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ON A NON-SELF-ADJOINT PROBLEM WITH AN INDEFINITE 
WEIGHT FOR ELLIPTIC SYSTEMS WITH A PARAMETER 

MAMADOU SANGO 

Presented by Vlastimil Dlab, FRSC 

RRSUMé. Nous établissons la complétudc et la summabilité par la 
méthode d'Abcl-Lidskii dos vecteurs propres généralisés d'un problème 
elliptique avec un poids indéfini ot la distribution angulaire des valeurs 
propres du problème. 

1. Introduction. In a bounded region U C R" with a (n - l)-dimensional 
boundary F, we consider the boundary value problem 

(1) {A - \u)E)u = 0 in Q; B t u = 0(fc = 1 , . . . , r ) on F 

where A = A(x, D) is a square matrix of dimension N consisting of differential 
operators of order 27n with complex coefficients, Bk = Pfe(x, D) {k = 1 , . . . , r = 
iVm) are ./V-dimensional rows whose components are differential operators of 
order m^ < 27n — 1 with complex coefficients u> is a real-valued function which 
assumes both positive and negative values and E is the unit matrix. 

In this note we establish some results on the completeness and the summability 
by Abel's method (see Lidskii 1962, Kostyuchenko-Razdievskij 1974, for details) 
of the root vectors of problem (1), and the angular distribution of its eigenvalues. 
The completeness of root vectors and the angular distribution of eigenvalues 
have been obtained in (Faierman 1990) for regular scalar elliptic problems (when 
JV = 1). Here our results, which are a generalization of Faierman's to elliptic 
systems, are derived through the existence theory of an auxilliary transmission 
problem under weaker conditions. This approach makes it possible to extend our 
results to Lp spaces and to more general problems; for example, to systems elliptic 
in the sense of Douglis-Nirenbcrg with a parameter. We refer to (Agranovich 1990, 
Kozhevnikov 1973), where these problems have been investigated in the case 
when u){x) = 1. We also note the important contributions of (Agmon 1962) and 
(Grisvard and Geymonat 1967) to the L,,-tlieory. 

2. Basic assumptions. Let x = ( x i , . . . , x n ) , Dj = —iyf-, D = ( D | , . . . , 
D n ) , D a = D,*1 , . . . , D'*", where a = ( û i , . . . , a n ) € ZJ (Z + is the set of non-
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negative integers) and |Q| = X)j=i a j ) 

A{x,D) = { Y rtW*}". . 

Pfc(x,D) = { Y ^ ( x ) ^ } . (fc = l Nm). 

We assume throughout that the operators A, Bk {k = l , . . . , iVm) and the 
domain SÎ satisfy the following smoothness conditions: the region ÇI is of class 
C 2 m , the coefficients a^(x) in A are continuous in Ù for |a | = 2m and bounded for 
|a | < 2 m - 1 , the coefficients bkj{x) in Bk belong to c 2 m - m * ( F ) for \0\ = m/t and 
bounded together with their derivatives of order up to 2m — mk for |/3| < mjt - 1. 

Let Hi{Çl, N) {I is an integer), be the direct product of N Sobolev spaces W^fi) 
when / = 0 we write Ho{9.,N) = L2{iï,N). We denote by H1_i(F) (/ > 1) the 
space of boundary values of functions from W j ^ ) a n d by ^ _ i (F, TV) the direct 
product of N such spaces. 

Next we turn to the assumptions concerning the weight function ui{x). They 
will be closely related to a certain partition of the domain Q into appropriate 
subdomains. 

ASSUMPTIONS 1. Let there be given some (n — l)-dimensional manifolds 
F i , . . . , F s each of class C 2 m , lying inside Q, and having no point in common 
with F and such that Fj D Fjt ^ 0 for / ^ fc. They divide fi into subdomains 

We assume that the weight function u;(x) is continuous in each Ùi, can pertain a 
discontinuity of first kind and change sign while crossing any Fp and 

\<jj{x)\ > 0 a.e. in Q. 

Since the function u;(x) is assumed to be discontinuous across Fp, the solution 
of (1) may not belong to the functional space i/2m(0, N) which is of importance 
to us. Thus, in order to preserve the membership of the solution to this space, 
we impose, among others, the following natural conjugation conditions: 

(2) D3
nu{l){x) = Diu{n{x){j = 0 , . . . , 2m - 1) on each Fp 

where u^) and uy) are the restrictions of the function u to Çli and ftj< respectively, 
Fp separates Qi from Qj' and Dn is the derivative along the inward normal to Fp. 

DEFINITION 1. A complex number A will be called an eigenvalue of the bound-
ary problem (1) if the problem (1) with the transmission conditions (2) admits 
at least a non-trivial solution u G H2m{Q, N); this solution is referred to as the 
eigenfunction of (1) corresponding to A; otherwise the number A is called regular 
point of (1). 
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Next, let Ao(x, Ç) and Bokix, 0 (fc = 1 , . . . , Nm) be respectively the principal 
parts of the operators A and Bk {k = 1,..., Nm). Let also 

E(0,,02) = {A«EC:0, < a r g A < 0 2 } 

be an angular sector in the complex plane and A an element of E{9i,92). 

ASSUMPTIONS 2. (i) We require the matrix 

(3) A „ ( x , 0 - A w ( x ) E 

to be invertible for all ^ G R"; |£| + |A| 7̂  0 and all x e fip (p = 1,. . . ,s + 1). 
(ii) Let xo be any point on F. We shall turn the coordinates axes such that, 

the axis x n takes the direction of the inward normal to F at XQ. For simplicity, 
we suppose that the operators A, Bk are written in the system of coordinates 
connected with XQ. We consider the following problem on the ray. 

(4) {Aoixo, Ç', Dt) - Xu){xo)E)v{t) = 0, t>0 

(5) B0k{x0,Ç', Dt)v{t)\t=o = gk (fc = 1 , . . . , Nm), 

where Ç' = ( f t , . . . ,Ç„_i) and Dt = -i-fc. 
For any £' G R " - 1 , \Ç'\ + |A| ^ 0, the space of solutions of system (4), ex-

ponentially decreasing in modulus when t -* 00, is TVm-dimensional and the 
problem (4)-(5) is uniquely solvable for any gk in this space. 

(iii) Let Aj(Aj') and ^(uif) be respectively the restriction of the matrix A 
and the function 10 to Qi{Qi>) and assume that Fp separates fij and Çli>. We take 
a point XQ € Fp and turn the coordinate axes such that, the axis xn takes the 
direction of the inward normal to Fp at xo. We consider the following transmission 
problem on the line. 

(6) iAioixo,Ç',Dt)-Xu>i{xo)E)viit) = 0, t>0 
(7) iAwixo,?, Dt) - Xu}i'ixo)E)vp{t) = 0, t < 0 
(8) D't'vl{0)-D"vr{0) = htip, /1 = 0 , . . . , 2 m - 1 . 

For any Ç' G R " - 1 ; |Ç'| + |A| ^ 0, the space of solutions of the system (6)-(7), 
exponentially decreasing in modulus when |f | -> 00, is 2iV7n-dimensional and the 
problem (6) (8) is uniquely solvable in this space for any TV-dimensional column 
h;,p. 

We define an exponentially decreasing solution of (6)-(7) as a vector v = 
{vi,vi'), where vt and Vf are respectively solutions of (6) and (7) and vi{t) -» 0 
when t -* +00 while vp{t) -> 0 when t -* - 00 . 

Let A be the unbounded operator with the domain 

V{A) = [a G H2m{n, TV) : BkU = 0(fc = 1 , . . . , TVm)} 
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acting by Au = A(x, D)u for ail u G ̂ {A) and T the bounded operator induced 
by the multiplication by UJ in L2(f2, TV). Clearly V{A) is dense in L2iCl,N). We 
rewrite problem (1) in the form 

(9) T-lAu = Au, uG ViA) 

and call A an eigenvalue of problem (1) if A is an eigenvalue of (9) and refer to 
the root vectors of T _ 1 A corresponding to A as those of (1) corresponding to 
A. Lastly let 5(A) = A — AT be the pencil acting in L2iiî,N) with the domain 
P ( 5 ) = ©(A) and p{S) the set of its regular points. 

