit vp dans (int G(0,zo)) N Tk (zo) N
D qui est non vide par hypothése et on considére une solution du probléme
de Cauchy z(t) = f (t, WK(I(t))) + v notée z;(.) qui, grace a la proposi-
tion 4.1, vérifie (i) et (ii) sur un intervalle [0,T5]. On peut choisir Tp de sorte

que foT" k(t)dt < 1.
Soit S I’ensemble de solutions sur Iy = [0, Tp] du probléme

i(t) = f(t,ﬂ'K (z(t))) +G(t,z(t)) p.p sur Ip,z(0) = zo
et S* le sous-ensemble de S tel que pour tout z € S*,on a: '
a) z(.) — f(.,er(a:(.))) est une constante sur chaque int Jp,, ot (Jn)nen est
une suite d’intervalles vérifiant Iy = [_JnEN Jn et supJ, = inf Jo41 Vn € N.

b) z(0) = zo, &(t) — f(t, - (z(t))) € [(int G(t,z(t))) n D] p.p sur Io.
11 est claire que z;(.) € S*. Pour tout a > 0 et pour tout n € N*, on définit

- {z €5 /[o dg (t,x(t),a’:(t) = f(t,n'x(a:(t)))) dt < a}
8% = {:c €5 /Io d(z‘(t) - f(t, wx(z(t))),TK(er(:c(t)))) dt < a}

5°=53Nnsg
R*=S% et R=[) R
neN*

En vertu de la proposition 3.1 et du lemme 3.3, tout élément de R est solution
du probléeme (1.1). Il suffit de prouver que R™ est un ouvert dense dans S*.
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LEMME 4.3. Pour tout o > 0, S® est une partie ouverte de S*.

DEMONSTRATION. Soit {Zp}nen C S* \ S° telle que z,(.) — z(.) dans S*.
Alors

| do(tan®). 8000~ 1t mx(en() ) de 2
et

‘/I‘o d(:i:n(t) = f(t,frk(xn(t))),Tx (m{(zn(t)))) dt> o

vue la construction de S* on peut supposer que

{:a,.(t) - f(t, ﬂx(zn(t))) telpne N}
est une partie dénombrable du compact D; donc quitte & extraire un sous-suite,

on suppose que (:t,,(.) -f (t, TK (a:n()))) converge; notons y sa limite.
neN

Comme &,(.) — (.) faiblement, on a y = (.) — f(.,er(x(.))). On achéve
la démonstration en utilisant la proposition 3.1 et la proposition 3.2.

LEMME 4.4. Soient z € S*, a > 0 et Jy un intervalle tels que &(.) —
f (.,1rK (a:(.))) soit une constante sur int Jo = |0,¢1[ (t1 > 0). Il existe alors une

suite (8p) dans |0, t,[, une suite (yn)nen dans AC(Jo, H) et une famille (Pp)nen
de suite d’intervalles (J3')qen vérifiant : pour tout n,q € NsupJg = inf J2',,,
tels que

(i) ¥n(0) = %o, in(t) € (int G(t,un(®))) N D], V¥t € [0,5nl:
(1) 9n(.) = f(.,ﬂ'}( (y,,(.))) est une constante sur chaque int J3', Vg € N.

(i’ii) f:" dg (t, yn(t)$ ?)n(t) = f(ta TK (yn(t)))) dt < %‘:

(iv) 2" d(;«}n(t) = £ (t () ) T (7 (yn(t)))) <.
(v) sup{|lyn(t) —z(®)| : t € Jo} — 0 si n — +o0.
DEMONSTRATION. Notons par a la constante :i:(.)—f(., TK (a:())) sur int Jo =

]0,¢1{. Pour tout n € N* et i € {0,...,n} on pose t? = . D’aprés I’hypothése
(Hs) il existe A? > 0, b7 € [(ext G(0,20)) N Tk (zo) N D] avec j = 1,...,ma,
my €N, tels que Z;"_"l )\_’,‘ =1let

0

E ATb?

=1

En vertu de la proposition 3.1, du lemme 3.2 et de la proposition 4.1, il existe
70 €]0,1[ et ¢ > 0 tels que pour tout (¢,z) € B((t,%0),(x) NIo x H,0n a

@ ¢}(10) € [int G(0,20) N Tic(z0) N D]
(3) max{d (t,2,¢}(10)), 4(¢} (10), T (7x () ) } < 32—
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ol c}(70) = oa + (1 — 70)b]. Quitte a choisir o assez petit, (1) entraine

my

a—Y_ i)

Jj=1

1
<2—n.

(4)
Pour i € {0,,..,n} et j € {1,...,m,} on définit

tl
n _4n n _ .n n_’2 [ (J— n n
,i,o - t.‘ ) 'i.j — ’i,j—l + AJ et Ai,]’ — [7i,j 1 ,i'j]'

Observons que pour tout i € {0,...,n — 1}, Ujly AF; = [t],}4,]. Soit y§,(.)
une solution sur Af, du probleme i(t) = f(t,7rK (.’E(t))) + ¢} (70), z(0) = zo.
Par récurrence, on considére g ;(.) une solution sur Af; du probléme i(t) =
f(t, TI'K(:E(t))) + c}(70), 2(78;) = ¥5,;-1(78;), ¥i;(.) une solution sur A?; du
probléeme z(t) = f(t, TK (:l:(t))) + ¢} (1), z(1F;) = yi1,;(7];). Finalement, on
définit sur [0,%;] la fonction y,(t) = Z;:ol X(er ¢n 1 (8)y7(t) out pour tout t €

i :‘+1
w1
[t7, ¢l 9P (t) = Z;n=1 Xar, (®)yr;(t)-
Pour tout n € N, choisissons un réel s, tel que 0 < s, < min{(,, 5';1]‘—,,} et
L Jo"9(t)dt < & ou M = sup{||z|l, z € D}. Alors pour tout ¢ € [0, 5], on a

t
lya(?) = zoll = /0 lgn(s)ll ds < M.

Tenant compte de (2), il vient alors

(@n(t) - f(t’ TK (yn(t)))) € [int G(t, yn(t)) ) TK(.’I:()) n D]
da (801 in) ~ 1 (7 (n)) ) < 5=
<

d(ﬂn(t) - f(t, TK (yn(t)))aTK (ﬂx (yn(t)))) ZiTo'

Pour achever la démonstration, il suffit d’établir la propriété (v). En effet,
t; t
lyn (87) = 2N < 55 + sup llyn(t) —2(®)]] [ k(t)dt, Vn,Vi=0,...,n.
2" telot) 0

Ainsi, pour tout ¢ € Jo, si nous notons i, I'indice tel que ¢ € [t} ,t} ], alors

lun () — 2N < llyn () = yn )N + lyat2) — z(E)I + ll=(E,) — (@)l
Mt 4

31
<2—+ — 4+ su n(t) — z(t / k(t) dt.
R R N CORE O A0

Ceci achéve la démonstration du lemme 4.4.
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LEMME 4.5. S® est dense dans S*.

