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ON A NON-SELF-ADJOINT PROBLEM WITH AN INDEFINITE
WEIGHT FOR ELLIPTIC SYSTEMS WITH A PARAMETER

MAMADOU SANGO

Presented by Vlastimil Dlab, FRSC

RESUME.  Nous établissons la complétude et la summabilité par la
méthode d’Abel-Lidskii des vecteurs propres généralisés d’un probleme
élliptique avec un poids indéfini et la distribution angulaire des valeurs
propres du probleme.

1. Introduction. In a bounded region @ C R" with a (n — 1)-dimensional
boundary I', we consider the boundary value problem

(1) (A= wFEu=0in€; Bu=0k=1,...,r)onT

where A = A(xz, D) is a square matrix of dimension N consisting of differential
operators of order 2m with complex coefficients, By = Br(z,D) (k=1,...,r =
Nm) are N-dimensional rows whose components are differential operators of
order my, < 2m — 1 with complex coefficients w is a real-valued function which
assumes both positive and negative values and E is the unit matrix.

In this note we establish some results on the completeness and the summability
by Abel’s method (see Lidskii 1962, Kostyuchenko-Razdievskij 1974, for details)
of the root vectors of problem (1), and the angular distribution of its eigenvalues.
The completeness of root vectors and the angular distribution of eigenvalues
have been obtained in (Faierman 1990) for regular scalar elliptic problems (when
N = 1). Here our results, which are a generalization of Faierman’s to elliptic
systems, are derived through the existence theory of an auxilliary transmission
problem under weaker conditions. This approach makes it possible to extend our
results to L, spaces and to more general problems; for example, to systems elliptic
in the sense of Douglis-Nirenberg with a parameter. We refer to (Agranovich 1990,
Kozhevnikov 1973), where these problems have been investigated in the case
when w(z) = 1. We also note the important contributions of (Agmon 1962) and
(Grisvard and Geymonat 1967) to the L,-theory.

2. Basic assumptions. Let z = (zy,...,z,), D; = —ia%j, D = (Dy,...,
D,), D* = D{",..., Dy, where a = (e, ...,an) € Z% (Z, is the set of non-
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negative integers) and |a| = 3°7_, aj,

N
s . 3

A(a:,D)={ D a:',i(z)oa}

J=1
lal<2m i

Bk(a:,D)={ Y b;;f(z)Dﬂ} (k=1 Nm).

1Bl <my =

We assume throughout that the operators A, By (k = 1,...,Nm) and the
domain Q satisfy the following smoothness conditions: the region € is of class
C?™ the coefficients ai/ (z) in A are continuous in € for |a| = 2m and bounded for
|a| € 2m—1, the coefficients bz’ (z) in By belong to C2™~™(T') for | 8| = my and
bounded together with their derivatives of order up to 2m —my, for |8| < my —1.

Let H;(Q2, N) (Lis an integer), be the direct product of N Sobolev spaces W4(2)
when | = 0 we write Ho(Q2, N) = L2(f2, N). We denote by Hy_(T) (I 2 1) the
space of boundary values of functions from W(f2) and by H,_ 1(T, N) the direct
product of N such spaces.

Next we turn to the assumptions concerning the weight function w(z). They
will be closely related to a certain partition of the domain Q into appropriate
subdomains.

AssUMPTIONS 1. Let there be given some (n — 1)-dimensional manifolds

I'y,...,Ts each of class C?™, lying inside Q and having no point in common
with T and such that I'y N T # 0 for [ # k. They divide Q into subdomains
Qoo Qsga-

We assume that the weight function w(z) is continuous in each ;, can pertain a
discontinuity of first kind and change sign while crossing any I';, and

lw(z)] > 0 a.e. in Q.

Since the function w(z) is assumed to be discontinuous across I';, the solution
of (1) may not belong to the functional space Hz, (2, N) which is of importance
to us. Thus, in order to preserve the membership of the solution to this space,
we impose, among others, the following natural conjugation conditions:

(2) D,’;u(,)(:z:) = Df,u(p)(z)(j =0,...,2m—1) oneachT,

where u(;y and /) are the restrictions of the function u to €; and Qs respectively,
I'p separates €; from - and D, is the derivative along the inward normal to T,

DEFINITION 1. A complex number A will be called an eigenvalue of the bound-
ary problem (1) if the problem (1) with the transmission conditions (2) admits
at least a non-trivial solution u € Ha,, (€2, N); this solution is referred to as the
eigenfunction of (1) corresponding to A; otherwise the number X is called regular
point of (1).
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Next, let Ay(z,€) and Bor(z,€) (k = 1,..., Nm) be respectively the principal
parts of the operators A and By (k =1,..., Nm). Let also

3(91,92) = {/\G C:0, < argA < 02}

be an angular sector in the complex plane and A an element of Z(6,, 65).

AssSUMPTIONS 2. (i) We require the matrix
(3) Ao(z,8) — Mw(z)E

to be invertible for all £ € R"; |¢| + |A\| #0and allz €, (p=1,...,5+1).

(ii) Let z¢ be any point on I'. We shall turn the coordinates axes such that,
the axis z, takes the direction of the inward normal to I' at zo. For simplicity,
we suppose that the operators A, By are written in the system of coordinates
connected with zo. We consider the following problem on the ray.

(4) (Ao(z0,&', Dr) = Aw(zo)E)v(t) =0, t>0
(5) Box(20, &, D)v(t)i=o =g (k=1,...,Nm),
where &' = (§,...,&,-1) and D, = —i%.

For any & € R"™!, |¢/| + |A| # 0, the space of solutions of system (4), ex-
ponentially decreasing in modulus when ¢ — oo, is Nm-dimensional and the
problem (4)-(5) is uniquely solvable for any g in this space.

(iii) Let A;(Ar) and wi(wyr) be respectively the restriction of the matrix A
and the function w to () and assume that T, separates £ and .. We take
a point zg € ', and turn the coordinate axes such that, the axis z, takes the
direction of the inward normal to I', at z9. We consider the following transmission
problem on the line.

(6) (Ag()(:l:o,f’, D) - /\w[(:L‘())E)‘U[(t) =0, t>0
(N (Avo(zo, &', Dy) — Awp(zo) E)vr(t) =0, t<0
(8) D v (0) — D*vp(0) = hyp, p=0,...,2m—1.

For any £’ € R"™!; |€'| + |A| # 0, the space of solutions of the system (6)-(7),
exponentially decreasing in modulus when |t| — oo, is 2Nm-dimensional and the
problem (6)—(8) is uniquely solvable in this space for any N-dimensional column
hyup.

We define an exponentially decreasing solution of (6)-(7) as a vector v =
(v1,vr), where v, and vy are respectively solutions of (6) and (7) and () - 0
when ¢ — 400 while v;/(t) — 0 when t — —oc0.

Let A be the unbounded operator with the domain

D(A) = {u € Hy(Q,N) : Blu=0(k = 1,..., Nm)}
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acting by Au = A(z, D)u for all u € D(A) and T the bounded operator induced
by the multiplication by w in Ly(€2, N). Clearly D(A) is dense in Ly(Q2, N). We
rewrite problem (1) in the form

9) T 'Au=Xu, ueD(A)

and call A an eigenvalue of problem (1) if A is an eigenvalue of (9) and refer to
the root vectors of T~'A corresponding to A as those of (1) corresponding to
A. Lastly let S(A) = A — AT be the pencil acting in L2(2, N) with the domain
D(S) = D(A) and p(S) the set of its regular points.

3. Results. Now we can formulate our first result which plays a central role
in our investigations. We have

THEOREM 1. Let Assumptions 1 and 2 be satisfied. Then there exists a positive
number C such that X € p(S) and

(10) 1S~ M Lot Ny~ Loy S CIAT
for A € 2(8) and sufficiently large in modulus.