3. Resul t s . Now we can formulate our first result which plays a central role 
in our investigations. We have 

THEOREM 1. Let Assumptions 1 and 2 be satisfied. Then there exists a positive 
number C such that A € p{S) and 

(10) \\S-l{\)\\L2(n,N)^LW.N) < CjAI"1 

for A 6 H(<?) and sufficiently large in modulus. 

IDEA OF THE PROOF. We consider the following transmission problem in-
duced by the boundary value problem (1) and the conjugation conditions (2): 

(11) Lm = iMx, D) - XLJI{X)E)UI{X) = 0 inQi{l = 1,.. .,s + 1), 

(12) [ D ^ p = D^u^x) - D^m^x) = Oon Fp(M = 0 , . . . , 2 m - l ;p = 1 , . . . , s), 
(13) Bfc(x, D)u(x) = 0 onF(fc=l , . . . ,TVm). 

This problem is elliptic with a parameter under the assumptions 2. Following 
(Agranovich and Vishik, 1964) and (Roitberg and Serdyuk, 1991), we prove that 
for |A| sufficiently large, the operator U defined by 

Uu = {LiUi , . . . ,L s + iu . , + i , [u ] i , . . . , 
[D2m-1u\i,...,[u]s,...,[D2m-1u]s,Blu,...,BNmu}, 

connected with the problems (11)-(13) and acting from 

H2m{Çîi,N)x---xH2m{Qs+i,N) 

to 
s + l s 2m- 1 Nm 

i[L2iÇll,N)xl[ J] /^m-M-e^P'^n^m-m.-i^), 
1 = 1 p = l /!=() fc = l 

establishes an isomorphism between these two spaces. Hence, thanks to the homo-
geneous boundary conditions (12), we obtain that the operator (A(x, D)-Aw(x)) 
establishes an isomorphism between H2m{il,N) and L2{Çl,N) and the estimate 

IH|2m,n + |A| |N|o,n < C|| (A(x, D) - AW(x))ti||0 n 
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holds for all solutions u G H2m{n,N) of (11)-(13) with |A| sufficiently large; C 
is a positive constant independent of u and A. Furthermore the operator A is 
closed. Now (10) immediately follows from this inequality and the closed graph 
theorem. 

Let 0 G p{S). We are now in the position to establish our main results. We 
have 

THEOREM 2. Let assumptions 1 be satisfied. Suppose that assumptions 2 are 
also satisfied along certain rays E{6j) (j = 1 , . . . , fc) in the complex plane ema-
nating from the origin and making an angle 9j with the positive real axis, and in 
this connection let the maximal angle between successive rays not exceed 2mn/n. 

Then the spectrum of problem (1) is discrete and its root vectors are complete 
inL2{n,N). 

For the proof, we show that under the conditions of the theorem the E{0j) are 
rays of minimal growth of {T-lA-XE)-1, i.e., this operator exists for A G E{9j) 
and 

(14) I K T - U - A E ) " 1 1 | < const [AI"1 

for |A| sufficiently large. The first assertion of the theorem follows from the com-
pactness of {T-lA - AE) - 1 in L2{Çl,N). Furthermore ( T - 1 ^ - A E ) - 1 belongs 
to the Von Neuman-Schatten class C ^ . + £ ; £ > 0. Thus, the completeness of the 
root vectors of problem (1) follows from the inequality (14) and (Dunford and 
Schwartz 1963, Chapter XI, Sect. 9, Corollary 31). 

THEOREM 3. Under the assumptions of Theorem 2, the system of root vectors 
of problem (1) is summable by the method AiL2{Cl,N),aj,0j) {aj = ?w+ei, 
j = 1,...,fc - 1) /or /^ e ( ^ ^ ) , where <jj = \9j+l -6^. 

Since ( T ' M - AE) - 1 is of class C ^ + e ; £ > 0 and Inequality (14) holds 
on the rays E:(^) {j = 1 , . . . ,fc), the affirmation the theorem is an immediate ' 
consequence of (Kostyuchenko and Razdievskij, 1974, Theorem 1). 

The following result deals with the angular distribution of the eigenvalues of 
problem (1). 

THEOREM 4. Let Assumptions 1 be satisfied and suppose that there exist the 
rays {2(0,)} {j = 1,2) in the complex plane such that 

(i) 0<92-9i < min{27r, 2m7r/n} 
(ii) Assumptions 2 are satisfied for 6 = 9j ij.= 1,2). 

Suppose also that for some 9' {9l < 9' < ^2) at least one of the assumptions 2 (i), 
(ii) or (iii) is violated for 9 = 9'. 

Then there are infinitely many eigenvalues of the problem (1) in the sector 
9i < argA < 92. 
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EXAMPLE. Suppose that the operator A(x, D) is strongly elliptic and the 
boundary conditions are of Dirichlet type then the assumptions 2 (i), (ii) are 
immediately satisfied (see Agranovich and Vishik 1964, Chap. 6). Following the 
same arguments as in this paper, one can show that the assumption 2 (iii) is 
satisfied only when argA = ±f• Thus the revolvent set of the pencil 5(A) is 
located on the imaginary axis in the complex plane and the rays argA = ± f 
are the rays of minimal growth of (5(A)) . Furthermore from Theorem 2 the 
spectrum of 5(A) is discrete and lies in the half-planes Im A < 0 and Im A > 0. 
We obtain also that when 2m > n, the root vectors are complete in L2(n, TV) 
and summable by the method A{L2{Sî,N),aj,(3j) for fy G ( ^ , 1 ) ij = 1,2); 
here aj = 0, TT. 

ACKNOWLEDGEMENT. The author thanks the anonymous referee for valuable 
remarks. 

N O T E ADDED IN PROOF. The extension of the completeness results from this 
paper to systems elliptic in the sense of Agmon-Douglis-Nirenberg in Lp Sobolev 
spaces (1 < p < oo), without any restriction on the orders of the operators 
involved, has been announced in the author's paper: C. R. Acad. Sci. Paris, t. 329, 
Série I, pp. 703-708, 1998. A detailed version of our results will be published 
elsewhere. 
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GORDON'S e-CONJECTURE 
ON THE LACUNARITY OF MODULAR FORMS 

KEN ONO 

Presented by M. Ram Murty, FRSC 

A B S T R A C T . In this note we prove B. Gordon's t-conjocture regarding 
the lacunarity of modular forms. We show that if / = 5 2 ^ L 0 a{n)qn 6 
Mk{N,x) has the property that there exists an c > 0 for which 

# { n < X | a ( n ) / 0 } = O ( X 1 - ' ) , 

then / ( z ) is a finite linear combination of thota series of weight 1/2 or 3/2. 

RÉSUMÉ. Ici, on démontre une conjecture de B. Gordon qui s'agit de la 
lacunaritc des formes modulaire. Soit / = ^Z^L. a{n)qn e MkiN,x) une 
forme modulaire. On montre que si il existe un e > 0 pour que 

# { n < X | a ( n ) / 0 } = O ( X 1 - t ) , 

puis / est une combination des series thêta du poids 1/2 ou 3/2. 

A formal power series P{q) := Y,n>No ain)qn ls called lacunary if 

l i m # { n < A | a(n) = 0} _ 1 
X-oo X 

These power series have the property that "almost all" of their coefficients are 
zero. Many important ç-series in the theory of partitions are lacunary. For in-
stance the following well known identities are examples of lacunary power series: 

OO ^ 2 

(Euler) n ( 1 - 9 n ) = Ei-lVq3-^, 
n = l n=—oo 

— 2 

(Jacobi) n ( 1 -9")3 = £;(-l)"(2n+ 1 ) ^ . 
n = l n=0 

For each k G ^Z, let Mfc(TV,x) be the space of modular forms of weight fc 
on ro(TV) (if fc is half-integral then 4|TV) with Nebentypus character x, and let 

Received by the editors September 8, 1997. 
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5fc(TV, x) denote its subspace of cusp forms. In this note we are interested in those 
f{z) G Mk{N,x) whose Fourier expansions f{z) = ]C£Loa(n)9n (throughout 
q : = e2*iz) are lacunary. Serre [S] proved a "basis theorem" for lacunary integral 
weight forms. He proved that an integral weight f{z) is lacunary if and only 
if it is a finite linear combination of forms with complex multiplication. Using 
this description. Serre [S2] and Gordon, Hughes and Robins [G-H, G-R] have 
classified all the lacunary integer weight modular forms in certain special families 
of forms whose Fourier expansions are given by infinite products. V. K. Murty [M] 
has obtained an intriguing alternative description of the lacunary integer weight 
forms. 