IDEE DE LA DEMONSTRATION. Soit z € S*. D’aprés le lemme 4.4, il existe
(3, (3n), (yn)) dans 0, Tp] x 10, s] x AC([0, 5], H) vérifiant les propriétés (i)—(v) du
lemme. Gréace au lemme de Zorn, on démontre ’existence d’un élément maximal
(pour un ordre bien précis) noté (s™, (s7)n, (¥7')n). On démontre que pour tout
n € N, s, = Tp. Ceci achéve la preuve du théoréme 2.1.

Pour démontrer le corollaire, il suffit de poser f(t,z) = m¢(s)(z) et d’appliquer
le théoréme 2.1.
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ON A CONJECTURE OF KEMNITZ

R. THANGADURAI

Presented by M. Ram Murty, FRSC

ABSTRACT. In this note, we extend the work of W. D. Gao [6] on a
conjecture of Kemnitz.

RESUME. Dans cette Note, nous étendons le travail de W. D. Gao [6]
sur une conjecturé de Kemnitz.

1. Introduction. For d,n € N, let f(n,d) denote the smallest positive in-
teger such that every sequence of f numbers of, not necessarily distinct, integer
lattice points in Z¢ contains a subsequence of size n whose sum is divisible by n.

The main problem is to find the exact values of f(n,d) for all n,d € N.

Note that given a sequence zi,Z2,...,Zs(n,q) Of integer lattice points in z¢
where z; = (ri1,Ti2,...,Tia), We write r; = s;; + nmy; Vi = 1,2,..., f(n,d)
and j = 1,2,...,d where m;; is an integer and 0 < s;;5 < n—1. Let y; =
(811, 8i2y - - - » Sid) € Z% for all i = 1,2,..., f(n,d). If we can find an n-element
subset of {y1,¥2,.--,¥s(n,dq)} Whose sum is zero modulo n, then by translation,
we arrive at an n-element subset of {z;,z2,...,Z f(,,,d)} whose sum is also zero
modulo n and vice versa. Thus, henceforth, we always assume that the given
integer lattice points are elements of (Z/nZ)°.

The existence of f(n,d) is clear from the following inequalities which are ob-
tained using the simple, yet powerful Dirichlet’s Pigeon Hole principle. Clearly,

(1) 142%n—-1) < f(n,d) <1+n%(n-1).

To get the lower bound, we have to take all the d-tuples (2¢ in number) with
coordinates 0 or 1, each with multiplicity (n — 1). The upper bound follows from
the fact that any sequence of 1 + nd(n — 1) elements of (Z/nZ)% must contain
the same vector n times. Thus, f(2,d) = 2¢ + 1.

The upper bound in equation (1) is too weak. With sophisticated techniques
from Combinatorial Number Theory, Alon and Dubiner [2] proved that

f(n,d) < c(d)n

where c¢(d) is an absolute constant which depends only on d.

Received by the editors February 2, 2000.
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When the values of f are known for m and n, Harborth [8] gave a formula for
an upper bound of f(nm,d) as follows.

LEMMA 1.A (HARBORTH (8]). For each integers n,m > 1, we have
£(nm, d) < min(f(n,d) + n(F(m,d) = 1), f(m,d) +m(f(n,d) - 1)).

When d = 1, from equation (1), we get 2n—1 < f(n,1) < n? —n+1.In 1961,
Erdés, Ginzburg and Ziv [5] (much before the general result [2]) completely solved
this case by proving the formula f(n,1) =2n — 1.

Thus the one-dimensional case was completely solved. Now let us pass onto
the case of dimension two of this lattice point problem.

The two-dimensional case was first considered by Harborth [8] and he proved
that f(3,2) = 9. Kemnitz [9], in 1983, proved that f(p,2) = 4p — 3 for p = 5,7.
These results together with the above Lemma 1.A implies that f(n,2) = 4n —3
for all n = 293%5°7" where a,b,c,r € N. Moreover, in the same paper, Kemnitz
[9] proved the following theorem.

THEOREM 1.B (KEMNITZ [9]). If a1,a,...,a4p-3 is a sequence of 4p — 3
elements in (Z/pZ)? such that all a;’s are distinct modulo p, then we can find a
p-element subsequence whose sum is zero modulo p. Here p is a prime number.

REMARK 1.1. Theorem 1.B suggests that we can henceforth consider 4p — 3
lattice points with one of the lattice points repeated at least twice.

Also, Alon and Dubiner [2] proved that for any given 3p lattice points in Z?
such that all 3p lattice points add up to zero modulo p, we can find p-element
subset whose sum is zero modulo p.

CONJECTURE. f(n,2)=4n—3forallneN.
This was first conjectured by Kemnitz and was suggested, independently, by
N. Zimmerman and Y. Peres (see for instance [3]).

REMARK 1.2. If we prove f(p,2) = 4p—3 for all primes, then from Lemma 1.A
we get f(n,2) < 4n — 3 for all positive integer n. But the lower bound of the
equation (1) is just 4n — 3. Putting together we get f(n,2) = 4n — 3. Thus, it is
enough to prove the above conjecture for the primes alone.

Alon and Dubiner [2] proved that f(n,2) < 6n—5 for all n. This was improved
later by Weidong Gao [7] for all primes p by proving f(p,2) < 5p—1. The present
author has been recently informed that Lajos Rényai [10] has almost proved
Kemnitz’s conjecture; he proved that f(p,2) < 4p — 2 for all primes p, using the
methods in a recent paper of Alon [1].

REMARK 1.3. Since f(p,2) < 4p—2 < 5p—4, from [10] and using Lemma 1.A,
we can get f(n,2) < 5n — 4 for all positive integer n.

Related to the expected bound, in 1996, Weidong Gao [6], proved that if
f(n,2) = 4n — 3 and n > ((3m — 4)(m — 1)m? + 3)/4m with m > 2, then
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the result is true for nm. To prove this result he has used the following crucial
observation. If 4n — 3 integer lattice points are given in the plane with one of the
lattice points is repeated at least n — 1 times, then there is an n-element subset
whose sum is zero modulo 7.

One should mention two expository articles ([4] and [12]) around this topic.
Also, it is known that the lower bound in equation (1) is not tight for dimension
d > 2. Harborth proved that f(3,3) = 19 in [8] which is greater than the lower
bound 17.

Indeed our main theorem, here, is an improvement of Gao’s result as well as
his crucial lemma. In contrast to Gao’s idea, we shall not use the crucial lemma
for proving the main theorem. Rather, we independently prove these along the
same line.

In our method we often use the following result of van Emde Boas [13]. This
result was first proved for primes by Olson [11]. Then it was extended to all
natural numbers by van Emde Boas [13] by an easy induction.

LEMMA 1.C (vaAN EMDE Boas [13]). If a1,a2,...,a3,—2 15 a sequence of
3n — 2 elements in (Z/nZ)?, then we can find an integer t, 1 <t < n such that
there is a t-element subsequence whose sum is zero modulo n.

Our main interest is to prove the following theorems.

THEOREM 2.1. If a sequence of 4n — 3 integer lattice points in Z? such that
one of the given lattice points is repeated at least |n/2] times, then we can find an
n-element subset whose sum is zero modulo n. Here |.| denotes the floor function.