IDEA OF THE PROOF. We consider the following transmission problem in-
duced by the boundary value problem (1) and the conjugation conditions (2):

(11) Liu= (Az(z‘, D) - /\w;(x)E)ul(a:) =0 inQl=1,...,s+1),
(12) [D*u}p, = D*w(z) — D*up(z) = 0on Tp(p =0,...,2m - 1;p=1,...,s),
(13) Bi(z,D)u(z) =0 onT(k=1,...,Nm).
This problem is elliptic with a parameter under the assumptions 2. Following
(Agranovich and Vishik, 1964) and (Roitberg and Serdyuk, 1991), we prove that
for |A| sufficiently large, the operator U/ defined by

Uu = {Llul, ¥y L3+1u,,+1, [u]l, ceay

(DRl < s bty 5.0 5 [P Vit] s Byt 5.0 s BB

connected with the problems (11)-(13) and acting from

Hzm(Ql,N) Xeee X Hgm(Qs.H,N)

e s+1 s 2m-—1
HL2 QlaN) X H H H2m p—l(FP’N X HH'Zm mk-l(r
p=1 p=0

establishes an isomorphism between these two spaces. Hence, thanks to the homo-
geneous boundary conditions (12), we obtain that the operator (A(z, D)—w(z))
establishes an isomorphism between Ha, (2, N) and L2(€2, N) and the estimate

lullzm,e + M llulog < C||(A(z, D) = dw(z))ully o
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holds for all solutions u € Ha,, (2, N) of (11)-(13) with |A| sufficiently large; C
is a positive constant independent of u and A. Furthermore the operator A is
closed. Now (10) immediately follows from this inequality and the closed graph
theorem.

Let 0 € p(S). We are now in the position to establish our main results. We
have

THEOREM 2. Let assumptions 1 be satisfied. Suppose that assumptions 2 are
also satisfied along certain rays Z(0;) (j = 1,...,k) in the complez plane ema-
nating from the origin and making an angle 6; with the positive real azis, and in
this connection let the mazimal angle between successive rays not exceed 2mn [n.

Then the spectrum of problem (1) is discrete and its root vectors are complete
in Lg(Q, N ) .

For the proof, we show that under the conditions of the theorem the Z(6;) are
rays of minimal growth of (I'~'.A— AE)~!, i.e., this operator exists for A € Z(6;)
and

(14) (T7' A~ AE)™Y|| < const |A|?

for |A| sufficiently large. The first assertion of the theorem follows from the com-
pactness of (T~'A — AE)~! in Ly(, N). Furthermore (T-1A — AE)~! belongs
to the Von Neuman-Schatten class C.z +e; € > 0. Thus, the completeness of the
root vectors of problem (1) follows from the inequality (14) and (Dunford and
Schwartz 1963, Chapter XI, Sect. 9, Corollary 31).

THEOREM 3. Under the assumptions of Theorem 2, the system of root vectors
of problem (1) is summable by the method A(Ly(R, N), o, 5;) (a; = Qﬁ-x?i%_
i=1,...,k=1) for §; € (&, alj), where o; = |04, — 6.

’

Since (T~'A — AE)~! is of class C,a_c; € > 0 and Inequality (14) holds
on the rays Z(0;) (j = 1,...,k), the affirmation the theorem is an immediate ~
consequence of (Kostyuchenko and Razdievskij, 1974, Theorem 1).

The following result deals with the angular distribution of the eigenvalues of
problem (1).

THEOREM 4. Let Assumptions 1 be satisfied and suppose that there exist the
rays {Z(6;)} (j = 1,2) in the complex plane such that
() 0 < 6 — 6, < min{2m,2mn/n}
(i) Assumptions 2 are satisfied for 0 = 0; (5.=1,2).
Suppose also that for some 6’ (6) < 0’ < 8,) at least one of the assumptions 2 (),
(ii) or (iii) is violated for 6 = ¢'.
Then there are infinitely many eigenvalues of the problem (1) in the sector
91 < a.rg/\ < 02.



102 MAMADOU SANGO

EXAMPLE. Suppose that the operator A(z, D) is strongly elliptic and the
boundary conditions are of Dirichlet type then the assumptions 2 (i), (ii) are
immediately satisfied (see Agranovich and Vishik 1964, Chap. 6). Following the
same arguments as in this paper, one can show that the assumption 2 (iii) is
satisfied only when arg A\ = +7%. Thus the revolvent set of the pencil S(}) is
located on the imaginary axis in the complex plane and the rays argA = +73

are the rays of minimal growth of (S(/\))_l. Furthermore from Theorem 2 the
spectrum of S()) is discrete and lies in the half-planes ImA < 0 and Im A > 0.
We obtain also that when 2m > n, the root vectors are complete in Ly(S2, N)
and summable by the method A(L2 (2, N), e, ;) for B; € (5%,1) (4 = 1,2);
here a; = 0, 7.

ACKNOWLEDGEMENT. The author thanks the anonymous referee for valuable
remarks.

NOTE ADDED IN PROOF. The extension of the completeness results from this
paper to systems elliptic in the sense of Agmon-Douglis-Nirenberg in L, Sobolev
spaces (1 < p < 00), without any restriction on the orders of the operators
involved, has been announced in the author’s paper: C. R. Acad. Sci. Paris, t. 329,
Série 1, pp. 703-708, 1998. A detailed version of our results will be published
elsewhere.
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GORDON'’S e-CONJECTURE
ON THE LACUNARITY OF MODULAR FORMS

KEN ONO

Presented by M. Ram Murty, FRSC

ABSTRACT. In this note we prove B. Gordon’s e-conjecture regarding
the lacunarity of modular forms. We show that if f = ZT:() a(n)q™ €
M;. (N, x) has the property that there exists an € > 0 for which

#{n < X |a(n) # 0} =0(X'"9),

then f(z) is a finite lincar combination of theta series of weight 1/2 or 3/2.

RESUME.  Ici, on démontre une conjecture de B. Gordon qui s’agit de la
lacunarité des formes modulaire. Soit f = Zw a(n)q™ € My(N, x) une

n=1
forme modulaire. On montre que si il existe un € > 0 pour que

#{n < X |a(n) #0} = 0(X'~),
puis f est une combination des series theta du poids 1/2 ou 3/2.

A formal power series P(q) := 2 on>n, An)g" is called lacunary if

X“_‘POO #{n< X)I{a(n) =0} 1

These power serics have the property that “almost all” of their coefficients are
zero. Many important g-series in the theory of partitions are lacunary. For in-
stance the following well known identities are examples of lacunary power series: -

2 o 3n2+n
(Euler) [Ta-gm= Y (-nmg===,
n=1 n=-—o00
oc oo ain
(Jacobi) (1-¢")° =) (-1)"(2n+1)g™
n=1 n=0

For each k € }Z, let Mi(N,x) be the space of modular forms of weight k
on Fo(N) (if k is half-integral then 4|N) with Nebentypus character x, and let

Received by the cditors September 8, 1997.
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Si(N, x) denote its subspace of cusp forms. In this note we are interested in those
f(2) € My(N,x) whose Fourier expansions f(z) = Y.o_ya(n)q" (throughout
q := e*™2) are lacunary. Serre [S] proved a “basis theorem” for lacunary integral
weight forms. He proved that an integral weight f(z) is lacunary if and only
if it is a finite linear combination of forms with complex multiplication. Using
this description, Serre {S2] and Gordon, Hughes and Robins [G-H, G-R] have
classified all the lacunary integer weight modular forms in certain special families
of forms whose Fourier expansions are given by infinite products. V. K. Murty [M]
has obtained an intriguing alternative description of the lacunary integer weight
forms.