The characterization of lacunary half-integral weight modular forms remains 
open. Elementary theta functions serve as convenient examples of lacunary half-
integral weight forms. If i = 0 or 1, 0 < r < t, and a > 1, then the elementary 
theta function 9aii^t{z) is given by 

ea,i,rAz) ~ E n i 9 a n 2 -
nSr (mod t) 

Each function 0a,t,r,t(2) is a holomorphic form of weight i + 5, and any fiz) = 
Y^Lo ain)qn that is a finite linear combination of such series is called superlacu-
nary. In particular every superlacunary form has weight 1/2 or 3/2. By a theorem 
of Serre and Stark [S-Sta], it is well known that every weight 1/2 modular form 
is superlacunary. Clearly every superlacunary fiz) is lacunary since there exists 
a non-zero constant c/ for which 

# { n < X I o(n) 7e 0} ~ Cf\fX. 

Recalling Dedekind's eta-function 77(2) := q^^W^Lii1 - O. w e find t h a t t h e 

identities above are examples by Euler and Jacobi obtained from 
0 0 

7,(24*)= Y, (-l)V6n+1)a. 
T l = —OO 

^ ) = £(-l)n(2n+l)<7{2n+1)2. 
»i=0 

It is widely believed that every lacunary half-integral weight modular form 
is superlacunary, i.e., is a finite linear combination of elementary theta scries. 
A proof of this conjecture seems to be well beyond current methods. In view of 
these technical difficulties, Gordon posed the following unpublished conjecture. 

GORDON'S C-CONJECTURE. I f / (* ) = X>(n)g n belongs to Mfc(TV,x) and 
has the property that there exists an e > 0 for which 

# { 7 i < A I o(n) ^ 0} = 0{Xl-<), 

then f{z) is superlacunary. 

In this note we prove: 
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THEOREM 1. Iff{z) = Y1T=\ o(")9n € MkiN,x) is not superlacunary, then 

# { n < X | a(n) # 0} » / X/logX. 

COROLLARY 1. Gordon's e-conjecture is true. 

It is well known that Lehmer speculated that Ramanujan's function r(n) is 
non-zero for every positive integer n. Recall that r(n) is defined by 

OO OO 

£r(n)<?":=(7n(1-(7")24-
i ( = l n = l 

In view of Lehmcr's conjecture and Serre's paper on the lacunarity of even powers 
of the eta-function, we record an elementary corollary that contains estimates on 
the number non-zero coefficients of all the powers of the eta-function. Although 
one can make better estimates in many cases, we have sacrificed this for a clear 
and comprehensive statement. 

COROLLARY 2. Ifr is a positive integer, then define r r (n) by 

OO oo 

$>,»<?" :=n(l-9")r-
n=0 n=l 

Ifr T-U or 3, then 

#{n<X\rr{n)ÏO}»r{X
xn y '^ ^^T^V^TK 1 i r\ / ? j ' yX/\ogX jfr odd or r = 2,4,6,8,10,14,26. 

PROOF OF RESULTS. If / € 5fc+i(TV,x) has the property that for every 
prime p /TV there exists a complex number \{p) for which 

T{p2) | / = A(p)/, 

then we shall refer to / as an "eigenform". The author and C. Skinner [O-S] 
proved the following key lemma. For each positive integer r let P(r) denote the 
set 

P{r) := {D \ D > 1 square-free with exactly r prime factors}. 

LEMMA 1. Let g{z) = Y,n=i b{n)qn G 5fc+^ (TV, x) be an eigenform for which 
(i) him) ^ 0 for at least one square-free m > 1 coprime to TV, 

(ii) the coefficients b{n) are algebraic integers contained in a number field K. 
Let v be a place of K over 2, and for each s let 

Ba := {m | m > 1 square-free, (m, TV) = 1, and ordl,(6(m)) = s } . 
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Let so be the smallest integer for which BSo ^ 0. If B3o n P{r) ^ 0, then 

# {m G BS0 n P{r) | m < A} » ^-A-(fog log A)»-1 . 

P R O O F O F THEOREM 1. In view of Serre's work [S] it is well known that 
every integral weight modular form f{z) = YiT=i "•in)qn has the property that 

# { n < A | a(n) # 0} » / A/log A. 

Moreover amongst the half-integral weight forms it is well known that we can 
without loss of generality assume that f{z) is a cusp form, and by the theorem 
of Serre and Stark we may assume that its weight > 3/2. 

Let f{z) = Yln=i ain)qn e 5 f c + . (TV,x) be an eigenform. If f{z) is not super-
lacunary, then the conclusion of the lemma shows that the number of n < A 
for which a(n) ^ 0 is » / j ^ . It suffices to show that the hypotheses of the 
lemma are satisfied for a suitable non-trivial scalar multiple of f{z). Since / is 
in the orthogonal complement of the elementary theta series, its Shimura lift is 
a weight 2fc cuspidal eigenform. Hence by Waldspurger theory there exists an 
arithmetic progression with the property that for every square-free n coprime to 
TV the number a{n)2 is the "algebraic part" of the central critical value of the 
modular L-function of the Shimura lift of fiz) twisted by a quadratic character. 
(See [Wal, Corollary 2]). 

Verifying (i) now follows from a theorem of Friedberg and Hoffstein [F-H] 
that guarantees that infinitely many such values are non-zero. To show that fiz) 
satisfies (ii) one may consult the theory of modular symbols [C-S, M-T-T], i.e., 
the existence of uniform periods of modular L-functions of twists so that the 
"algebraic parts" of these twisted values are algebraic integers in some number 
field K. Therefore Theorem 1 holds for every non-superlacunary eigenform. 

Now we consider the case where / is not an eigenform. This argument is 
similar to the integral weight argument employed in [S,M]. If g = J2Hn)qn e 

5 f c + è (TV, x), then define Mg{X) by 

M f f ( A ) : = # { n < A | 6 ( n ) # 0 } . 

It is easy to see that 

(1) Mgi+g2{X) < Mgi{X) + Mg2(A). 

Suppose that f{z) G 5fc+^(TV,x) has the property that M/(A) = 0 ( A 1 - ' ) for 
some e > 0. If / = fe+fi where fe is superlacunary or trivial, and fi is orthogonal 
to the elementary theta series, then by (1) we find that Mj^x) < Mj{X) + 
Mjg{X). In particular there exists an ei > 0 for which Mr1{X) = 0{X1~fl). 
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Recall that if p is prime and g{z) = Y^=i b{n)qn G 5fc+1 (TV, x), then 
(2) 

g{z) | rp2 := f; (b{p2n) + X{p) ( ^ : ^ ) P*'1^) + xW^Hn/p2)) g". 

By a quick examination of (2) one finds that 

(3) Mnp>)\aiX) < Maip2X) + 2Mg(A). 

Now lot T be the Hecke algebra and let X := 1/1(2). By (1) and (3) we see 
that for every h{z) G X that MniX) = OiX1'11). Since T is commutative, every 
simple T submodule of X is of the form Ch{z), but on the other hand h{z) is an 
eigenform. Therefore by the eigenform case we find that Mh{X) » \^x, and 
this is a contradiction. • 

PROOF OF COROLLARY 2. Serre [S2] proved that the only even r for which 
Y^=oTrin)qn i s lacunary are r = 2,4,6,8,10,14,26. The result follows immedi-
ately from Theorem 1. • 
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DISCRIMINANTS AND ELECTROSTATICS OF GENERAL 
ORTHOGONAL POLYNOMIALS 

M O U R A D E. H. ISMAIL 

Presented by P. G. Rooney, FRSC 

ABSTRACT. This is an announcement of our forthcoming results where 
we evaluate the discriminants of general orthogonal polynomials and pro-
vide an electrostatic model where the zeros of the orthogonal polynomials 
identify the equilibrium position of an N particle system. 

RÉSUMÉ. Il s'agit d'annoncer un résultat qui paraîtra dans un futur 
proche et qui consiste à évaluer le discriminant d'un polynôme orthogo-
nal générale et donner un modèle électrostatique identifiant les zéros du 
polynôme orthogonal avec la position d'équilibre d'un système à N partic-
ules. 