THEOREM 3.1. If f(n,2) = 4n — 3 and n > (2m3 — 3m? + 3)/4m, for some
integer m > 2, then, f(nm,2) =4nm —3.

2. Proof of Theorem 2.1 Let
S :={ay,az,...,04n-3}

be the given set of integer lattice points in the plane. It suffices to consider the a;’s
as elements in the group (Z/nZ)2. Let a € (Z/nZ)? be repeated at least |n/2]
times. Also we can assume that a is the element repeated maximum number of
times. Otherwise, we could have chosen that element which is repeated more than
a. Also from the result of W. D. Gao [6], we can assume that a is repeated at
most . — 2 times.

By rearranging the indices, we assume that a; = a; = -+ = a; = a where
[n/2] < s £ n — 2. Translate the given 4n — 3 integer lattice points by a. We
get, 0,0,...,0 repeated s times and S* := {b;,bs,...,ban—3—s} where b;’s are

——
s times

the non-zero elements of the translated set S. Since s is at most n — 2, we have
M —-3—-58>3n—-2.
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We know from Theorem 1.C that if T' consists of 3n — 2 number of integer
lattice points in (Z/nZ)?, then it contains a t-element subset whose sum is zero
modulo n with 1 <t < n. We pair such a subset T with an integer t. If we write
(T,t) we mean that |T| = 3n — 2 and the integer ¢ attached to T in the above
manner.

From S*, we collect all possible subsets T;’s with |T;| = 3n —2. So correspond-
ing to each subset T}, we have an integer ¢;. The number of such pairs (T, t;) in

S* is equal to
4n—-3—s dn—-3-—3s
= > -3 —s.
(3n—2 ) (n—l—s)_4n 3=

Let T be one of the above subsets T;’s of S* such that the corresponding ¢ (in
the pairing (7,t)) is the maximum of all such t;’s. We choose one such pair and
we denote it by (T, t).

We can assume that t < n — s. For, if s + ¢ > n, then adding some zeros to T'
we get an n-element subset whose sum is zero modulo n.

CLAaM. [n/2]+1<t<n.

Assume the contrary. That is, if ¢ had been at most |n/2], then 4n — 3 — 5 —
|n/2] > 3n—2, as s+t < n. Therefore, we can get the next maximal pair (T3, ¢,)
with ¢; < ¢. So, 1 < t; < [n/2]. This implies ¢t +¢; < n. In that case, considering
T UT, we would have chosen t + t; as our ¢ in the first step. Hence ¢ has to be
strictly more than |n/2].

Now, observe that we have s zeros outside S* and a t-element set from S*
whose sum is zero modulo n. Since s > [n/2] and |n/2] +1 < ¢ < n, we thus
get an n-element set whose sum is zero modulo n, by adding to the ¢-element set
the appropriate number of zeros from the s zeros outside S*. n

REMARK 2.2. In Theorem 2.1, if we assume n is odd and one of the lattice
points is repeated at least |[n/2] — 1 = (n — 3)/2 times, then in this method, we
cannot prove the assertion. For, since 4n—3—(n—3)/2 = 3n—2+(n+1)/2, we can
choose a maximal pair (T, t) such that (n+1)/2 <t < n. Suppose t = (n+1)/2.
Then since we have 3n—2+ (n+1)/2—(n+1)/2 = 3n—2 lattice points left with,
we can choose a pair (T1,t;). We must have ¢ + ¢, > n implies ¢; > (n +1)/2
which forces t; = (n + 1)/2. Hence in this method we cannot get an n element
subset whose sum is zero modulo n.

As a corollary to the above Theorem, we arrive at a new proof of some known
results as follows.

COROLLARY 2.3. f(p,2) =4p— 3 for p=3,5.

PROOF. Let {a;,a2,...,a4p—3} be a sequence of 4p — 3 integer lattice points
in Z2. Tt is enough to consider all the a;’s in (Z/pZ)?. By Lemma 1.B, it is enough
to assume that at least one of the given lattice points is repeated twice. Without
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loss of generality it is enough to assume that the zero element is repeated at least
twice. When p = 3,5, by Theorem 2.1, the above observation gives the desired
result. -

3. Proof of Theorem 3.1 It is enough to prove that f(nm,2) < 4nm — 3.

Consider
S = {al,a21 see va4nm—3} C Z2

possibly with repetitions. Without loss of generality we can assume S C
[0,nm - 1] x [0,nm — 1].

Let S, be the set of all elements of S modulo m. Then, we see that there
exists an element z € S,, which is repeated maximum number of times. We can
assume z to be the zero element of Sy,, if necessary by translating the elements
of S. Note that in Sy, at least [(4nm — 3)/m?] + 1 zeros are available.

Let S}, be the set of all non-zero elements of S,,. From S}, take out all pos-
sible k > 0 disjoint non-empty subsets R, Ra,..., Rx with |R;| = m such that
Y rer, T=0 (mod m) Vi=1,2,...,k Hence, W := S,‘n\(Uf=l R;) contains no
m-element subset whose sum is zero modulo m. Hence by Remark 1.3, we have
[W| < 5m —5.

If (W] > 3m — 2, then by Theorem 1.C, we can find a natural number ¢,
2 <t < m —1 such that we find such a t-element subset of W sums to zero. Let
B, be a maximal subset of W such that |By| = t; with 2 < ¢; < m —1 and its
sum is zero modulo m. Then we can take A; which contains m — t; zeros and
together with B; we get an m-element subset whose sum is zero modulo m.

If W\ By| > 3m — 2, we can find B, which is the maximal subset of W \ B;
with |Bs| = t3 with 2 < t; < m — 1 whose sum is zero modulo m. Note that
t1 > t2 and |B; U By| > m. If not, we would have chosen B; U B; in the first step
and it would have contradicted the maximality. Once we have chosen Bj, take
Ay, a subset of all zeros disjoint from A, and having cardinality m — | B,|. Then,
Az U Bs produces an m-element subset of S,,, whose sum is zero modulo m.

Continue this process, until we arrive at |W \ (Uf=1 B;)| £ 3m — 3 where ¢ is
a non-negative integer.

Therefore, we would have used at most 2(m — 1) zeros which we have out side
S;, to bring down the cardinality of W from 5m — 5 to 3m — 3. Hence in order
to make sure that there are at least 2(m — 1) zeros in Sp,, we need the following

condition,
dnm -3

1Sm \ Sl > [T] +1>2(m—1).

This implies, n > (2m3 — 3m? + 3)/(4m).

Note that we are not using Theorem 2.1 to produce a zero-sum subsets of
cardinality m in the above process.

If |(Sm \ S5 \ (Uf=1 A;)| =2 m, remove all possible disjoint m-element subsets
and call the remaining set be A. Clearly 1 < |A| <m — 1.
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Let us count all the disjoint m-element subsets of S,, whose sum is zero modulo
m. Let the number be ¢. Then,

tm = dnm — 3 — |W\ (OB,—)I — |4
i=1

Hence,

t> 1(4nm—3—(3m-—3)—(m—1))=4n—4+1/m.