The characterization of lacunary half-integral weight modular forms remains
open. Elementary theta functions serve as convenient examples of lacunary half-
integral weight forms. If i =0 or 1,0 < 7 < t, and a > 1, then the elementary
theta function 6, ; r¢(2) is given by

0a,ire(2) = Z niq‘"‘z.
n=r (mod t)
Each function 6, r¢(2) is a holomorphic form of weight i + %, and any f(z) =
S pa(n)g" that is a finite linear combination of such series is called superlacu-
nary. In particular every superlacunary form has weight 1/2 or 3/2. By a theorem
of Serre and Stark [S-Sta), it is well known that every weight 1/2 modular form
is superlacunary. Clearly every superlacunary f(z) is lacunary since there exists
a non-zero constant ¢; for which

#{n < X | a(n) # 0} ~ c;VX.
Recalling Dedekind’s eta-function n(2) := ¢*/24 o, (1 — ¢"), we find that the

identities above are examples by Euler and Jacobi obtained from

oo
n n 2
n(24z) = Y (1),

n=—oo
oo
P(82) = Y _(~1)"(2n + 1)g"+ V",
n=0

It is widely believed that every lacunary half-integral weight modular form
is superlacunary, i.e., is a finite linear combination of elementary theta series.
A proof of this conjecture seems to be well beyond current methods. In view of
these technical difficulties, Gordon posed the following unpublished conjecture.

GORDON’S e-CONJECTURE. If f(z) = Y a(n)q™ belongs to M(N,x) and
has the property that there exists an e > 0 for which

#{n< X |a(n)# 0} =O0(X'™),
then f(z) is superlacunary.

In this note we prove:
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THEOREM 1. If f(2) =Y oo, a(n)q™ € Mi(N,x) is not superlacunary, then

#{n < X | a(n) #0} >; X/log X.

COROLLARY 1. Gordon’s e-conjecture is true.

It is well known that Lehmer speculated that Ramanujan’s function 7(n) is
non-zero for every positive integer n. Recall that 7(n) is defined by

o0

Yo (e =q [T -
n=1

n=1

In view of Lehmer’s conjecture and Serre’s paper on the lacunarity of even powers
of the eta-function, we record an elementary corollary that contains estimates on
the number non-zero coefficients of all the powers of the eta-function. Although
one can make better estimates in many cases, we have sacrificed this for a clear
and comprehensive statement.

COROLLARY 2. Ifr is a positive integer, then define 7.(n) by

> _m(n)g" = [J(1-q")"
n=0

n=1

Ifr #1 or3, then

X ifr #2,4,6,8,10, 14, 26 is even,
#{n < X|7(n) # 0} > { X/log X ifr odd orr = 2,4,6,8,10, 14, 26.

Proor oF ResuLts. If f € Sp,1(N,x) has the property that for every
prime p f N there exists a complex number A(p) for which

TP | f = Mp)f,

then we shall refer to f as an “eigenform”. The author and C. Skinner [O-§]
proved the following key lemma. For each positive integer r let P(r) denote the
set

P(r) := {D | D > 1 square-free with exactly r prime factors}.

LEMMA 1. Let g(2) = 3°07, b(n)g" € Sy, 3 (N, x) be an eigenform for which

(i) b(m) # 0 for at least one square-free m > 1 coprime to N,

(ii) the coefficients b(n) are algebraic integers contained in a number field K.
Let v be a place of K over 2, and for each s let

B, := {m | m > 1 square-free, (m, N) = 1, and ord, (b(m)) = s}.
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Let so be the smallest integer for which Bs, # 0. If By, N P(r) # 0, then

X

<
#{meB,,oﬂP(r)|m_X}>>logX

(loglog X )™ 1.

PROOF OF THEOREM 1. In view of Serre’s work [S] it is well known that
every integral weight modular form f(z) = "> | a(n)q™ has the property that

#{n < X |a(n) #0} >; X/log X.

Moreover amongst the half-integral weight forms it is well known that we can
without loss of generality assume that f(z) is a cusp form, and by the theorem
of Serre and Stark we may assume that its weight > 3/2.

Let f(2) =Y o>, a(n)q" € Sk+1 (N, x) be an eigenform. If f(z) is not super-
lacunary, then the conclusion of the lemma shows that the number of n < X
for which a(n) # 0 is >y %. It suffices to show that the hypotheses of the
lemma are satisfied for a suitable non-trivial scalar multiple of f(z). Since f is
in the orthogonal complement of the elementary theta series, its Shimura lift is
a weight 2k cuspidal eigenform. Hence by Waldspurger theory there exists an
arithmetic progression with the property that for every square-free n coprime to
N the number a(n)? is the “algebraic part” of the central critical value of the
modular L-function of the Shimura lift of f(2) twisted by a quadratic character.
(See [Wal, Corollary 2]).

Verifying (i) now follows from a theorem of Friedberg and Hoffstein [F-H]
that guarantees that infinitely many such values are non-zero. To show that f (2)
satisfies (ii) one may consult the theory of modular symbols [G-S, M-T-TJ, i.e.,
the existence of uniform periods of modular L-functions of twists so that the
“algebraic parts” of these twisted values are algebraic integers in some number
field K. Therefore Theorem 1 holds for every non-superlacunary eigenform.

Now we consider the case where f is not an eigenform. This argument is
similar to the integral weight argument employed in [S,M]. If g = Y b(n)q" €
Sk+1(N,x), then define M,y(X) by

My(X) := #{n <X |b(n) # 0}.
It is easy to see that
(1) M91+92(X) < A/Igl (X) + NIH:(X)'

Suppose that f(z) € S,H_%(N, x) has the property that M;(X) = O(X'~¢) for
some € > 0. If f = fo+ f1 where fp is superlacunary or trivial, and f; is orthogonal
to the elementary theta series, then by (1) we find that My, (xy < M;(X) +
My, (X). In particular there exists an €; > 0 for which My, (X) = O(X!~%).
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Recall that if p is prime and g(z) = Y o, b(n)q" € Sk+1(N,x), then
(2)
o0

_1\k
9 T = 3 (8P + X0 (B2 ot + X)) o

n=1

By a quick examination of (2) one finds that
(3) My zye(X) < My(p*X) + 2M,(X).

Now let T be the Hecke algebra and let X := Tf;(z). By (1) and (3) we see
that for every h(z) € X that M,(X) = O(X'~). Since T is commutative, every
simple T submodule of X is of the form Ch(z), but on the other hand h(z) is an
eigenform. Therefore by the eigenform case we find that M, (X) > %, and
this is a contradiction. =

PRrROOF OF COROLLARY 2. Serre [S2] proved that the only even r for which
Yo o Tr(n)q" is lacunary are r = 2,4, 6,8, 10, 14, 26. The result follows immedi-
ately from Theorem 1. [
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DISCRIMINANTS AND ELECTROSTATICS OF GENERAL
ORTHOGONAL POLYNOMIALS

MOURAD E. H. ISMAIL

Presented by P. G. Rooney, FRSC

ABSTRACT. This is an announcement of our forthcoming results where
we evaluate the discriminants of general orthogonal polynomials and pro-
vide an electrostatic model where the zeros of the orthogonal polynomials
identify the equilibrium position of an N particle system.

RESUME. Il s’agit d’annoncer un résultat qui paraitra dans un futur
proche et qui consiste & évaluer le discriminant d’un polynéme orthogo-
nal générale et donner un modéle éléctrostatique identifiant les zéros du
polyndme orthogonal avec la position d’équilibre d’un systéeme & N partic-
ules.