1. Introduction. Stieltjes [11], [12] considered the electrostatic model of 
two fixed charges a + 1 and [3 + 1 at x = ±1 and n movable unit charges at 
distinct points in (—1,1). The question is to determine the equilibrium position 
of the movable charges when the interaction forces obey a logarithmic potential. 
He proved that the equilibrium position is attained at the zeros of the Jacobi 
polynomial Pn ix). He stated the value of the discriminant of Jacobi polyno-
mials. Hilbert [6] and much later Schur [10] gave proofs of the evaluation of the 
discriminant. For details see [13]. 

The purpose of this note is to announce the results obtained in our forthcom-
ing papers [7], [8] concerning discriminants and electrostatic models of general 
orthogonal polynomials. 

The discriminant of a polynomial / „ , with zeros x i n , X2n, • • • > xnn, is defined 
by 

(1.1) D{fn) = 7 2 n _ 2 H ixJn-xkn)2, Mx) := 7 ^ " + lower order terms. 
l<j<fe<n 

Recently I. M. Gelfand and his school [5] used the concepts of discriminants 
and resultants in several variables to construct a theory of multivariate special 
functions. 
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Let {p„(x)} be orthonormal with respect to a weight function w{x) = e~v^ 
supported on an interval [a, b], finite or infinite, that is 

(1.2) / pmix)pnix)w{x)dx = Sm,n. 
J a 

The initial values and three term recurrence relation of {Pn(a:)} will take the 
form 

(1.3) poix) = 1, pi(;r) = {x - bo)/au 

(1.4) xpn{x) = a„+ip„+i(x) + bnpn{x) + anpn-i{x), n > 0. 

The annihilation operator for {pn} is given by [3], [2] and [1]. 

(1.5) p'n{x) = An{x)pn-i{x) - Bn{x)pnix), 

where An{x) and Bn{x) are defined by 

= anw{b-)p2
n{b-) + anw{a+)pl{a+) 

fi f!\ b — x x — a 
11-6) ,b.. , fv'{x)-v'{y) 2, , , SJ 

+ a" : „ p2niyMy)dy, 
Ja x y 

D r^ _ anw(a+)pn(a+)pn_i(a+) ant t ;(6-)pn(b-)pn-i(b-) 
rinyX) 1 ; 

a; — a b — x 
f1' v'{x) - v'iy) 

+ a " / TZ^. Pniy)Pn-iiy)w{y)dy. 
Ja x y In (1.6) and (1.7) it is assumed that 

(1.8) y^MzïMw{y)) n = o. !,..., 
x y 

is integrable and the boundary terms in (1.6) and (1.7) exist. 

2. Discriminants and functions of the second kind. Our first result is: 
THEOREM 2.1 ([7]). Let {pn(x)} be orthonormal with respect to u)(w) = 

exp(-u(x)) on [a,b] and let it be generated by (1.3) and (1.4). Assume that 

X\n S> X2n - > ' • • > Xnn, 

are the zeros o /pn(x) . Then the discriminant ofpn{x) is given by 

(2.1) Al = (n^^il|ffraf-2"+2l. 
^ = 1 a " J Lfc=i J 
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Observe that Theorem 2.1 only assumes the existence of a lowering operator 
of the form (1.5) with continuous An{x) and B„{x). 

If the terms in (1.8) are integrable then the orthonormal polynomials p„'s 
satisfy the differential equation [1], [2], [3] 

(2.2) 

where 
(2.3) 

p'^x) + Rn{x)p'n{x) + Sn{x)pn{x) = 0, 

Rnix) := - v'{x) + 

A'nix) 

Kix) 
An{x) 

(2.4) 
Sn{x) := B'n{x) - Bn{x)-^r - Bn{x) [v'{x) + Bn{x)] 

a„_i 
-An{x)An-i{x). 

(2.5) 

Given {pn{x)} the function of the second kind is 

Pniy) i r 
Qniz) = - r -T / 

w{z) J-< z-y 
w{y) dy, n > 0,z £ supp{u;}. 

THEOREM 2.2 ([7]). Let (pnOc)} are orthonormal with respect to w{x) = 
£-«(*) on [a,b]. Assume further that the functions in (1.8) are integrable for 
all n, n >0. Then for n > 0 both pn and Qn have the same raising and lower-
ing operators and satisfy (2.2). Furthermore, Pnix) and Q„(x) form a basis of 
solutions of the differential equation (2.2) for n > 0. 

3. Electrostatics. The conventional wisdom in potential theory is that a 
weight function w{x) = exp(—7;(x)) introduces an external field whose potential 
is v{x). We propose that a weight function w{x) creates two external fields. 
One is a long range field whose potential at a point x is v{x), as conventional 
wisdom dictates. In addition w produces a short range field whose potential is 
ln(A7l(a;)/a„). Thus the total external potential V(a;) is the sum of the short and 
long range potentials, that is 

(3.1) Vix) = v{x) + \n{An{x)/an). 

THEOREM 3.1. Let v{x) and V{x) be twice continuously differentiable func-
tions whose second derivative is nonnegative on {a, b). Then the equilibrium po-
sition of n movable unit charges in {a, b) in the presence of the external potential 
V{x) of (3.1) is unique and attained at the zeros of pn{x), provided that the 
particle interaction obeys a logarithmic potential. 

Observe that finding the equilibrium distribution of the charges in Theorem 3.1 
is equivalent to finding the maximum of T(x), 

(3.2) r(x) := y ^ exp(-7j(xJ)) 
1A A,1(xi)/a„ n (*'_ X J ) 2 ' 

l < « f c < n 
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where 
(3.3) x : = (x1,X2,... ,x7,). 

THEOREM 3.2 ([8]). LetTmax andEn be the maximum value of Tix.) and the 
equilibrium energy of the n particle system and let xi,, > X2n > ••• > xnn be the 
zeros of pnix). Then 

(3.4) 

(3.5) 

n n 
Tmax = e x p ( - ^ ^ ( X j , , ) ) J | a f , 

j = l fc=l 

En = Y^vixjn) - 2 ^ j lna j , 
j = i j = i 

Let {p„(x)} be a family of orthonormal polynomials generated by (1.3) 
and (1.4). The numerator polynomials {p^(x)} satisfy the recurrence relation 
(1.4) and are 
(3-6) P'oix)=0, pî(x) = l /a1 . 

The polynomials {p„(x)} and {p*(x)} form a basis of solutions of the second 
order difference equation (1.4). The polynomials {Pn+iix)} also form a set of 
orthogonal polynomials. The numerators {p* + 1(x)} are multiples of associated 
polynomials with association parameter equal to 1. Wimp [14] showed that the 
associated Jacobi polynomials satisfy a linear fourth order differential equation. 
This motivated us to extend Wimp's result to general numerators of general 
orthogonal polynomials. 

THEOREM 3.3. Under the assumptions in Theorem 2.2 the numerator poly-
nomials satisfy the differential equation 

(3.7) 
Ao(2) 

• (£M\ au «12 

à [Sft^ (££)] a21 a22 

Iz* [An(z)^" \w(z) ) \ 

where Ln is the differential operator 

«31 «32 

= 0, 

(3.8) 

and the a's are 

12 i 

L " : = d ? + - R " ( 2 ) è + 5 n ( e ) ' 

(3.9) 

(3.10) 

"11 = 2, «12 = 
Kiz) A'n{z) d 
W)-XM = TZ^A^A^' 

021 = 2V'{Z) + W)+W}' ^ = ~2Sn{z) + é HMz)/An{z)), 
(3.11) «31 = -a^Rniz) + «22 +«21i «32 = ^22 _ Û2l5„(z). 
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Finally we state a corollary which gives two additional linear independent 
solutions of the differential equation (3.7). 