Since ¢ is integer, ¢ > 4n — 3. Hence we have Iy, I, ..., I4n—3 disjoint m-element
subsets of S such that Zbe, b = 0 (mod m) for every j = 1,2,...,4n = 3.
Write ¢; = 1/m3 e, b. Since f(n,2) = 4n — 3 and we have 4n — 3 num-
ber of ¢1,¢2,...,C4n-3 1nteger lattice points, there exist n element subsequence
Ciy s Cigy+ - - » Ci,, SUCh that its sum is zero modulo n. Thus we get

Zc,j =0 (modn)=>z Z b=0 (mod mn).

J=1 bEI:j

Hence, we get nm-elements from the set S such that their sum is zero modulo
nm. n

COROLLARY 3.2. Let n = 223%5¢7% with a,b,c,d > 0, and let m; > mg >
.+« > my. Suppose that n > (2m$ — 3m? + 3)/(4m). Then,

f(nmymg - -mg, 2) = dnmymg - - -my — 3.

PROOF. Using Theorem 1.A and the known results, we get f(n,2) = 4n —3
for n = 223579, Hence by Theorem 3.1, we have f(nm,2) = 4nm; — 3. The
result follows by induction on k. a

REMARK 3.3. Theorem 3.1 can be marginally improved if we take m =p a
prime number. By the recent result of Lajos Rényai [10] in which he proved that
f(p,2) < 4p—2 for all primes p. Using this result, if we proceed as in Theorem 3.1,
we arrive at the following conditions on n. That is, we have to make sure that
there are at least p zeros in Sp \ S;. Thus we arrive at

dnp -3
P

In this way, we can prove the following theorem.

THEOREM 3.4. If f(n,2) =4n—3 andn > (p?(p—1) + 3)/(4p) for some
prime number p, then, f(np,2) = 4np—3.

+12p=n2 (pP*(p—1)+3)/(4p)
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A CONDITIONAL PROOF OF ARTIN’S CONJECTURE FOR
PRIMITIVE ROOTS

AMORA NONGKYNRIH

Presented by M. Ram Murty, FRSC

ABSTRACT.  Assuming a hypothesis which is weaker than the gener-
alized Riemann hypothesis, this paper gives a proof of Artin’s conjecture
that any integer a # %1 or a perfect square is a primitive root (mod p) for
infinitely many primes p.

RESUME. En supposant une hypothése qui est plus faible que I'hypo-
these de Riemann géneralisée, cet article donne une démonstration de la
conjecture d’Artin qui dit que tout entier @ # +1 ou un carré parfait est
racine primitive (modulo p) pour une infinité de premiers p.

A conjecture of E. Artin formulated in 1927, states that any integer @ # +1
or a perfect square is a primitive root (mod p) for infinitely many primes p.
Moreover, if Ny(z) denotes the number of such primes up to z, he conjectured
an asymptotic formula of the form N,(z) ~ A(a)@ as T — 00, where A(a) is
a constant depending on a.

In 1967, Hooley [1] proved Artin’s conjecture and an asymptotic formula for
Na(z) subject to the assumption of the generalized Riemann hypothesis for
Dedekind zeta functions of certain number fields. Recall that Hooley proved the
following theorem [1]):

If it is assumed that the generalized Riemann hypothesis holds for the Dedekind
zeta function over Kummer fields of the type Q(/2, V1), where k is square- 1
then we have

(a) Let Ny(z) be the number of primes p not ezceeding z for which 2 is a
primitive root modulo p. Then

_ Az zloglogz _ 1
No(z) = _logx +0 (__log2x ) where A = l;[ (1 = l)) .

(b) There are infinitely many primes p for which 2 is a primitive root modulo p.
He also remarked that the second part of the theorem is still true if no zero of
the zeta functions over Q(¥/2, ¥/1) has real part exceeding 1 — e~ ! — 4.

In this paper, we show that it is possible to prove Artin’s conjecture on a
hypothesis weaker than the generalized Riemann hypothesis. However, our proof
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rests on a hypothesis which is slightly weaker than the one remarked by Hooley.
We shall consider the particular case when a = 2. The general case differs from
this only in that there are some extra points of detail that require discussion.
The precise result we prove is as follows.

THEOREM 1. Let K = Q(¥/2, V1), k a square-free integer. Assume that the
Dedekind zeta function (k(s) is zero-free in Re(s) > 1 — 1e™124/5 — §, where
A= nq(l - R?fl—_l))’ q prime. Then 2 is a primitive root for a positive proportion
of primes, i.e.,

z
REMARK. Notice that A = [] (1 - q(q—l)) < -3 = & which implies that

125—‘4 < 1 so that our result falls short of the rema:k made by Hooley.

A part of Hooley’s proof does not assume any hypothesis. This will also hold
in our case with a few minor changes in the choice of parameters. We shall then
apply a variant of the Bombieri-Vinogradov theorem proved in (2] for the part of
the proof which requires the assumption of a zero-free region for the Dedekind
zeta function of the form stated in Theorem 1.

The principle underlying Hooley’s treatment of Artin’s conjecture was that of
the simple asymptotic sieve [1]. In order to formulate the problem in sieve theory
notation, we make use of the following observation: 2 is a primitive root modulo
p if and only if p # 2 and there is no prime divisor ¢q of p — 1 for which 2 is a ¢g-th
power residue mod p.

Let p > 2. For any such prime p and for any prime g, let R(g,p) denote the
simultaneous conditions “2 is a g-th power residue mod p, ¢ | p—1”; and for any
square-free integer k, let the generalized symbol R(k,p) indicate the conjunction
of R(q,p) for all prime divisors g of k.

We set up the following notation: S(z,n) counts the number of primes p up
to z that do not satisfy R(q,p) for any ¢ not exceeding n. Then the criterion for
primitive roots implies that Na(z) = S(z,z — 1). For any square-free integer k,
P(z, k) counts the number of primes up to z for which R(k, p) hold (no condition
being implied if k = 1). Finally, M(z,n,72) counts the number of primes p up
to z for which R(q,p) hold for at least one prime q satisfying m < q < 0.

We shall need the following theorem proved in a paper of Ram Murty and
Kumar Murty [2]:

NOTATION. Let K be a Galois extension of Q, G = Gal(K/Q), C a conjugacy
class in G. Let I, ¢ be positive integers with 1 < ! < ¢, (I,q) = 1. Denote by
mc(x,q,!) the number of primes p < z which are ramified in K, which satisfy
(p, K/Q) = C and p = l(mod gq). Here (p, K/Q) is the Artin symbol of p in G.

Let H be the largest abelian subgroup of G, HNC # ¢, d = [G : H], and let

_[d-2 ifd>4
T=12 ifd<a.
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THEOREM 2. Let Q = z7~. Then for any A >0,

Claw)| =
o9 - g 5()| < Toga)A

z " max max
4<Q (l.g)=1 ys=z
where the prime on the summation indicates that we range only over those q

satisfying Q(¢) N K = Q.