1. Introduction. Stieltjes [11], [12] considered the electrostatic model of
two fixed charges @« + 1 and S+ 1 at £ = +1 and n movable unit charges at
distinct points in (—1,1). The question is to determine the equilibrium position
of the movable charges when the interaction forces obey a logarithmic potential.
He proved that the equilibrium position is attained at the zeros of the Jacobi
polynomial P{**¥(z). He stated the value of the discriminant of Jacobi polyno-
mials. Hilbert [6] and much later Schur [10] gave proofs of the evaluation of the
discriminant. For details see [13].

The purpose of this note is to announce the results obtained in our forthcom-
ing papers [7], [8] concerning discriminants and electrostatic models of general
orthogonal polynomials.

The discriminant of a polynomial f,, with zeros in,Z2n, ..., Tnn, is defined
by

(1.1) D(f) =~*"2 H (Zjn—Tkn)?,  falz) := 72"+ lower order terms.
1<j<k<n

Recently I. M. Gelfand and his school (5] used the concepts of discriminants
and resultants in several variables to construct a theory of multivariate special
functions.
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Let {pn(z)} be orthonormal with respect to a weight function w(z) = e="(*)
supported on an interval [a, b}, finite or infinite, that is

b
(1'2) / Pm(-T)Pn(-’lf)w(l') dz = 6m,n'

The initial values and three term recurrence relation of {p,(z)} will take the
form

(1.3) po(z) =1, pi(z) = (z - bo)/a,
(1.4) ZPn(Z) = an41Pn+1(2) + bnpn(z) + anpp-1(z), n>0.

The annihilation operator for {p,} is given by (3], [2] and [1].
(1.5) Pu(@) = An(2)pa-1(z) = Bn(z)pa(z),
where A, () and B,(z) are defined by

A"( ) — a,.w(b‘)p?,(b‘) + anw(a+)p3(a+)

(16) v
+ anL —ngz(y)w(y) dy,
Ba(z) = anw(a® )pn(at)pn_1(a*) 4+ @0(b7)Pa(b7)pn1(b7)
an T vy S
+a, / —#pn(y)pn-x(y)w(y) dy.
In (1.6) and (1.7) it is assumed that
(18 A= o), =0,

is integrable and the boundary terms in (1.6) and (1.7) exist.
2. Discriminants and functions of the second kind. Our first result is:

THEOREM 2.1 ([7]). Let {pn(z)} be orthonormal with respect to w(w) =
exp(—v(z)) on [a,b] and let it be generated by (1.3) and (1.4). Assume that

Tin > Ton > < * > Ty,

are the zeros of pn(x). Then the discriminant of p,(z) is given by

n

(2.1) D, = {H .—A"c(:j") } [Lli[l aik—2n+2].

Jj=1
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Observe that Theorem 2.1 only assumes the existence of a lowering operator
of the form (1.5) with continuous A,(z) and B,(z).

If the terms in (1.8) are integrable then the orthonormal polynomials p,,’s
satisfy the differential equation (1], [2], [3]

(2.2) Pn(z) + Ra(2)p) () 4 Sn(2)pn(z) =0,

where o

(23) Rale) = - [v@) + 3230,

) Sn(z) := Bl (z) — Bn(z) ﬁi’g% — Bp(x) [v'(:v) + Bn(x)]

+ a“" An(2)An_1(2).

n-—1

Given {pn(z)} the function of the second kind is
1 < pn(y)
2. = — —_ > 3 B
(2.5) Qn(2) e /_oo po yw(y) dy, n >0,z ¢ supp{w}

THEOREM 2.2 ([7]). Let {pn(z)} are orthonormal with respect to w(z) =
e=v() on [a,b]. Assume further that the functions in (1.8) are integrable for
alln, n > 0. Then for n > 0 both p, and Q, have the same raising and lower-
ing operators and satisfy (2.2). Furthermore, pn(z) and Qn(x) form a basis of
solutions of the differential equation (2.2) for n > 0.

3. Electrostatics. The conventional wisdom in potential theory is that a
weight function w(x) = exp(—v(z)) introduces an external field whose potential
is v(z). We propose that a weight function w(z) creates two external fields.
One is a long range field whose potential at a point z is v(z), as conventional
wisdom dictates. In addition w produces a short range field whose potential is
ln(An(:v) / an). Thus the total external potential V(z) is the sum of the short and
long range potentials, that is

(3.1) V(z) = v(z) + In(An(z)/an)-

THEOREM 3.1. Let v(z) and V(x) be twice continuously differentiable func-
tions whose second derivative is nonnegative on (a,b). Then the equilibrium po-
sition of n movable unit charges in (a,b) in the presence of the external potential
V(z) of (3.1) is unique and attained at the zeros of p,(z), provided that the
particle interaction obeys a logarithmic potential.

Observe that finding the equilibrium distribution of the charges in Theorem 3.1
is equivalent to finding the maximum of T'(x),

(32) 7(x) :=[ 7"%1] M -

i=1 1<Ii<k<n
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where
(3.3) X :=(Z1,Z2,...,Tp).

THEOREM 3.2 ([8]). Let Thwax and E,, be the mazimum value of T(x) and the
equilibrium energy of the n particle system and let x,, > Top > -+ - > T, be the
zeros of py(z). Then

(3.4) Lo = cxp( Z :1:],,)) H aj;

i=1

(35) Eu=Y o) -23 ilnay,

j=i =1

Let {p.(z)} be a family of orthonormal polynomials generated by (1.3)
and (1.4). The numerator polynomials {p;(z)} satisfy the recurrence relation
(1.4) and are
(3.6) Pi(2) =0, pile)=1/ar.

The polynomials {p,(z)} and {p}(z)} form a basis of solutions of the second
order difference equation (1.4). The polynomials {p},,(z)} also form a set of
orthogonal polynomials. The numerators {p},,,(z)} are multiples of associated
polynomials with association parameter equal to 1. Wimp [14] showed that the
associated Jacobi polynomials satisfy a linear fourth order differential equation.
This motivated us to extend Wimp’s result to general numerators of general
orthogonal polynomials.

THEOREM 3.3. Under the assumptions in Theorem 2.2 the numerator poly-
nomials satisfy the differential equation

Aﬂo%[l (w(z)) yp 2
(3.7) & [2L, (5] en axn|=0,
i | A L (,;((:)))] Qa1 Q32
where L,, is the differential operator

&2 d
(3.8) Ln = o + Ra(2) o

I + Sn(2),

and the a’s are

Ap(2) _An(z) _ d

(3.9) an =2, ap= Ao(z) ~ An(2) H—_ In(Ao(2)/An(2)),

(3.10)

Ap(2) | ALz
A()(Z) +

(3.11) az) = —0211?41(2)

azn = —25,(2) + @ ln(Ao(z)/An(z )

ag; = 2v'(2) + )’
Qoo + 0'21, 3y = 022 - amS,,(z).
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Finally we state a corollary which gives two additional linear independent
solutions of the differential equation (3.7).

COROLLARY 3.4. The functions w(z)pn(z), w(2)Q.(z) and p}(z) are linear
independent solutions of the differential equation (3.7) provided that w can be
extended to a continuous function in a horizontael strip S with the x axzis in its
interior and z"w(z) — 0 as £ — oo for alln > 0 and z in the sirip S.
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A NOTE ON LJUNGGREN’S THEOREM ABOUT THE
DIOPHANTINE EQUATION aX? —bY* =1

P. G. WALSH

Presented by David Boyd, FRSC

RESUME.  W. Ljunggren a montré que I'équation diophanticnne a X2 —
bY* = 1 posséde au plus une solution en enticrs positifs, et que cette
solution, si elle existe, provient d’une puissance d’une certaine unité d’un
corps de nombres quadratique ou bi-quadratique. Le but de cet article est
de déterminer exactement quelles puissances de cette unité conduisent &
une solution.