COROLLARY 3.4. The functions wiz)pniz), w{z)Q,l{z) and p*,{z) are linear 
independent solutions of the differential equation (3.7) provided that w can be 
extended to a continuous function in a horizontal strip S with the x axis in its 
interior and znw{z) —> 0 as x —•• oo for alln>0 and z in the strip 5. 
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A NOTE ON LJUNGGREN'S THEOREM ABOUT THE 
DIOPHANTINE EQUATION aX2 -bY4 = l 

P. G. WALSH 

Presented by David Boyd, FRSC 

RÉSUMÉ. W. Ljunggren a montré que l'équation diophantienne aX2 -
f>YA = 1 possède au plus une solution en entiers positifs, et que cette 
solution, si elle existe, provient d'une puissance d'une certaine unité d'un 
corps de nombres quadratique ou bi-quadratique. Le but de cet article est 
de déterminer exactement quelles puissances de cotte unité conduisent à 
une solution. 

ABSTRACT. W. Ljunggren showed that the Diophantine equation 
aX — bY = 1 has at most ono solution in positive integers, and that 
a solution must come from a power of a certain unit in a quadratic or a 
biquadratic number field. The purpose of this paper is lo determine exactly 
which powers of this unit can lead to a solution. 

1. Introduction. In [7] Ljunggren proved some remarkable results on the 
solvability of Diophantine equations of the form aX2 - bYA = c, for c = 1,2,4. 
In this paper we consider the case c = 1. For this case, Ljunggren's proof gives 
the following precise statement on the solvability of the equation of the title. 

THEOREM 1. Let a and b be coprime positive integers, with a ^ 1, such that 
not both a and b are perfect squares and such that the equation aX2 - bY2 = 1 
is solvable in positive integers. Let {u, v) be the solution in positive integers of 
aX2 - bY2 = 1 with u minimal, and put 77 = Uy/â + vy/b. Let v = k2l with I odd 
and squarefree. The Diophantine equation 

(1) aA2 -bY4 = l 

has at most one solution in positive integers, ff a solution (x, y) to (1) exists, 
then 

(2) x ^ + y2y/b = T)1. 

This result has recently been rediscovered independently by Chen and Vou-
tier [3], although their proof is based on using the hypergeometric method for 
solving families of Time equations, whereas Ljunggren's proof relies on properties 
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of units in biquadratic fields. We gratefully acknowledge the authors of [3] for 
providing a preliminary version of their work. In [3] the authors ask which values 
of / in (2) lead to a solution of (1). In this paper we will give a partial answer to 
this question. In particular, we prove 

THEOREM 2. With notation as above, 
1. For / = 3 and 5 there are infinitely many pairs a, b for which (1) is solvable. 
2. Ifl> 5, then there are finitely many pairs a, b for which (1) is solvable. In 

particular, for 1 = 7 there are no pairs a, b for which (1) is solvable. 

It seems difficult to prove results for large values of I in Theorem 1. On the 
other hand, heuristics indicate that the following statement is true. We will pro-
vide some justification for this in the final section. 

CONJECTURE 1. Let a ^ 1 and b be positive integers, not both perfect squares, 
such that the equation aA 2 - bY2 = 1 is solvable in positive integers, and let 
77 = Uy/E + v\/b be the minimal solution, with v = k2l, I odd and squarefree. If 
1 > 7, then there are no solutions to aA 2 — bYA = 1. 

For the related equation 

(3) a A 4 - 6F2 = 1, 

the situation here is much different, as very little has been proved. In the case 
that a is a perfect square, (3) has been completely solved in [1]. In the case that a 
is a nonsquare integer, then aside from the fact that there are only finitely many 
integer solutions to (3), the only general result is by Le [6], who showed that a 
solution exists only if the minimal solution 77 = Uy/â + v\/b of aX2 — bY2 = 1 
satisfies u = x2 for some integer x. We note that Bumby [2] has proved that the 
only positive integer solutions to 3A4 - 2 F 2 = 1 are given by (A, V) = (1,1) and 
(3,11). Heuristics similar to those for Conjecture 1 indicate that the following 
more general results holds. 

CONJECTURE 2. Let a and b be positive integers such that aX2 — bY2 = 1 is 
solvable, and let 77 = u,/â + v\/b be the minimal solution. Then there are at most 
2 solutions to (3). If (3) is solvable, then one solution comes from 77, i.e., u is a 
perfect square, and a possible second solution comes from T/3. 

2. Solut ions to aA 2 — bY2 = 1. Let a and b be positive integers as in the 
statement of Theorem 1. The Diophantine equation 

(4) aA 2 -bY2 = l 

has been well studied in the literature. A good reference for this is Walker [10]. 
In this section we state a theorem describing the integer solutions to (4). 
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PROPOSITION 1. Assume that (4) is solvable in positive integers. Let 77 = 
Uy/E + v\/b denote the positive integer solution of (4) with u minimal. Then all 
positive integer solutions of (4) are given by 

u2k+i v/â + vik+i^/h = r/2fr+1 

for k>0. 

EXAMPLE. Let a = 3 and 6 = 2, then 

7/ = \/3 + v/2 

is the minimal solution to 3A2 - 2F 2 = 1, and all solutions in positive integers 
to this equation are given by 

T]2^1 = u2k+x v/3 + v2k+x s/2 {k > 0). 

In the notation of Theorem 1, / = 1, and so the only positive integer solution to 
3A2 - 2 r 4 = 1 is given by A = 1 and F = 1. Note that rf = 9\/3 + l l \ / 2 , so 
that both 77 and r]3 yield solutions to Equation (3). 

3. Proof of Theorem 2. In the paper we will make reference to certain 
polynomials. In the definition of 77 in Theorem 1, let M = au2 so that 77 = 
\/M + \/M - 1. Define 2 sequences of polynomials {P2i+i{M)} and {Q2t+iiM)} 
by 

772t+1 = P2t+i(A'/)v/Â7 + Q2<+i(M)v/iW::T, 

for t > 0. It is evident that a solution to (1) is equivalent to an integer M for 
which Qi{M) = lz2 for some integer z, with M — 1 = l2x for some integer x. 

We remark that the polynomial Q2t+iix) is of degree t with the distinct roots 
sin2 ( u+2 ) for i = 0 , . . . , i - 1. In fact, we have more precisely that, for t > 0, 

We now proceed with the proof of Theorem 2. For / = 3, Q3(M) = 4M - 1, 
and so a solution to (1) is equivalent to values M for which 4M - 1 = 322, with 
M - I — 9x. Let 2 > 1 be an integer such that z = ± 1 , ±5 (mod 12), so that 
z2 = 1 (mod 12), and choose z so that 322 + 1 and *-^- are not both perfect 
squares. Let 6 = ^ - j ^ - and a = 96+ 1, then a and 6 are positive integers, a > 1, 
a6 is not a square, 77 = y/a + 3\/6 is the minimal solution to 

aA2 - bY2 = 1, 

and 
,7:J = (4a -3 ) N /o + (32)2\/6. 
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There are clearly infinitely many choices for the integer z, resulting in infinitely 
many pairs a, 6 with solutions to (1) for / = 3. 

Let I = 5, then by the comments above we want to solve Qsfa) = 16a2 - 12a+ 
1 = by2 with a - 1 = 256 for some positive integers a, 6, and y, with a6 not a 
square. Substituting 256 + 1 for a and simplifying, we arrive at 

(5) ( 2 t / ) 2 - 5 ( 4 0 6 + l ) 2 = - l . 

It is well known that the minimal solution of A 2 - bY2 = - 1 is 2 + \/E, and that 
all solutions in positive integers are given by (2 + y/5)2k+l = T2k+i + U2k+i\/5, 
with A; > 0. It is easy to prove by induction that the sequence {U2k+i} is periodic 
modulo 40, and that L^jt+i = 1 (mod 40) if and only if 2A; + 1 = 1 (mod 20). 
Thus, for each integer A; > 1 satisfying this congruence, we get a solution to (5). 
Any of these choices for k will lead to a solution of (1). 

Let Z be an odd integer with l>7.ln this case, Qi{x) is a polynomial of degree 
at least 3, with only simple roots. Therefore, by Siegel's theorem [9], the curve 
ly2 = Qlix) has finitely many integer points (x,j/). This results in only finitely 
many pairs of integers (a, 6) for which (1) solvable for this value of I. 

We complete the proof of Theorem 2 by considering the particular case of 
I = 7. As noted above, a solution to (1) with i = 7 is given by an integer 
solution to QiiM) = 7y2, with M of the form M = 1 + 49n, and n > 0. Since 
Q7iM) = 6 4 M 3 - 8 0 M 2 - | - 2 4 M - 1 , substituting l+49n for M, and then x = 28n, 
we find that x and y satisfy 

(6) y2 = 49x3 + 49x2 + 14x + 1. 