PROOF OF THEOREM 1. The simple asymptotic sieve applied to the problem
under consideration gives

N2(z) = S(IL', El) + O(M(xv {1362)) + O(M(.’D, 5'2’63))
(1) + O(M(.’L‘, &31 {4)) + O(M(:L', 6412 - 1))

where & = alogz with 0 < a < 1, the value of a will be chosen in due course;
o = 2%/ log? z with 0 < 1/2; & = 3~ &4 = 212 log .

The last two terms on the right of (1) can be estimated without any hypothesis.
As in [1], using the Brun-Titchmarsh theorem we obtain

M(z,63,6) < ) P(z,q)
£3<q<&a
€T

logz’

with €3 and &4 as chosen above. To. estimate the final term we observe that the
condition R(q,p) implies that

95T = 1(mod p).

Therefore, since ¢ > z'/2logz and p < z, any primes p that the sum
M(z,&4,x — 1) counts must divide the product

T = II e -

m<zl/2(logz)-1!

The number of prime divisors of T is <« Eg%'? Therefore (1) reduces to

@) Na(a) = S(a0) + O(M (e 61,8) +0 (1= ).

We express S(z,&1) in terms of P(z, k) as follows:

(3) S(z,&1) = Y u(l')P(z,l)
g

where !’ indicates either 1 or positive square-free numbers composed entirely of
prime factors ¢ < &1. S(z,£1) can be estimated in the same way as in [1]. The
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details can be found in [1], so we shall omit them and just briefly recall the
method used.

The primes counted in the sum P(z, k) can be characterized in terms of con-
ditions formulated in the language of algebraic number theory.

The primes contributing to P(z, k) are just those primes p for which the si-
multaneous conditions

v? = 2(mod p) soluble, p=1(mod gq)

hold for every prime divisor q of k, which are equivalent to the simultaneous

conditions
(4) v* = 2(mod p) soluble, p = 1(mod k).

But (4) are together equivalent to the requirement that v* = 2(mod p) have
exactly k incongruent roots. By a principle due to Dedekind we deduce that (4)
is equivalent to the condition that p [ k and that p splits completely in the
Kummerian field Q(¥/2, ¥/1).

Let n(k) denote the degree of Q(¥/2, ¥/1) over Q, and let 7(z, k) be the number
of prime ideals p in Q(+/2, ¥/1) such that Np < z. In this case, n(k) = ko(k)
and we obtain

(5) P(z,k) = T&0)

ko(k)
In order to estimate w(z, k) and hence P(z, k), we apply the theory of Dedekind’s
zeta function and assume the following hypothesis:

The real part B of every complex zero p = B+ 1ivy of the Dedekind zeta function
Cx (8) is less than or equal to 1—0 for every Kummer field of type K = Q(¥/2, ¥/1)
where 6 > (1/2)e~12A/5,

We then obtain the following expression:

+0(v(k)) + O(z'/2).

(6) n(z,k) =liz + O(kd(k)z' % log kz).
From (5) and (6) we get

P(z,k) = -,;—E% +0(z' % log kz) + O(v(k)) + O(z'/?)
) = k:;(a;c) +0(z' P log kz).

Thus, from (3) and (7) we get

S(z,&) = Z (’){ 1'2(7' }+0(z‘—9 log!'z)

=liz Z lfg:l?) + 0(x1‘9 log:z:‘l; 1).
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Notice that
U< [[ g e =2
[543
Choose a = /3. So,

S(z, &) = hzz l#(l) ( 1""(log:z;):z:“")

l¢(ll
T
8 = Ali 0]
(8) iz + (&lgz)w(bgzm)
= Ali
Aliz+0O (logzx)
where

4= H( q(q—l))

The proof given so far is essentially Hooley’s treatment of Artin’s conjecture.
However, with the weaker hypothesis we have assumed here, this method breaks
down in estimating the second term M(z,&;,&2). In order to estimate this term,
we observe that 0
(9) M (.'B, _x2_’x%—e) < 32,3(z)

log® z

where

Sa,3(z) = #{p < z : p does not split completely in L, and in L3,

0 1
) <q5:z:¥"}.
z

T
p=1(mod g), 1
(o)

At this point, we appeal to Theorem 2 stated earlier. We shall apply this theorem
taking K = LoL3 where Ly = Q(v/2) and L3 = Q(V/1, ¥/2).

We know that if K; and K, are finite field extensions of a field F' in some
algebraic closure F, which are linearly disjoint over F, then K, K> ~ K, ®F K>.
If K; and K5 are Galois extensions of F, it is easy to check that

Gal(K) ®F K,/F) ~ Gal(K,/F) x Gal(K2/F).
Therefore, with our choice of K as above, it follows that
Gal(K/Q) =~ Gal(L2/Q) x Gal(L3/Q)
= (Z/2) x Ss.

Every g € Gal(K/Q) can be written as g = (g1, g2), and every conjugacy class C
in Gal(K/Q) is of the form (C;,C2) where C is a conjugacy class in Gal(L2/Q)
and C; is a conjugacy class in Gal(L3/Q).

If p does not split completely in Ly and in L3, then (p, K/Q) = C where
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(i) C is not of the form {Id} x Cs, and
(ii) C is not of the form C; x {Id}.
There are two conjugacy classes in Gal(K/Q) which satisfy (i) and (ii), viz.,
C ={1}x{o,7} and C' = {1} x {e, 8,7} where 1 denotes the non-trivial element
in Z/2; o, T are elements of order 3 in S3, and a, B, 7 are elements of order 2 in

Ss.
Then
2 liz
nc(z,q,1) = 23 +
and
3 liz
ner(2,q,1) = IY0) + E'

where E and E’ denote the error terms.
For these conjugacy classes C and C’, we verify below that d < 4.

CaseE 1. Let H = (Z/2) x (o). Then (1,0) € HNC # ¢, and H is an abelian
subgroup of G whose order is 6.

Case I1. Let H = (Z/2) % (a). Then (1,a) € HNC' # ¢, and H is an abelian
subgroup of G whose order is 4.

Therefore, in both cases, d < 4 giving n = 2, and we now apply Theorem 3 to
estimate Ss 3(z).

Sa3(x)

IA

2 liz 3 liz
—-—+——+E+E’)‘
’ 2 (12 é(q) ~ 12¢(q)
=5 <a<z(1/2)=¢
5 z (1/2) — ¢ 2z
< — .
~ 12logz log 0 + log? z

(10)

The estimate of the error term follows from Theorem 2.
Combining (2), (8), (9) and (10) we get

T €T 5 1—2e T
e AT )
Na(e) 2 Alogz logz 12 (log 20 ) log z

which implies that

T 5 1—2e
No(z) > oaa whenever A > ¢+ o log ~55

that is, whenever
1
6> Ee‘mﬁ +46, ford>0.

This completes the proof of the theorem.



52 AMORA NONGKYNRIH

ACKNOWLEDGEMENTS. This paper is the result of a suggestion of Professor
M. Ram Murty; I thank him for his encouragement and support. I thank the
Mehta Research Institute, Allahabad, for computing and library facilities during
preparation of the paper.

After the paper was submitted for publication, research has subsequently been
funded by the Council of Scientific and Industrial Research, India.

REFERENCES

1. C. Hooley, Applications of sieve methods to the theory of numbers. Cambridge Tracts in
Math. 70, Cambridge University Press, 1976.