ABSTRACT. W. Ljunggren showed that the Diophantine equation
aX? — bY* = 1 has at most one solution in positive integers, and that
a solution must come from a power of a certain unit in a quadratic or a
biquadratic number field. The purpose of this paper is to determine exactly
which powers of this unit can lead to a solution.

1. Introduction. In [7] Ljunggren proved some remarkable results on the
solvability of Diophantine equations of the form aX? — bY* = ¢, for ¢ = 1,2, 4.
In this paper we consider the case ¢ = 1. For this case, Ljunggren’s proof gives
the following precise statement on the solvability of the equation of the title.

THEOREM 1. Let a and b be coprime positive integers, with a # 1, such that
not both a and b are perfect squares and such that the equation aX2 — bY?2 = 1
is solvable in positive integers. Let (u,v) be the solution in positive integers of
aX? - bY? =1 with u minimal, and put 7 = u\/a + vvb. Let v = k2l with | odd
and squarefree. The Diophantine equation

(1) aX?-byt =1

has at most one solution in positive integers. If a solution (z,y) to (1) exists,
then

2 zva+y*Vb =1

This result has recently been rediscovered independently by Chen and Vou-
tier (3], although their proof is based on using the hypergeometric method for
solving families of Thue equations, whereas Ljunggren’s proof relies on properties
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of units in biquadratic fields. We gratefully acknowledge the authors of (3] for
providing a preliminary version of their work. In (3] the authors ask which values
of [ in (2) lead to a solution of (1). In this paper we will give a partial answer to
this question. In particular, we prove

THEOREM 2. With notation as above,

1. Forl =3 and 5 there are infinitely many pairs a,b for which (1) is solvable.

2. If1 > 5, then there are finitely many pairs a,b for which (1) is solvable. In
particular, for l =7 there are no pairs a,b for which (1) is solvable.

It seems difficult to prove results for large values of [ in Theorem 1. On the
other hand, heuristics indicate that the following statement is true. We will pro-
vide some justification for this in the final section.

CONJECTURE 1. Let a # 1 and b be positive integers, not both perfect squares,
such that the equation aX? — bY? = 1 is solvable in positive integers, and let
7 = u/a + vvb be the minimal solution, with v = k21, [ odd and squarefree. If
1 > 7, then there are no solutions to aX2 — bY4 = 1.

For the related equation
(3) aX®-bY? =1,

the situation here is much different, as very little has been proved. In the case
that a is a perfect square, (3) has been completely solved in [1]. In the case that a
is a nonsquare integer, then aside from the fact that there are only finitely many
integer solutions to (3), the only general result is by Le [6], who showed that a
solution exists only if the minimal solution 7 = u\/a + vv/b of a X2 — bY2 = 1
satisfies u = z2 for some integer z. We note that Bumby [2] has proved that the
only positive integer solutions to 3X* —2Y2 = 1 are given by (X,Y) = (1,1) and
(3,11). Heuristics similar to those for Conjecture 1 indicate that the following
more general results holds.

CONJECTURE 2. Let a and b be positive integers such that a X2 — bY2 =1 is
solvable, and let n = u\/a +vvb be the minimal solution. Then there are at most
2 solutions to (3). If (3) is solvable, then one solution comes from 7, i.e., u is a
perfect square, and a possible second solution comes from n°.

2. Solutions to aX2? —bY? = 1. Let a and b be positive integers as in the
statement of Theorem 1. The Diophantine equation

(4) aX?-by?=1

has been well studied in the literature. A good reference for this is Walker [10].
In this section we state a theorem describing the integer solutions to (4).
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PROPOSITION 1. Assume that (4) is solvable in positive integers. Let n =
uy/a + vvb denote the positive integer solution of (4) with w minimal. Then all
positive integer solutions of (4) are given by

241
Uy 1Y@ + Vg1 VO = FF

for k > 0.

EXAMPLE. Let a =3 and b = 2, then
n= V34 V2

is the minimal solution to 3X2 — 2Y2 = 1, and all solutions in positive integers
to this equation are given by

72+ = ugp 1 V3 + var V2 (k> 0).

In the notation of Theorem 1, [ = 1, and so the only positive integer solution to
3X2-2Y* =1isgiven by X =1 and Y = 1. Note that ® = 9v3 + 112, so
that both 7 and 7® yield solutions to Equation (3).

3. Proof of Theorem 2. In the paper we will make reference to certain
polynomials. In the definition of 5 in Theorem 1, let M = au? so that 5 =
VM + /M —1. Define 2 sequences of polynomials { Py, 41 (M)} and {Qas41(M)}
by

7?H! = Py (M)WVM + Qar (M)VM =1,

for t > 0. It is evident that a solution to (1) is equivalent to an integer M for
which Q;(M) = [2? for some integer z, with M — 1 = 2z for some integer .
We remark that the polynomial Q2¢+1(2) is of degree t with the distinct roots

sin? (%ﬂ) fori=0,...,¢t - 1. In fact, we have more precisely that, for ¢ > 0,

Qa1 (x) = 4t ﬁ (1c — sin® (%)) '

i=0

We now proceed with the proof of Theorem 2. For | = 3, Q3(M) = 4M — 1,
and so a solution to (1) is equivalent to values M for which 4Af — 1 = 322, with
M —1 = 9z. Let z > 1 be an integer such that z = £1,+5 (mod 12), so that
22 = 1 (mod 12), and choose z so that 3z2 + 1 and 221;' are not both perfect
squares. Let b = 221'2'1 and a = 9b + 1, then a and b are positive integers, a > 1,
ab is not a square, n = /a + 3v/b is the minimal solution to

aX?-by?=1,

and

n® = (4a — 3)va + (32)%Vb.
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There are clearly infinitely many choices for the integer z, resulting in infinitely
many pairs a, b with solutions to (1) for I = 3.

Let [ = 5, then by the comments above we want to solve Qs(a) = 16a® — 12a+
1 = 5y? with a — 1 = 25b for some positive integers a, b, and y, with ab not a
square. Substituting 25b + 1 for a and simplifying, we arrive at

(5) (2y) — 5(40b + 1)2 = —1.

It is well known that the minimal solution of X? —5Y2 = —1 is 2+ /5, and that
all solutions in positive integers are given by (2 + v5)%**1 = Ty, + Usr41V5,
with k > 0. It is easy to prove by induction that the sequence {Usy+1} is periodic
modulo 40, and that Uar+1 = 1 (mod40) if and only if 2k + 1 = 1 (mod 20).
Thus, for each integer k > 1 satisfying this congruence, we get a solution to (5).
Any of these choices for k£ will lead to a solution of (1).

Let { be an odd integer with [ > 7. In this case, Q;(z) is a polynomial of degree
at least 3, with only simple roots. Therefore, by Siegel’s theorem [9], the curve
ly?> = Qi(z) has finitely many integer points (z,%y). This results in only finitely
many pairs of integers (a, b) for which (1) solvable for this value of I.

We complete the proof of Theorem 2 by considering the particular case of
l = 7. As noted above, a solution to (1) with [ = 7 is given by an integer
solution to Q7(M) = Ty2, with M of the form M = 1+ 49n, and n > 0. Since
Q7(M) = 64M3 —80M?2+24M —1, substituting 1449n for M, and then z = 28n,
we find that = and y satisfy

(6) y® = 4923 + 4922 + 147 + 1.

By the transformation Y = 49y, X = 49z + 16, we obtain the minimal Weier-
strauss model
Y%= X* 4 X% =114X ~ 127,

which has been well studied. From the tables in [4], we find that the group of
rational points on this curve is of rank 0, and with torsion isomorphic to Z3.
Since the curve as given in (6) has the obvious points (z,y) = (0, £1), it follows
that these are all of the finite rational points satisfying (6), forcing n = 0. Thus,
(1) is not solvable if I = 7. .