By the transformation Y = 49y, X = 49x + 16, we obtain the minimal Weier-
strauss model 

y 2 = A 3 + A 2 - 1 1 4 A - 1 2 7 , 

which has been well studied. From the tables in [4], we find that the group of 
rational points on this curve is of rank 0, and with torsion isomorphic to Z3. 
Since the curve as given in (6) has the obvious points {x,y) = (0, ±1), it follows 
that these are all of the finite rational points satisfying (6), forcing n = 0. Thus, 
(1) is not solvable if I = 7. • 

EXAMPLE. Consider the case / = 3. From the proof of Theorem 2, the smallest 
choice for z is z = 5, which results in 6 = 2, a = 19, and 77 = \ / Ï9 + 3\/2. In this 
case, 773 = 73N/Ï9-I-225V/2, and soX = 73,Y = 15 is a solution to 1 9 A 2 - 2 r 4 = 1. 

EXAMPLE. Consider the case I = 5. From the proof of Theorem 2, the smallest 
choice for fc is fc = 21. We therefore compute 

(2 + \/5)2 1 = 7331474697802 + 3278735159921^ = T2i + U2i VE. 
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Letting 6 = {U2i - l)/40 = 81968378998 and a = 1 + 256 = 2049209474951, we 
find that the minimal solution to aA2 — bY2 = 1 is 

T = \/2049209474951+ 5^81968378998, 

and that 

r 5 = 6718815155562226535373940 W2049209474951 
+ (18328686744505)V81968378998. 

Therefore, the equation 2049209474951A2 - 81968378998F4 = 1 is solvable, 
and comes from the fifth power of the minimal solution of 2049209474951A2 — 
81968378998y2 = 1. 

4. A heuristic for large values of I. Based on a refined version of a conse-
quence of the ABC conjecture recently proved by Langevin, we will show heuris-
tical evidence for Conjecture 1. In [8] Masser made the following 

T H E ABC CONJECTURE. Let c > 0. Then there is A > 0 depending on e such 
that for all triples (o, 6, c) of positive integers with c = a + 6 and gcd(a, 6, c) = 1, 

c < Arad(a6c)1+€, 

where rad(a6c) is the product of the distinct primes dividing a6c. 
There have been many results proved concerning consequences of the ABC 

conjecture. Recently, Langevin [5] has proved the following very interesting and 
powerful consequence of the ABC conjecture. In this theorem, rad(n) denotes the 
largest squarefree factor of the positive integer n. 

PROPOSITION 2. Let P{x) denote a polynomial of degree d > I, with integer 
coefficients, and with no multiple roots. The ABC conjecture implies that for all 
e > 0 , 

rad(P(n)) > n ' ' - 1 - ' , 

for all sufficiently large positive integers n. 

This result is not quite sharp enough to deduce results on the solvability 
of (1) for larger values of I. In order to do this we require an explicit form of 
Proposition 1 for a specific set of polynomials. 

Define a sequence of polynomials {q2t+iix)} for t > 0 by 

<72t+i(a:) = Q2t+i(a;/4). 

It is easy to prove that these polynomials are squarefree, of degree t, and have 
integer coefficients. Thus, for t > 2, these polynomials satisfy the hypothesis of 
Langevin's theorem. For the purpose of providing a heuristic for Conjecture 1, 
we assume the following explicit form of Langevin's theorem for the sequence of 
polynomials {(fct+ifa)}-
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HYPOTHESIS A. Let t > 2. If 71 is an integer satisfying n > 4{2t + I)2, then 
rad(f72<+i(«)) >nt-i. 

The lower bound for n in this hypothesis is somewhat arbitrary, but suffi-
cient for our purpose. The truth on this matter is likely that the conclusion of 
Hypothesis A holds for all n in a range which is somewhat larger than stated 
above. 

HYPOTHESIS A IMPLIES CONJECTURE 1. We need to show, for I > 7, that 
there is no solution in integers x,z to the equation 7;(4x) = lz2, with x of the 
form x = 1 -t- /2n, for n a positive integer. The case 1 = 7 has been proved 
unconditionally, so we assume that I > 11. Note that if qi{4x) = lz2, then z > I. 
It is easy to prove that for x > 1, x* > q2t+i{x), and so because 4x > 4l2, we can 
apply Hypothesis A to get 

lz > rad(Z22) = rad(<7j(4x)) > q,(4x)^T = {Iz2)^ > l2^z, 

forcing / < 10. • 
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QUANTUM IMAGINARY VERMA MODULES 
FOR AFFINE LIE ALGEBRAS 

VIATCHESLAV M. FUTORNY, ALEXANDER N. GRISHKOV AND 
DUNCAN J. MELVILLE 

Presented by Vlastimil Dlab, FRSC 

ARSTRACT. Let g be an untwisted affine Kac-Moody algebra and A/(A) 
an imaginary Verma module for g with 5-highest weight A € P . We con-
struct quantum imaginary Verma modules Ml(X) over the quantum group 
tA/(o)i investigate their properties and show that A/''(A) is a true quantum 
dcforination of A/(A) in the sense that the weight structure is preserved 
under the deformation. 

R é S U M é . Soit g une algèbre Kac-Moody affine non-tordue et A-/(A) un 
module Verma imaginaire pour g avec un poids S-plus haut X £ P. Nous 
construisons des modules Verma imaginaires quantiques A/^A) au-dessus 
du groupe quantique Uq(g), examinons leurs propriétés et montrons que 
A/^A) est une vraie déformation quantique de A/(A) dans le sens que la 
structure de poids est préservée sous la déformation. 

1. Let g be a finite-dimensional simple complex Lie algebra with root system 
A. Denote by A+ and A_ the positive and negative roots of g. Let g be the 
untwisted affine Kac-Moody algebra associated to g, with Cartan subalgebra I). 
The root system A of g is given by 

A = (a + ntf | a 6 A, n e Z} U (JW» | fc e Z, fc ̂  0}, 

where ô is the indivisible imaginary root. Let / be the indexing set for the simple 
roots. 

Consider the partition A = 5 U - 5 of the root system of g where S = {a+nô | 
a G A + , n € Z}Li{k6 | fc > 0}. This is a non-standard partition of the root system 
A in the sense that S is not Weyl equivalent to the set A+ of positive roots. 

The algebra g has a triangular decomposition g = g_ s © I) ® g s , where g s = 
© a e s 0 a - L e t UiSs) (resP- Ui0-s)) denote the universal enveloping algebra of 
g s (resp. g_s). 

Let XG P, the weight lattice of g. A weight (with respect to F)) f/(g)-modulc 
V is called an S-highest weight module with highest weight A if there is some 
nonzero vector v GV such that 
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(i) u+ • u = 0 for ail u+ G U{QS); 
( i i ) V = U { Q ) • v . 

Let X G P. We make C into a 1-dimensional U{gs ffi l))-module by picking a 
generating vector v and setting {x + h) • v = X{h)v, for ail x G g s , h G l). The 
induced module 

M(A) = U{g) ®i/(0s®b) Cv = U{g_s) ® Cv 

is called the imaginary Verma module with 5-highest weight A. Imaginary Verma 
modules are in many ways similar to ordinary Verma modules except they contain 
both finite and infinite-dimensional weight spaces. They were studied in [Fu], from 
which we summarize {cf. [Fu, Proposition 1, Theorem 1]). 

PROPOSITION 1. Let X G P, and let M(A) be the imaginary Verma module of 
S-highest weight X. Then M{X) has the following properties, 

(i) The module M{X) is a free U{g_s)-module of rank 1 generated by the S-
highest weight vector 1®1 of weight X. 

(ii) M{X) has a unique maximal submodule. 
(iii) Let V be a U{g)-module generated by some S-highest weight vector v of 

weight X. Then there exists a unique surjective homomorphism (j): M{X) •—» 
V such that ^(1 ®l)=v. 

(iv) dimM(A)^ = 1. For any p = X-kô, k a positive integer, 0 < dim A/(A)^ < 
oo. If p, ^ X — k5 for any integer k > 0 and dimM(A)(t ^ 0, then 
dimM(A)A1 = oo. 