2. M. Ram Murty and V. Kumar Murty, A variant of the Bombieri-Vinogradov theorem.
CMS Conference Proceedings 7(1987), 243-272.

Mehta Research Institute
Chhatnag Road

Jhusi, Allahabad 211 019
India

email: amora@mri.ernet.in


mailto:amora@mri.emet.in

C. R. Math. Rep. Acad. Sci. Canada Vol. 23 (2), 2001 pp. 53-59

AVERAGING OF AN ELLIPTIC SPECTRAL PROBLEM IN A
VARYING DOMAIN

MAMADOU SANGO

Presented by Vlastimil Dlab, FRSC

ABSTRACT. We consider the spectral problem for a higher-order elliptic
equation in a sequence of perforated domains. Using a variational method,
we establish the convergence of the eigensolutions of the problem to the
eigensolutions of a limit problem containing an additional term of capacity
type.

RESUME. Nous considérons un probléme spectral pour une équation
élliptique d’ordre arbitraire dans une suite de domaines perforés. Utilisant
une méthode variationnelle, nous établissont la convergence des valeurs pro-
pres et functions propres du probléme vers les valeurs propres et vecteurs
propres correspondants d’un probléme limite qui contient un terme com-
plementaire de type capacitaire.

1. Introduction. Let Q be a bounded open set in the n-dimensional Eu-
clidean space R™, with a sufficiently smooth boundary I', and let there be defined
a finite number of closed sets F,-(s), i=1,...,I(s) lying inside Q and pairwise
disjoint, i.e., F{* N FJ(’) =0 for i # j. In the domain Q© = Q\ U/ F®) we
consider the spectral boundary value problem

(1) Z D*(aap(z)DPu(z)) = Mu(z) in Q)
lal,|Bl<m
(2) D%u(z) =0, |a]<m—1ondQ®.

We use the following notations: e denotes the boundary of the set e, & denotes
the closure of the set o, & = (a3,...,05) is a multi-index with non negative
integer components, |a| = a; + -+ + an, D%u(z) = ('a%)a‘ ...(%)aﬂu(z),
D*u(z) = {D%u(z) : |a| = k}. By Wi(e) (p € (1,00), | is a non negative integer),

0
W}(e) and Ly(e) we denote the usual Sobolev and Lebesgue spaces on e.

Under appropriate geometric conditions on the closed sets Fi(’), we aim to
prove that any eigensolution (As,us) of problem (1)—(2) converges in suitable
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topologies to a corresponding eigensolution (A, u) of the limit problem

(3) > (1) D*(aap(z) DPu(z)) + c(z)u(z) = Au(z) in Q,
lal,|8]1<m
(4) D%u(z)=0, |a|<m-1onT,

where c is a function expressed in terms of specific characteristic of the sets F,-(s) -

The investigation of problem (1)-(2) in the stationary case (non spectral case)
goes back to the works of Marchenko and Khruslov (see [3, Chap. 2] or [2]).
Oleinik, Yocifian and Shamaev have studied in [4] the spectral problem for some
classes of elliptic problems with rapidly oscillating coefficients in domains with
periodic structure; earlier works in this direction were undertaken by Kesavan
[1] and Vanninathan [5]. We refer to the bibliography of [4] for other works on
this subject. The sequence of domains that we consider (the same as in [3])
need not have a periodic structure. For such domains, analogous investigations
of the spectral problem seem not to have been done for higher-order elliptic
problems. In the above mentioned papers the convergence results for the spectral
problem were derived through reduction of the problem to operator formulation
and subsequent application of abstract results of functional analysis combined
with the convergence results obtained in the stationary case. Here we propose
another approach based on analytic tools using some special trial test functions
in the min-max formulation of the eigenvalues of problem (1)-(2).

2. Hypotheses and results. We assume that the functions aqg(z) (la|,

|8 < m) in the equation (1) satisfy the following conditions:

(A1) anp(x) are real valued functions, defined and m-times continuously differ-
entiable in Q and a,p(z) = aga(z).

~ 0
(A2) For all z € Q, £ = (&1,...,&n) € R", and any function u(z) € WJ*(S2), the
following inequalities hold:

(5) > s 2 m(3€)
i=1

lal=|8|=m

© [ 3 ss@Du@Due)2pm [ 3 1D"u(a)ds,

@ |al,181<m flEm

where 11 and po are some positive constants independent of x and u, and
£ = &7 ---£3~. The inequality (5) is known as the condition of strong
ellipticity.
Throughout the work, we restrict ourselves for simplicity to the case when
n > 2m.
Let us proceed now to the formulation of the conditions on the sets Fi(s) . Let

B(z, p) be a ball of radius p centered at the point . We set dﬁ’) = mingern{p:
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F®) c B(z,p)} and let z{* be the center of the ball of radius d® such that
F® ¢ B(®,d"). By r{) we denote the distance from B(z",d?) to
Uiz, B(z$?,d{”) UT. Let B(z{", a) be the concentric ball to B(z{"),d{")) with
a>d?®.

We introduce the auxiliary functions v,(")(:r), solutions of the model boundary
value problem

(7) Y. (“D"aap(@{”)D**u{(x) =0 in B(z{®,a)\ F,
|al=|B|=m

(8) D*(v(z) 1) =0, |o|<m-1, z€dF®,

9) D% (z) =0, |oj<m-1, z€dB(z,a).

We extend the functions v{*(z) to Q by setting v (z) =1on F and v{?(z) =
0in Q\B(mss), a). They will play a central role in the investigation of the problem

(1)-(2).

For each set Fi(s), s=1,2,...,i=1,...,I(s), we define the number

(10) C(F)= / w2 aas(@”)D*u(2) D (z) d,
B(=:"9) |a|=|Bl=m

where the functions »{*) () are solutions of problem (7)-(9). The numbers C(F)
represent the local energetic characteristics of the sets Fi(’).
We shall require the following conditions:
(H1) d,(s) < Czr,(’), lim, o0 max; <i<i(s) {r,(’)} = 0, where C; is a constant inde-
pendent of 7 and s.
(H2)

I(s) (dss))g(n_zm) -

(i)

i=1

(H3) There exists a bounded function ¢(z) such that for any region G C ,

lim ¥ C(F) = [ da)ds,

i€l(s,G) G

where I(s, G) denotes the set of numbers i € {1,...,I(s)} for which F,-(’) C
G.
Throughout we understand a solution of the boundary value problem (1)-(2)
or (3)—(4) in the weak sense.
The conditions (A1) and (A2) imply the selfadjointness of problem (1)-(2),
the existence of a sequence of eigenvalues 0 < ,\§” <A< < /\ff) <---of
(1)-(2) in R, arranged in increasing order and a sequence ug-s)(:c), i=12,...0f
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eigenfunctions of (1)-(2) corresponding to the A_.(,-a), j=1,2,... and forming an
orthonormal basis in Ly(Q(*)). The problem (3)—(4) is selfadjoint as well.
Let us introduce further notations:

(u,v)s=/ uvdz, (u,v)o=/uvda:,
Q(s) Q
)

() = /Q .