ExaMPLE. Consider the case [ = 3. From the proof of Theorem 2, the smallest
choice for z is z = 5, which results in b =2, a = 19, and 7 = V19 + 3v/2. In this
case, 7° = 73v/1942251/2, and so X = 73, Y = 15is a solution to 19X2-2Y* = 1.

ExAMPLE. Consider the case ! = 5. From the proof of Theorem 2, the smallest
choice for k is k = 21. We therefore compute

(2 + V5)?! = 7331474697802 + 3278735159921v/5 = Ty, + Uz V5.
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Letting b = (Us; — 1)/40 = 81968378998 and a = 1 + 25b = 2049209474951, we
find that the minimal solution to a X2 —bY2 =1 is

T = V2049209474951 + 5181968378998,

and that

% = 671881515556222653537394011/2049209474951
+ (18328686744505)2/31968378998.

Therefore, the equation 2049209474951X2 — 81968378998Y* = 1 is solvable,
and comes from the fifth power of the minimal solution of 2049209474951 X2 —
81968378998Y2 = 1.

4. A heuristic for large values of [. Based on a refined version of a conse-
quence of the ABC conjecture recently proved by Langevin, we will show heuris-
tical evidence for Conjecture 1. In [8] Masser made the following

THE ABC CONJECTURE. Let ¢ > 0. Then there is K > 0 depending on € such
that for all triples (a, b, c) of positive integers with ¢ = a + b and ged(a, b,c) =1,

¢ < K rad(abc)'*¢,

where rad(abc) is the product of the distinct primes dividing abc.

There have been many results proved concerning consequences of the ABC
conjecture. Recently, Langevin [5] has proved the following very interesting and
powerful consequence of the ABC conjecture. In this theorem, rad(n) denotes the
largest squarefree factor of the positive integer n.

PROPOSITION 2. Let P(z) denote a polynomial of degree d > 1, with integer
coefficients, and with no multiple roots. The ABC conjecture implies that for all
e>0,

rad(P(n)) > nt=17¢,

for all sufficiently large positive integers n.

This result is not quite sharp enough to deduce results on the solvability
of (1) for larger values of . In order to do this we require an explicit form of
Proposition 1 for a specific set of polynomials.

Define a sequence of polynomials {g2;41(z)} for ¢ > 0 by

@2t+1(T) = Qa41(z/4).

It is easy to prove that these polynomials are squarefree, of degree ¢, and have
integer coefficients. Thus, for ¢ > 2, these polynomials satisfy the hypothesis of
Langevin’s theorem. For the purpose of providing a heuristic for Conjecture 1,
we assume the following explicit form of Langevin’s theorem for the sequence of
polynomials {go¢+1(z)}.
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HYPOTHESIS A. Let ¢ > 2. If n is an integer satisfying n > 4(2t + 1)2, then
rad(gar41(n)) > nt=%,

The lower bound for n in this hypothesis is somewhat arbitrary, but suffi-
cient for our purpose. The truth on this matter is likely that the conclusion of
Hypothesis A holds for all n in a range which is somewhat larger than stated
above.

HypoTHESIS A IMPLIES CONJECTURE 1. We need to show, for [ > 7, that
there is no solution in integers x, z to the equation q(4dz) = 122, with z of the
form = 1 + [?n, for n a positive integer. The case [ = 7 has been proved
unconditionally, so we assume that [ > 11. Note that if g;(4x) = 122, then z > I.

It is easy to prove that for x > 1, 2 > gor41(2), and so because 4z > 412, we can
apply Hypothesis A to get

2-11

lz > rad(lz?) = rad(q(42)) > q1(4:c)H = (lzz)H > =T 2,
forcing I < 10. -

REFERENCES

1. M. A. Bennett and P.G. Walsh, The Diophantine equation b2X* — dY? = 1. Submitted
to Proc. Amer. Math. Soc.

2. R. T. Bumby, The Diophantine equation 3z4 —2y2 = 1. Math. Scand. 21(1967), 144-148.

3. J. H. Chen and P. M. Voutier, The complete solution of aX? —bY*4 = 1. Preprint (1998).

4. J. E. Cremona, Algorithms for Modular Curves. 2nd edn, Cambridge University Press,
Cambridge, 1997.

5. M. Langevin, Cas d’inégalité pour le théoréme de Mason et applications de la conjecture
(abc). C. R. Acad. Sci. Paris Série | 317(1993), 441-444.

6. M. H. Le, On the diophantine equation D1z* — Day? = 1. Acta Arith. 76(1996), 1-9.

7. W. Ljunggren, Ein saiz iiber die Diophantische gleichung Az?2 — By* = C (C = 1,2,4).
Tolfte Skand. Matemheikerkongressen, Lund, 1953, 188-194 (1954).

8. D. W. Masser, Open Problems. Proc. Sympos. Analytic Number Th. (Ed. W. W. L. Chen).
London: Imperial College. 1985.

9. C. L. Sicgel, Uber einige Anwendungen diophantischer Approrimationen. Abh. Preuss.
Akad. Wiss. (1929), 1.
10. D. T. Walker, On the Diophantine equation mX? — nY2 = +1. Amer. Math. Monthly
74(1967), 504-513.

Department of Mathematics

University of Ottawa

585 King Edward Street

Ottawa, ON KIN 6N5

email: gwalsh@jeanne.mathstat.uottawa.ca


mailto:gwalsh@jeanne.mathstat.uottawa.ca

C. R. Math. Rep. Acad. Sci. Canada Vol. 20 (4), 1998 pp. 119-123

QUANTUM IMAGINARY VERMA MODULES
FOR AFFINE LIE ALGEBRAS

VIATCHESLAV M. FUTORNY, ALEXANDER N. GRISHKOV AND
DUNCAN J. MELVILLE

Presented by Vlastimil Dlab, FRSC

ABSTRACT.  Let g be an untwisted affine Kac-Moody algebra and M ()
an imaginary Verma module for g with S-highest weight A € P. We con-
struct quantum imaginary Verma modules M 7()\) over the quantum group
Uq(s), investigate their properties and show that A7%()\) is a truc quantum
deformation of M(X) in the sense that the weight structure is preserved
under the deformation.

RESUME.  Soit g une algebre Kac-Moody affine non-tordue et M (A) un
module Verma imaginaire pour g avec un poids S-plus haut A € P. Nous
construisons des modules Verma imaginaires quantiques M79(\) au-dessus
du groupe quantique Uq(g), examinons leurs propriétés et montrons que
M(X) est une vraie déformation quantique de M(XA) dans le sens que la
structure de poids est préservée sous la déformation.

1. Let g be a finite-dimensional simple complex Lie algebra with root system
A. Denote by A, and A_ the positive and negative roots of g. Let g be the
untwisted affine Kac-Moody algebra associated to g, with Cartan subalgebra b.
The root system A of g is given by

A={a+nd|a€AneZ}U{kd|keZk+#0},

where § is the indivisible imaginary root. Let I be the indexing set for the simple
roots.

Consider the partition A = SU—S of the root system of g where S = {a+nd |
a € Ay,n € Z}U{kS | k > 0}. This is a non-standard partition of the root system
A in the sense that S is not Weyl equivalent to the set A, of positive roots.

The algebra g has a triangular decomposition g = g_g @ h @ gg, where gg =
@Dacs 8a- Let U(gs) (resp. U(g_g)) denote the universal enveloping algebra of
gs (resp. g_g).