(v) Let X,pG P. Any non-zero element o/Honing) (M(A),M(/i)) is infective, 
(vi) The module M{X) is irreducible if and only if A(c) ^ 0. 

2. The quantized universal enveloping algebra of g, Uqig), is an associative 
algebra with 1 over C(q) with generators Eu Fi, Kfl {i G I) and D* 1 . Let U+{g) 
(resp. ^ ( g ) ) be the subalgebra of Uq{g) generated by Ei (resp. Fi), i G I, and 
let Ug{g) denote the subalgebra generated by Kf {i G I) and D±. 

Beck [Bel, Be2] has given a total ordering of the root system A and a PBW 
like basis for Uqig). Here we follow the construction in [BK] and let Ep denote 
the root vectors for each /3 G A, counting with multiplicity for the imaginary 
roots. 

Let Uqi±S) be the subalgebra of C/9(g) generated hy{Ep \ (3 G ± 5 } , and let 
Bq denote the subalgebra of Uqig) generated by [Ep | /? € 5} U Uq{g). 

Let A € P . A Uq{g) weight module Vq is called an 5-highest weight module 
with highest weight A if there is a non-zero vector v GV such that: 

(i) u+-v = 0 for all u+ G Uq{S) \ C(g)*; 
(ii) V^UqW-v. 

Note that, in the absence of a general quantum PBW theorem for non-standard 
partitions, we cannot immediately claim that an 5-highest weight module V is 
generated by Uq{—S). This is in contrast to the classical case. 
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Let C{q) • v he a 1-dimensional vector space. Let X G P, and set Ep • v = 
0 for ail p G S, Kf1 -v = q±xV'-h {i G I) and D* 1 v = q^Wy. Define 
M"{X) = Uq{g) ®0(1 C{q)v. Then M^A) is an 5-highest weight [/,,-module called 
the quantum imaginary Verma module with highest weight A. 

Although we cannot say in general that an 5-highest weight module is gen-
erated by Uq{—S), in the case of imaginary Verma modules, we can make use 
of Beck's explicit ordered basis and the grading given in [BK, Proposition 1.8]to 
obtain the following result. 

THEOREM 2. As a vector space overC{q), iW^A) is isomorphic to the space 
spanned by the ordered monomials E-a-ns ... E-M • • • R-o+kS, <* G A + , n > 0, 
fe>0. 

Let G be the subalgebra of Uq{g) generated by the imaginary root vectors. 
Let M^A) be the quantum imaginary Verma module over f/^g) with 5-highest 
weight X G P and generating vector v. Consider the G-submodule of M9(A) 
generated by v, H'i{X) = Gv. The G-module H'i{X) is irreducible iff A(c) ^ 0. 
Denote by i/o(A) the unique maximal submodule of H''{X). Denote Mj(A) = 
Uq{g)H%{X) and set A^fA) = Mi{X)/M${X). 

THEOREM 3. For any X G P, 

(i) M'?(A) is irreducible iff X{c) ^ 0; 
(ii) M^X) is irreducible iff Xihî) =£0, i G I; 

(iii) let A(c) = 0 and A(/ij) ^ 0 for all i G I. Then M'7(A) has an infinite 
filtration with irreducible quotients M^A + ko), fc > 0; 

(iv) let A(c) = 0, X{hi) ^0, iG I and N be a submodule of A'/'7(A). Then N is 
generated by N n ^{X). 

3. We have constructed quantum imaginary Verma modules and determined 
some of their properties. Now we show that these quantum imaginary Verma 
modules are quantum deformations of imaginary Verma modules defined over 
the affine algebra. That is, the weight-space structure of a given module Mq{X) 
is the same as that of its classical counterpart M(A) for any A 6 P . To do this, 
we construct an intermediate module, called an A-form. 

Following [Lu], for each i G I, s G "L and n e Z + , we define the Lusztig 
elements 

K. 

and 

n 

D ; s 
n 

n n 
TT 

Kit 

Dqs-

- r+l _ 

ql 

r+l _ 

•K 
-q. 

D-

V(s 
- r 

q-i-

-r+l) 

-r+l) 

r = l qr -q-

in Uq{g). Let A = C[q,q- i e / , n > 0]. Define the A-form, [^(g), of Uq{g) 
to be the A-subalgebra of Uqig) with 1 generated by the elements Ei, Fi, K? ± i 
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Ki; S 
n ,iGl,D±\ D; 

n 
. Let U£ (resp. Ux ) denote the subalgebra of CA 

generated by the Ei, (resp. Fi), i G I, and let U^ denote the subalgebra of UA 

n 
The algebra U\ inherits the standarc 

generated by the elements Kf 

triangu 

D ; s 
n 

ar decomposition of Uq{g). In 
particular, any element u of UA. can be written as a sum of monomials of the form 
u-u0u+ where a ± € f/f and u0 G U%. In fact, we can say rather more. FVom the 
construction of Beck's basis, it follows that all the root vectors Ep, /3 G A are in 
Ux, too. 

Let X G P, and let M9(A) be the imaginary Verma module over Uq{g) with 
5-highest weight A and highest weight vector vx. The A-form of M9(A), MA(A), 
is defined to be the t/A submodule of M'7(A) generated by vx- That is, we set 
Mx{X) = Ux-vx. 

PROPOSITION 4. As an k-vector space, MA(A) is isomorphic to the space 
spanned by the ordered monomials E-a-nS ... E-ks • • • E-a+ks, a G A + , n > 0, 
fc > 0. 

P R O O F . This essentially follows from Theorem 2 and the fact that all the root 
vectors are in Ux- One must also check the action of the Lusztig elements. • 

Define a weight structure on MA(A) by setting MA(A)M = MA(A) CI M9(A)^ 
for each p G P. Then MA(A) is a weight module with the weight decomposition 
MA(A) = © M e p MA{X)li, and, for each pGP, MA(A)M is a free A-module such 
that rankA MA(A)M = d i m c ^ M^A),,. 

4. Next, we take the classical limits of the A-forms of the quantum imaginary 
Verma modules, and show that they are isomorphic to the imaginary Verma 
modules of U{g). 

Let J be the ideal of A generated by ç - 1. Then there is an isomorphism of 
fields A/J S C given by / + J H-» / ( l ) for any f G A. Set U' = (A/J) ®A C/A. 
Then U' = Ux/SUx- Denote by u' the image in U' of an element u G Ux. Then 
{D')2 = 1 and {Kl)2 = 1 for all i G /JDK]. If K' denotes the ideal of U' generated 
hy D'-l and {A] - 1 | i G / } , then U = U'/K' S U{g), the universal enveloping 
algebra of g. 

For A e P , let M'(A) = A/J ®A MA(A). Then M'(A) ^ MA(A)/JMA(A) 
and M'{X) is a [/'-module. For p. G P, let M^A)^ = A/J (8>A A/A(A)^. Since 
MA(A) = ©M epMA(A) / J , we must have M'(A) 
dimx/j M'iX)^ = rankA MA(A)/t. 

® M 6 P M ' ( A ) / ' - ¥ox » e P' 

PROPOSITION 5. The elements D' and K! (i G I) in U' act as the identity 
on the U' module M'{X) = A/J i8)A A/A(A). 

Since M^A) is a f/'-module, M(A) = M'(A)/A'M'(A) is a 17 = U'/K'-module. 
But K' was the ideal generated by D ' - 1 and the A"- - 1 , and D' and each AT- acts 
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as the identity on A/'(A), so Â7(A) = M'(A). Since V S [/(g), this means M(A) 
has a f/(g)-structure. The module Â?(A) is called the classical limit of MA(A). 
For v G A'/A(A), let v denote the image of v in A'/(A). 

PROPOSITION 6. Let vx be the generating vector for MA(A). Then as a [/(g)-
module, M{X) is an S-highest weight Uig_s)-module generated by Wx. 

PROOF. The crucial part of the proof is observing that the images in U of the 
ordered monomials in the root vectors Ep, fi G -S, form a basis for U{g_s). m 

Assembling these ingredients, we obtain the following result. 

THEOREM 7. Let g be an affine Kac-Moody algebra. Let A 6 P . Then the 
imaginary Verma module A/(A) admits a quantum deformation to the quantum 
imaginary Verma module Mq{X) over Uq{g) in such a way that the weight space 
decomposition is preserved. 