(u,v)o = /n ( Z aag(z)D"uDﬁv+c(:z:)uv) dz.

lal,|81<m

Z aa,g(:z:)D“uDﬂv dz,
lal,|B|<m

We denote by E(u(ls), iis ,uff_)l) (resp. L(uy,-..,uk—1)) the subspace generated
in Ly(Q2(®)) (resp. L2(S2)) by the functions ug-’),j =1,...,k—1 (resp. uj, j =
1,...,k —1) introduced above.

Let

Ws(u(ls),...,ui"_)l)
0
= {w € WP(Q®) : [wll ) = 1, (@,u{)s = 0,5 =1,...,k -1},
Wo(u1, ..., uk-1)
0
= {'w € W2m(Q) : ||w||L,(Q) = 1,(w,u,-)g = O,j =1,... ,k - 1},

and let us denote by d;; the symbol of Kronecker. By the min-max principle
(see e.g. [4, Chap. 3]), it is known that the k-th eigenvalue /\fc’) (resp. Ax) of
problem (1)—(2) (resp. (3)-(4)) is defined as follows,

(11) )\g’) = inf (w,w)s
wGW.(ug‘)w-;"s:_)l)

(resp.

12 Ak = 1 1Wio)-

(12) o wEWo(ul.---;ﬂk—1)<w w)o)

The inf in (11) (resp. (12)) is attained if w is an eigenfunction of (1)~(2) (resp.
(3)-(4)).

In the sequel by the k-th eigensolution (Ai’),uﬁs)) (resp. (Ak,ux)) we shall
mean that /\5:) (resp. Ax) is the k-th eigenvalue of (1)—(2) (resp. (3)—-(4)) and ul®)
(resp. ux) the eigenfunction corresponding to it. The symbol A — B will mean
A converges to B.

The main result of this work is

THEOREM 1. Assume that the hypotheses (A1), (A2), (H1), (H2) and (H3)
are satisfied. Let 0 < A\¥ < M) <. g /\S) < ... be the sequence of eigen-

values of the problem (1)-(2) arranged in increasing order and let u(l"’),ugs), o olitj
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u}c”), . € I/l%’"(ﬂ(’)) be the sequence of the corresponding eigenfunctions of (1)-
(2) extended to Q by setting ufis)(z) 0 in Q\ Q®), and such that (uf”),u(”))s =
dij, 1,7 = 1,2,.... Then there exists a sequence of real numbers 0 < A} <
A2 < oo < Mg < -+, arranged in increasing order, and a sequence of functions

0
Uly.. ., Uk,... € WI(Q) such that

lim ,\(3) Ak,

§—00

and the sequence u;’ (2) () converges weakly in Wz”‘(Q) and strongly in W"‘(Q) (for
all p € (1,2)) to the function ug(z) as s — oo. Furthermore (A, ux) is the k—th
eigensolution of problem (3)-(4).

3. Sketch of the proof of Theorem 1.

0
STEP 1. Let (,\ﬁ”,uﬁ”), ugs) € W(Q®)) be the first eigensolution of prob-
lem (1)-(2) such that ||u§3)||L2(Q(.)) = 1. The sequence {A{”},=12,.. is bounded;
thus there exists a A] > 0 such that ,\§s) — A] modulo the extraction of a sub-

0
sequence. Also the norm of {u(ls)}s=1,2,___ is bounded in W*(f2), hence modulo

0
the extraction of a subsequence, ug’) converges weakly in WJ*(€2) to a function

0

u; € Wi(Q) and ||uy|z,) = 1. We prove that (A],u;) is an eigensolution of
0
(3)-(4), furthermore u( - strongly in W;*(Q2) with p € (1,2). A key point
is to show that A} is indeed the first eigenvalue of (3)—(4), i.e.,
A=A = . inf (w, w)o.
weW(Q),|lwll L, a)=1

We proceed as follows. Clearly A] > A;. Hence we must make sure that A} < /\1

In order to prove the latest inequality we insert in the functional defining ’\x s

A(ls) = . inf (ws w)s
wewm (Q):""J"L2 (al2)y

trial test functions of the form
(k)
—(k uy, (z
gs)(x) ls (z)
llu{? "L:(Q"’)

where
u{P (@) = u (@) - 3 v (2)ul (2)p{) (z);
i€l,
v{*)(z) is a solution of problem (7)~(9) in B(z", &)\ F{*) with v{*)(z) = 1 on F{*
and vf Nz) = 0in Q \ B(z f"),a), w,(s)(x) are some appropriate test functions,
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0
{u(lk)(a:)}k=1,2,,‘_ € CX() and ugk) — u; strongly in W*(2). As a result of
appropriate calculations and using some sharp pointwise and integral estimates
of the functions v{*), we get that

’\; Lo ’\ga) < (ug’;)sﬁ’g’;)> (u13u1>0 = ’\1’

as s,k — co. Thus A} < A and the equality A} = A, follows. Therefore Theorem 1
holds for the first eigensolution of (1)-(2).

step 2. Let (AP, u{),..., (A, ul”) () € W () be the first k eigen-
solutions of (1)—(2) such that (uf’),u(s))s =8;j,4,j =1,..., k. Let (A\1,u),..
(uk—1,Ak—1) be the first (k — 1) elgensolutxons of (3)- (4) such that /\(’) — Aj
and ug-) converges to u; weakly in Wg"(ﬂ) and strongly in W;"(Q) (for all
p € (1,2)), for j =1,...,k—1. We show that there exists a Ax > 0 and a function
u € W?Q’"(Q) such that /\t) — Ak, ul” converges to u; weakly in W%{"(Q) and

0
strongly in W;*(Q) (p € (1,2)); furthermore (A, uk) is the k-th eigensolution of

(3)-(4)-
The proof is in spirit the same as in Step 1, but it is technically more involved.
The role of the trial test functions in (11) are played by the functions

»mm

Wl Loy

@{P(z) =

where

k—1
W (z) = u(z) - Z( @« (z),

ulp (2) = v () ZWwWMWm;

i€l,

the functions v{* (z), ${)(z) are the same as in Step 1, and W (2)}rera,... is

a sequence of functions in CZ°(§2) which converges to ux strongly in I"l?.{‘(ﬂ).
Thus Theorem 1 holds for the k-th eigensolution of (1)—(2). The validity of The-
orem 1 for all eigenvalues and their corresponding eigenfunctions then follows by
induction.
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PROOF OF SOME CONJECTURES BY KAPLANSKY

R. A. MOLLIN

Presented by Vlastimil Dlab, FRSC

ABSTRACT. In correspondence with this author, Professor Irving Ka-
plansky posed several conjectures, largely prompted by his being inspired
by the proof of (2, Theorem 6.5.9, p. 348]. Although some of these conjec-
tures may be “known” in the folklore, they certainly are not well known.
Moreover, the proofs discovered by this author of three of these conjec-
tures link the solutions of quadratic Diophantine equations with the theory
of continued fractions, thereby continuing work done by this author and
others in [4]-[6].