Let A € P, the weight lattice of g. A weight (with respect to h) U(g)-module

V' is called an S-highest weight module with highest weight A if there is some
nonzero vector v € V such that
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(i) ut-v=0 for all u* € U(gg);
(ii) V=U(g) - v.
Let A € P. We make C into a 1-dimensional U(gg @ h)-module by picking a
generating vector v and setting (z + h) - v = A(h)v, for all z € gg, h € h. The
induced module

M(A) = U(8) ®ugsen Cv =U(g_s) @ Cv

is called the imaginary Verma module with S-highest weight A. Imaginary Verma
modules are in many ways similar to ordinary Verma modules except they contain
both finite and infinite-dimensional weight spaces. They were studied in [Fu], from
which we summarize (cf. [Fu, Proposition 1, Theorem 1}).

PROPOSITION 1. Let A € P, and let M(\) be the imaginary Verma module of
S-highest weight A. Then M()) has the following properties.
(i) The module M(A) is a free U(g_g)-module of rank 1 generated by the S-
highest weight vector 1 ® 1 of weight A.
(ii) M()) has a unique mazimal submodule.
(iii) Let V be a U(g)-module generated by some S-highest weight vector v of
weight A\. Then there exists a unique surjective homomorphism ¢: M()\) —
V such that $(1® 1) = v.
(iv) dim M(X)y = 1. For any p = A—kd, k a positive integer, 0 < dim M()),, <
co. If w # X —kd for any integer k > 0 and dimM(N), # 0, then
dim M(\), = co.
(v) Let A\, p € P. Any non-zero element of Homy gy (M(X), M(y)) is injective.
(vi) The module M(X) is irreducible if and only if M(c) # 0.

2. The quantized universal enveloping algebra of g, U,(g), is an associative
algebra with 1 over C(q) with generators E;, F;, K*! (i € I) and D*!. Let Uf(e)
(resp. U, (g)) be the subalgebra of Uy(g) generated by E; (resp. F;), ¢ € I, and
let U,?(g) denote the subalgebra generated by K (i € I) and D*.

Beck [Bel, Be2] has given a total ordering of the root system A and a PBW
like basis for Uy(g). Here we follow the construction in [BK]| and let Eg denote
the root vectors for each 8 € A, counting with multiplicity for the imaginary
roots.

Let U,(+S) be the subalgebra of Uy(g) generated by{Ejg | 8 € =S}, and let
B, denote the subalgebra of U,(g) generated by {Ep | 8 € S} UUY(g).

Let A € P. A U,(g) weight module V4 is called an S-highest weight module
with highest weight A if there is a non-zero vector v € V7 such that:

(i) ut-v =0 for all ut € Uy(S) \ C(g)*;

(i) V7 = Us(g) -v.
Note that, in the absence of a general quantum PBW theorem for non-standard
partitions, we cannot immediately claim that an S-highest weight module V7 is
generated by U,(—S). This is in contrast to the classical case.
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Let C(q) - v be a 1-dimensional vector space. Let A € P, and set Eg-v =
0for all B € S, KE' - v = ¢y (i € I) and D*! - v = ¢** @Dy, Define
M4(A) = Uy(g) ®B, C(q)v. Then M9(A) is an S-highest weight U;-module called
the quantum imaginary Verma module with highest weight A.

Although we cannot say in general that an S-highest weight module is gen-
erated by U,(—S), in the case of imaginary Verma modules, we can make use
of Beck’s explicit ordered basis and the grading given in [BK, Proposition 1.8]to
obtain the following result.

THEOREM 2. As a vector space over C(q), M7()) is isomorphic to the space
spanned by the ordered monomials E_q_ps...E_ps...E_qyrs, @ € Ay, n 20,
k>0.

Let G be the subalgebra of U,(g) generated by the imaginary root vectors.
Let M7(\) be the quantum imaginary Verma module over U,(g) with S-highest
weight A € P and generating vector v. Consider the G-submodule of M9())
generated by v, H7(\) = G - v. The G-module HY()) is irreducible iff A(c) # 0.
Denote by HJ()) the unique maximal submodule of H?()). Denote MJ()\) =
U,(8)H(\) and set M(\) = M9(X)/MI(N).

THEOREM 3. For any A € P,
(i) M2()\) is irreducible iff A(c) # 0,
(i) Ma()\) is irreducible iff M(h;) #0, i € I;
(i) let AM(c) = 0 and A(h;) # O for all i € I. Then M()\) has an infinite
filtration with irreducible quotients M9 (’;—;— ké), k> 0;
(iv) let A(c) =0, A(h;) #0, i € I and N be a submodule of M()). Then N is
generated by N N HI(X).

3. We have constructed quantum imaginary Verma modules and determined
some of their properties. Now we show that these quantum imaginary Verma
modules are quantum deformations of imaginary Verma modules defined over
the affine algebra. That is, the weight-space structure of a given module M7(\)
is the same as that of its classical counterpart M(A) for any A € P. To do this,
we construct an intermediate module, called an A-form.

Following [Lu|, for each ¢ € I, s € Z and n € Z,, we define the Lusztig
elements

[Ki H S:| — ﬁ I{iq;_s_f"f‘l s I(i_lqi-(s—r-l-l)
n T g7
r=1 qt ql

and

[D : S] _ 1’_‘[ Dqs—r+1 _ D—lq—(s—r+l)
n ot g —q "

in Uy(g). Let A =Cl[q,¢7?, ﬁ:,i € I,n > 0]. Define the A-form, Ua(g), of U,(g)
to be the A-subalgebra of U,(g) with 1 generated by the elements E;, F;, K l?tl,
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n
generated by the E;, (resp. F}), ¢ € I, and let U denote the subalgebra of Uy
K;;s D, D;s .

n n

The algebra Uy inherits the standard triangular decomposition of U,(g). In
particular, any element u of Uy can be written as a sum of monomials of the form
u~ulut where u* € Uy and «® € UJ. In fact, we can say rather more. From the
construction of Beck’s basis, it follows that all the root vectors Eg, B € A are in
U, too.

Let A € P, and let M?(}) be the imaginary Verma module over U,(g) with
S-highest weight A and highest weight vector vy. The A-form of M9(\), M A(N),
is defined to be the Up submodule of M9(\) generated by vy. That is, we set
MA(/\) = UA s UA.

[Ki ; s], iel, D¥, [D;z s]. Let U} (resp. Uy) denote the subalgebra of Uy

generated by the elements K ,.*,

PROPOSITION 4. As an A-vector space, MA()\) is isomorphic to the space
spanned by the ordered monomials E__ps...E_s. .. E_otrs, 0 €Ay, n >0,
k> 0.

PROOF. This essentially follows from Theorem 2 and the fact that all the root
vectors are in U,. One must also check the action of the Lusztig elements. =

Define a weight structure on MA()) by setting MA(\), = MA(\) N M9()),
for each p € P. Then MA()\) is a weight module with the weight decomposition
MA)) =@,cp MA()),,, and, for each pu € P, MA()),, is a free A-module such
that ranka MA(X), = dimc(g) M(N),,.

4. Next, we take the classical limits of the A-forms of the quantum imaginary
Verma modules, and show that they are isomorphic to the imaginary Verma
modules of U(g).

Let J be the ideal of A generated by g — 1. Then there is an isomorphism of
fields A/J = C given by f+J + f(1) for any f € A. Set U’ = (A/J) ®a Ua.
Then U’ = Uy /JU,. Denote by v’ the image in U’ of an element u € U,. Then
(D')? = 1and (K{)? =1 forall i € I [DK]. If K’ denotes the ideal of U’ generated
by D'—1and {K!~1|i€ I}, then U = U'/K' = U(g), the universal enveloping
algebra of g.