Details of the proofs and additional results will be given in a later paper. 

REFERENCES 

[Bel ] J. Beck, Braid group action and quantum affine algebras. Commun. Math. Phys. 
165(1994), 555-568. 

[Be2] , Convex bases of PBW type for quantum affine algebras. Commun. Math. Phys. 
165(1994), 193-199. 

[BK] J. Bock and V. G. Kac, Finite-dimensional representations of quantum affine algebras at 
roots of unity. J. Amor. Math. Soc. 9(1996), 391-423. 

[DK] C. DoConcini and V. G. Kac, Representations of quantum groups at roots of 1. In: Oper-
ator Algebras, Unitary Representations, Enveloping Algebras and Invariant Theory (Eds. 
A. Connes, M. Duflo, A. Joseph and R. Rentschler), Birkhauser, Boston, 1990, 471-506. 

[Fu] V. M. Futorny, Imaginary Verma modules for affine Lie algebras. Canad. Math. Bull. 
37(1994), 213-218. 

[Lu] G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras. 
Adv. Math. 70(1988), 237-249. 

Instituto de Matematica 
Universidade do Sao Paulo 
Sao Paulo 
Brasil 
email: futomy@ime.usp.br 

Department of Mathematics 
St. Lawrence University 
Canton, NY 13617 
USA 
email: dmel@mu.iic.sllaum.edu 

mailto:futomy@ime.usp.br
mailto:dmel@mu.iic.sllaum.edu


C. R. Math. Rep. Acad. Sci. Canada Vol. 20 (4), 1998 pp. 124-127 

WHENCE DOES AN ELLIPSE LOOK LIKE A CIRCLE? 

H. S. M. COXETER, FRSC 

ABSTRACT. In Euclidean 3-space, a system of confocal quadrics con-
tains two degenerate members: a focal ellipse and a focal hyperbola, lying in 
perpendicular planes in such a way that the foci of each coincide with the 
vertices of the other. George Salmon discovered that, when viewed from 
any point on the focal hyperbola, the focal ellipse looks like a circle! It 
seems worth while, quite apart from the consideration of quadrics, to give 
an elementary solution to the problem of finding the locus of viewpoints 
from which a given ellipse looks like a circle. 

RÉSUMÉ. Dans l'espace euclidien de trois dimensions un système de 
quadriques confocales contient deux éléments dégénérés: une ellipse focale 
et un hyperbole focale, appartenant a des plans perpendiculaires de telle 
sorte que les foyers de chacune de ces courbes coincident avec les sommets 
de l'autre. George Salmon a trouvé que, lorsqu'elle est vue à partir de 
n'importe quel point sur l'hyperbole focale, l'ellipse focale ressemble à un 
cercle! Il semble donc intéressant, pour des raisons autres que purement 
rattachées aux quadriques, de donner une solution élémentaire au problème 
de déterminer la courbe tracée par les points de vue desquels une ellipse 
spécifiée resemble à un cercle. 

1. The focal conics. 

THEOREM 1. The iocus of apices of right circular cones containing the ellipse 

b2 
x2 y2 

Z2+rô = l, z = 0 

is the hyperbola 
a 

x2 z2 

a2 - b2 b2 = 1, y = 0. 

We assume two lemmas which follow easily from Salmon's discussion of 
quadrics of revolution [3, p. 82], [4, pp. 113, 187]: 

LEMMA 1. Jf the cone 

ax2 + by2 + cz2 + 2fyz + 252:1 + 2hxy = 0 
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is right-circular and one of f, g, h is zero, then another one also must be zero. 

LEMMA 2. The cone 

ax2 + by2 + cz2 + 2gzx = 0 

is right-circular if and only if 

g2 = {a-b){c-b). 

PROOF OF THEOREM 1. A fixed point {xi,y\,zi)is joined to a variable point 
{xo,yo,0) on the given ellipse by a cone which may be described as the locus of 
points (x, y, z) such that 

Xx + pxi Xy + pyi Xz + pzi 
X + p X + p X + p 

for various values of X/p. The third relation reveals that X/p = —z\/z, so that 
we have, more precisely, 

zix-zxi ziy-zyi 
xo = , Vo = 

Zi — Z Zi — z 

and the equation that puts (a;o,yo,0) on the ellipse yields, for the cone, 

{zix-xiz)2 {ziy-yiz)2 

b2 = {zl-zr 

When the origin is shifted to (xi,j/i, 21), the term {zi - z)2 on the right becomes 
simply z2 so that 

a2X + tfV + [a2 + b2 1)Z
 62 yZ~ a2 ZX-0-

In this case, the a, b and c of Lemma 1 are 

while / = -yizi/b2, g = -ziX\/a2, and h = 0. By that Lemma, either xi or 
2/i must be zero. It is geometrically obvious that the viewpoint cannot lie in the 
plane a; = 0, so xi 7̂  0 and 

2/ i=0. 

Omitting the terms involving j/i, we are left with 

zi 2 z\ 2 (x\ , \ 2 221X1 
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so that again, g = -zixi/a2. By Lemma 2, 

\ a2 ) \a2 h2) \a2 b2) 

= 2 / 1 ^ 1 _^_ A z2\ 
Zï\a2 6 2 + a 2 6 2 + a262 b* ) 

_{a2-b2)z2( x2 z2 \ 
aW \a2-b2 b2 ) ' 

Replacing xi , yi, zi by x, y, z, we see that the desired locus of viewpoints is the 
hyperbola 

x2 z2 

^ 2 - f c 2 = 1 ' 2/ = ° (c2 = a 2 - 6 2 ) , 

whose foci (±a,0,0) and vertices (±c,0,0) are the vertices and foci of the given 
ellipse. 

REMARK. It is just as easy to show that the locus of centres of right circular 
cones containing the above hyperbola is the ellipse 

x2 y2 

+ ^ = 1, z = 0. b2 + c2 b2 

2. Prolate Spheroids. A somewhat related theorem, discovered by Nils 
Abramson [1], [2], [5] and proved by Bjôrn Bonnevier, concerns the prolate 
spheroid constructed by rotating an ellipse about its major axis. Naturally, the 
spheroid 

a b2 

is said to have two foci: (0,0, ±c) (c2 = a2 - b2). It will be shown that any plane 
section of the prolate spheroid looks like a circle when viewed from either focus. 
This requires another lemma [3, p. 82], [4, p. 113]: 

LEMMA 3. The cone of Lemma 1 is right circular if fgh ^ 0 and 

a-94 = b-V=c_fjL. 
f g h 

THEOREM 2. The cone joining any plane section of a prolate spheroid to 
either focus is right circular. 

P R O O F . When the origin is shifted to a focus, the equation becomes 

(f - c)2 . x2 + y2
 2 2 2 

a2 + —fr2— = 1 (c = a + & ) • 
The section of this spheroid by the plane 

Xx + Yy + Zz = l 
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is joined to the origin by the cone 

{. - c(Xx + Y, + Zz)}'+^1 = 
a* b* 

or 
0 = a2(x2 + y2) + b2{z2 - 2cz{Xx + Yy) - 2cZz2 - b2{Xx + Yy + Zz)2} 

= {a2 - 64A2)x2 + (a2 - 64y2)j/2 + 62(1 - 2cZ - b2Z2)z2 

- 2b2{c + b2Z){Yyz + Xzx) - 2b4XYxy. 

The a, 6, c of Lemma 3 are now 

a 2 - 6 4 A 2 , a 2 - 6 4 F 2 , 62(1 - 2cZ - 62Z2), 

while 

f = -b2{c + b2Z)Y, g = -b2{c + b2Z)X and h = -b4XY. 

Thus the criterion for the cone to be right circular becomes 

a2 - b4X2 + bAX2 = a2 - 64r2 + i,4r2 = 62(1 - 2cZ - 62Z2) + (c + 62Z)2. 

This is clearly true, since o2 = 62 + c2. 
REMARK. It is just as easy to prove that the cone joining any plane section 

of the oblate spheroid 
x 2 +2 / 2 £^ _ 

a2 + 62 

to any point on the "focal circle" 

x 2 + y 2 = c2, 2 = 0 

is right circular. 
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