RESUME. Lors de quelques échanges de correspondence entre I'auteur
et le professeur Irving Kaplansky, ce dernier a énoncé plusieurs conjec-
tures, sous I'influence, pour la plupart d’entre elles, de la preuve du [2,
Théortme 6.5.9, p. 348). Méme si certaines de ces conjectures font partie
du folklore, elles ne sont probablement pas toutes bien connues. De plus, les
preuves obtenues par I'auteur de trois de ces conjectures établissent un lien
entre les solutions d’équations quadratiques diophantiennes et les fractions
continues, et sont dans la ligne des travaux de 'auteur et autres chercheurs

4]-(6)-

1. Notation and preliminaries. We assume that the reader is familiar
with basic algebraic number theoretic concepts such as those contained in [2}-[3].
We denote simple continued fraction expansions by

(0;q1,0, .-, a,.-.).

These partial quotients are linked to the following recursive sequences, which we
will need in the next section. For D € N not a perfect square, and (P + vD)/Q
a quadratic irrational, define

Py=P, Qo=Q, and recursively for j >0,

(L) 4= [P’—Z,‘/—EJ ,
J

(1.2) Pit1=¢;Qi — F;

and

(1.3) D =P}, +Q;Qjn.
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It follows that we have the simple continued fraction expansion of the quadratic

irrational:

P+vD Py++vD
a= = =(qa;41,---,¢1j,---),
Q Qo

and for such an o, we define two sequences of integers {A;} and {B;} inductively
by:

(1.4) A2=0, A_1=1, Aj=¢qjAj1+A4j—2 (forj=0),
(1.5) B_,=1 B_;1=0, BJ' = Qij_l + Bj._Q (for 7 > 0).

If @ = v/D, then by (2, Theorem 5.3.4, p. 246],
(1.6) A3y - B}_\D=(-1)Q; (forj>1),

Finally, we need the following result.

THEOREM 1.1. Suppose that D > 0 is a squarefree radicand, and (/D) = ¢
is the period length of the simple continued fraction expansion of /D, with the Qj
defined in that expansion from equations (1.1)-(1.3). Then Q;|2D with Q; > 1
if and only if j = £/2. Furthermore, if D is even, then Q;|D with Q; > 1 if and
only if j = £/2. In either case, qoy2 = 2Py/2/Q/2-

PRrROOF. See [1, Theorem 6.1.4, p. 193]. .

2. Three conjectures. In correspondence with this author over the past
couple of years, the following were posed by Irving Kaplansky.

CONJECTURE 2.1. Let p =3 (mod4) be a prime, and let

(93 915---,9¢/2,-- - Ge)

be the simple continued fraction expansion of \/p of period length £. Then either
ges2 = | /2] = qo o qey2 = |/P] — 1 = qo — 1, whichever is odd.

CONJECTURE 2.2. Letp =1 (mod8) and g = 3 (mod 4) be primes, T+U,/pg
the minimal solution of 22 — pqy® = 1, and (8) = 1, where (}) is the Legendre
symbol. Then if
(2.7) ¢®P~V/% = _1 (modp),

T is even.!

CONJECTURE 2.3. If p is a prime such that p = a® + b for some integers a,

b, then there ezist integers x, y such that a = 2% — py?.

1 Note that (2.7) is equivalent to (%)4 = —1 where (£)4 denotes the quartic residue symbol.
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PROOF OF CONJECTURE 2.1. First, since p = 3 (mod4), then £ is even (by
equation (1.6) with j = £). By Theorem 1.1, g¢/2 = 2P;/2/Q¢/2, and Qg2 | 2p.
Since,

P =P+ Qe/2Qe/2-1,
by equation (1.3), then Qg2 # p,2p, given that @; > 1 for all integers j > 0.
Since Qg/g > 1, then Ql/z =2, so

qes2 = Puyyo.
However, by equation (1.1),

5]
qes2 = —2— .

Thus,
P, /2 + \/]_)

Pg/2+\/ﬁ_1
2

2 b

VP > Py > VP -2
Since the only integers in that range are |\/p] and |/p] — 1, then P,/ must be
one of them. Also, by equation (1.3) again,

p= P£2/2 + 2Ql/2’

s0 Py/o cannot be even. Hence, gg/; is one of |/p] or | /p] — 1, whichever is odd.
This completes the proof of Conjecture 2.1.

> Pg/z >

which forces

PROOF OF CONJECTURE 2.2. Suppose that (2.7) holds and T is odd.
CLAIM 2.1. There ezist a,b € Z such that pb* — qa® = 1.
Since T? — pqU? = 1, then
(T+1)(T -1)=T%-1=pqU%
However, since g = ged(T + 1,T — 1) | 2, then g = 2 given that T is odd. There

are four possibilities.
CASE 2.1. T —1=2a? and T + 1 = 2pqb® where 2ab=U.

By subtracting, we get that 1 = pgb® —a?, so a® = —1 (mod g), a contradiction
since ¢ = 3 (mod 4).

CASE 2.2. T —1=2pa? and T + 1 = 2qb® where 2ab="U.
By subtracting, we get that 1 = gb® — pa®. Thus, (pa)? = —p (mod g), so

= () = () -()-)0)--6)

so (2) = -1, a contradiction.
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CASE 2.3. T — 1 =2pga® and T + 1 = 2b? where 2ab="U.

By subtracting, we get 1 = b® — pga?, but b < T, contradicting the minimality
of T.

CASE 2.4. T — 1=2qa? and T + 1 = 2pb® where 2ab=U.

By subtracting, we get 1 = pb? — ga?, which is Claim 2.1.
By Claim 2.1, —ga? = 1 (mod p). Therefore,

= (39).-(3).6).-G).6)-6).6)--)

(2.8) (%) =-1

Let @ = 27y where y is odd and j is a nonnegative integer. Since pb? — ga® = 1,
then pb? = 1 (mod y). Therefore, by the Quadratic Reciprocity Law, we have the
following Jacobi symbol equation:

=(5)-()-()-(9-()

where the penultimate equality comes from the fact that p = 1 (mod 8). We have
contradicted (2.8). This proves Conjecture 2.2.

For the following proof, the reader should be familiar with the basics of
quadratic orders as found in [1].

PROOF OF CONJECTURE 2.3. Let p = a®+ b2, and consider the non-maximal
quadratic order Oyp = Z[,/p] of discriminant 4p. Then I = (a,b+ /p) is an ideal
in O4p of norm a. By multiplication formulae for ideal given in [2, (3.5.2)(3.5.7),
pp. 178-179] (see also [1, pp. 10-11]), I? = (a%,b + /p). By [3, Exercise 3.73,
p. 158, I? ~ 1 in the class group of Oy,. By [3, Theorem 3.70, p. 162 and
the class number formula for quadratic orders given [2, p. 345] (see also the
development given in (1, pp. 25-26]), the class number of Oy, is odd. Hence,
by [2, Exercise 6.5.33, p. 357], I ~ 1 in the class group of Oyp. Thus, there
are z,y € Z such that I = (z + y,/p), where the norm of I is given via [3,
Corollary 3.44, p. 150]:

N(I)=a= N(z +yyp) = z* — py/?%,
as required.
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