For A € P, let M'(A) = A/J ® MA()). Then M'(\) = MA(N)/IMA())
and M’'(}) is a U'-module. For iz € P, let M'(\), = A/J ®a MA(\),. Since
M*A(A) = @,cp MA(A),, we must have M'(\) = @D.cp M'(N),. For p € P,
dimy /5 M'()),, = ranky MA()),..

PROPOSITION 5. The elements D' and K. (i € I) in U’ act as the identity
on the U’ module M'(\) = A/J @4 MA()).

Since M'(}) is a U’-module, M(A) = M'(\)/K'M'(\) is aU = U’/ K’'-module.
But K’ was the ideal generated by D' —1 and the K!—1, and D’ and each K! acts
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as the identity on M’()), so M(\) = M’()). Since U = U(g), this means M(\)
has a U(g)-structure. The module M()) is called the classical limit of MA(\).
For v € MA()), let T denote the image of v in M()).

PROPOSITION 6. Let vy be the generating vector for M*()\). Then as a U(g)-
module, M()\) is an S-highest weight U(g_g)-module generated by Ux.

PROOF. The crucial part of the proof is observing that the images in U of the
ordered monomials in the root vectors Eg, 3 € —S, form a basis for U(g_g). =
Assembling these ingredients, we obtain the following result.

THEOREM 7. Let g be an affine Kac-Moody algebra. Let A € P. Then the
imaginary Verma module M()\) admits a quantum deformation to the quantum
imaginary Verma module M9(\) over Uy(g) in such a way that the weight space
decomposition is preserved.

Details of the proofs and additional results will be given in a later paper.
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WHENCE DOES AN ELLIPSE LOOK LIKE A CIRCLE?

H. S. M. COXETER, FRSC

ABSTRACT. In Euclidean 3-space, a system of confocal quadrics con-
tains two degenerate members: a focal ellipse and a focal hyperbola, lying in
perpendicular planes in such a way that the foci of each coincide with the
vertices of the other. George Salmon discovered that, when viewed from
any point on the focal hyperbola, the focal ellipse looks like a circle! It
seems worth while, quite apart from the consideration of quadrics, to give
an clementary solution to the problem of finding the locus of viewpoints
from which a given ellipse looks like a circle.

RESUME. Dans 'espace euclidien de trois dimensions un systéeme de
quadriques confocales contient deux éléments dégénérés: une ellipse focale
et un hyperbole focale, appartenant a des plans perpendiculaires de telle
sorte que les foyers de chacune de ces courbes coincident avec les sommets
de 'autre. George Salmon a trouvé que, lorsqu’elle est vue & partir de
n’importe quel point sur I'hyperbole focale, I'ellipse focale ressemble & un
cercle! Il semble donc intéressant, pour des raisons autres que purement
rattachées aux quadriques, de donner une solution élémentaire au probleme
de déterminer la courbe tracée par les points de vue desquels une ellipse
spécifiée resemble & un cercle.

1. The focal conics.

THEOREM 1. The locus of apices of right circular cones containing the ellipse

22 g2
F""bi—l, z2=0
is the hyperbola
2 2
-2 =1, y=o.
a?-b2 b

We assume two lemmas which follow easily from Salmon’s discussion of
quadrics of revolution (3, p. 82}, [4, pp. 113, 187]:

LEMMA 1. If the cone

az? + by? + c2® + 2fyz + 292z + 2hay = 0
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is right-circular and one of f, g, h is zero, then another one also must be zero.

LEMMA 2. The cone
az® 4+ by® +c2® + 292z =0
is right-circular if and only if

g9* = (a~b)(c~b).

PROOF OF THEOREM 1. A fixed point (z,,y;, 21) is joined to a variable point
(z0,Y0,0) on the given ellipse by a cone which may be described as the locus of
points (z,y, z) such that

- Az A+ pxy _ Ay +pm 0_/\z+uzl
0 Adu Atp’ A
for various values of A/u. The third relation reveals that \/u = —z,/z, so that

we have, more precisely,

21T — 2T 21y — 2%
T = ) 0 =
21 =2 21— 2

and the equation that puts (zo, 0, 0) on the ellipse yields, for the cone,

(212 - -’1312)2 + (21y - yl?-)2

a? b2 = (a1 - 2)%

When the origin is shifted to (z1,¥1,21), the term (z; — 2)? on the right becomes
simply 22 so that
z}

3%2 2%2
2TV T \ate

yz — zz=0.

ﬁ _ 1) 2 2121 2211
b2 a?

In this case, the a,b and ¢ of Lemma 1 are

2 2 2
dl 1, Y

@ o M etE-

while f = —y;21/b%, g = —z;7,/a?, and h = 0. By that Lemma, either z, or

y1 must be zero. It is geometrically obvious that the viewpoint cannot lie in the

plane z =0, so z; # 0 and

y1=0.

Omitting the terms involving y,, we are left with

2 2 2

27 o 21 o Ty o 2z11)y
=T+ Syt 5 1)z ———2x=0
a2 pzY a2 P>
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so that again, g = —2;z;/a?. By Lemma 2,
o=(@)2_ #_A\ (= _,_2
a? a? b2 a? b?
a? b2 a??  a%2b% b4

BCEL LY T

a?h? a2 - 2

Replacing z1, y1, 21 by z, y, z, we see that the desired locus of viewpoints is the

hyperbola

2 2

z¢ =z

e »®
whose foci (+a,0,0) and vertices (+c,0,0) are the vertices and foci of the given
ellipse.

=1, y=0 (c®=a?-p?),

REMARK. It is just as easy to show that the locus of centres of right circular
cones containing the above hyperbola is the ellipse

1.2 y2

FrE g 250

2. Prolate Spheroids. A somewhat related theorem, discovered by Nils
Abramson (1], [2], [5] and proved by Bjorn Bonnevier, concerns the prolate
spheroid constructed by rotating an ellipse about its major axis. Naturally, the
spheroid )

5 2 42
2 ety
a b
is said to have two foci: (0,0, %c) (c? = a® — b?). It will be shown that any plane
section of the prolate spheroid looks like a circle when viewed from either focus.
This requires another lemma (3, p. 82], [4, p. 113]:

=1 (a>b)

LEMMA 3. The cone of Lemma 1 is right circular if fgh # 0 and

gh hf g
—T—b—-?—c o

a

THEOREM 2. The cone joining any plane section of a prolate spheroid to
either focus is right circular.

PROOF. When the origin is shifted to a focus, the equation becomes

2 2 2
z—c¢ T+

( 2)| 23/
a b

The section of this spheroid by the plane

1 (®=a+b?).

Xe+Yy+Zz=1
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is joined to the origin by the cone

{z—c(Xz+Yy+Z2)}* 22+y?
2 T
a b

=(Xz+Yy+ Zz)?
or
0 =a?(z? + %) + b°{2® — 2c2(Xz + Yy) — 2cZ2% - b*(Xz + Yy + Z2)%}
= (a® = b*X?)2? + (a® - b*Y?)y? + b%(1 — 2¢Z - b°Z?)2?
—26%(c + b2Z)(Yyz + X zz) — 26° XY zy.
The a, b, c of Lemma 3 are now
a® - b1X2% a?-b'Y?, B*(1-2cZ - b Z?),
while
f=-b(c+b’2)Y, g=-b*(c+b*2)X and h=-b'XY.
Thus the criterion for the cone to be right circular becomes
a® - X2+ 0 X% = a? - Y2+ b'Y2 = b2(1 - 2¢Z - b2 22%) + (c + b22)2.
This is clearly true, since a® = b + ¢2.

REMARK. It is just as easy to prove that the cone joining any plane section
of the oblate spheroid
2, .2 2
z°+y ¢ 1
2 tTET

to any point on the “focal circle”
?+y’=c% z=0
is right circular.
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