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NEW TRENDS IN SYMPLECTIC GEOMETRY

FRANCOIS LALONDE

RESUME. Je présente ici un survol des développements récents en géo-
métrie symplectique. Cette géométrie—qu’on appelle aussi la topologie
symplectique—a passé par trois moments forts au cours des quinze derniéres
années: les travaux de Conley-Zehnder qui l'ont enracinée dans le Calcul
des Variations et la Dynamique, la percée fondamentale de Gromov qui a
permis de la voir comme une généralisation trés féconde de la géométrie
kahlérienne, et enfin les découvertes de Seiberg-Witten et de Taubes qui
ont montré la relation surprenante que la théorie quantique des champs
entretient avec le symplectique, relation qui implique en particulier la co-
incidence entre les invariants de Seiberg-Witten (de type gauge) et ceux
que Gromov construit avec les courbes holomorphes généralisées. Je décris
ici les éléments de la théorie des courbes pseudoholomorphes de Gromov,
les invariants qu'on en tire, les applications de cette théorie aux princi-
paux probléemes de la géométrie symplectique. J'explique enfin comment
les courbes stables—suivant une idée de Deligne et Kontsevich—peuvent
gervir a étendre la théorie de Gromov 3 toutes les variétés symplectiques.
Je termine avec une courte présentation de la théorie de Taubes reliant la
théorie de gauge de Seiberg-Witten & celle de Gromov.

1. Introduction. Symplectic geometry, that is the study of manifolds en-
dowed with a symplectic form (also called “symplectic topology”), has gone
through a series of revolutions during the last 15 years. The first one, initiated by
Conley and Zehnder, has rooted the study of symplectic manifolds in the fields of
Dynamics and Calculus of variations. More precisely, it was realised that many
essential features of the theory could be related to the study of the critical points
of an infinite dimensional functional—the Action functional—whose index and
coindex are both infinite (that is to say, at each critical point, the dimensions of
the positive-definite and negative-definite subspaces are infinite).

The second one due to Gromov has related Symplectic geometry to Kahler
Geometry. This is done by considering a symplectic manifold as a generalised
Kahler manifold—where the complex structure is not necessarily integrable—and
by extending to this non-integrable case the study of the families of holomorphic
curves (called in this context pseudo-holomorphic or J-holomorphic). It turns
out, for deep reasons, that the topological invariants of these (finite-dimensional!)
families are fine invariants of the underlying symplectic structure. Recently, ideas
due to Deligne and Kontsevich have led many mathematicians to the development
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34 FRANGOIS LALONDE

of a theory of stable J-holomorphic curves that works in all symplectic manifolds,
even untamed ones.

The third revolution, which is perhaps the most surprising, has revealed a
tight relation between Symplectic geometry and Quantum physics. Note that
there is obviously a close relation between Symplectic geometry and Classical
physics since the former can be viewed as the framework of Hamiltonian dynam-
ics. The relation with Quantum field theory has emerged from a totally different
origin: it is Witten’s and Taubes’ wonderful insights that have been responsible
for recognising that the Gauge theoretical Seiberg-Witten equations in QFT pro-
vide invariants of 4-dimensional manifolds that are essentially equivalent to those
provided by Gromov’s pseudo-holomorphic curves. In the same vein, the Quan-
tum cohomology of symplectic manifolds, whose product structure is expressed in
terms of Gromov’s pseudo-holomorphic invariants, have been intensively studied
recently. In some sense, Quantum cohomology is a powerful interface between
QFT and Kahler geometry; for instance, it is rich enough to transform physical
intuitions from QFT into precise conjectures on the number of algebraic curves
passing through generic points of projective varieties!

In this survey, I wish to describe the recent developments in our understand-
ing of symplectic geometry which are due to the progress in the theory of J-
holomorphic curves. Thus I will review the recent development of stable (marked)
J-curves, the relation of J-curves with Seiberg-Witten invariants and the appli-
cations of these new tools to some of the most significant problems of symplectic
geometry. But before doing this, I will first quickly recall what the J-holomorphic
curve approach is, why it cannot be applied to all symplectic manifolds, and why
stable pseudo-holomorphic curves are needed.

2. Preliminaries and basic facts. A symplectic manifold is a manifold M
equipped with a closed non-degenerate differential 2-form w with real values. This
means (1) that at each point p € M, the form w is a real anti-symmetric bilinear
form w, on T, M, which is non-degenerate in the sense that the map v +— wy(v, )
is an isomorphism from T, M onto TP M, and (2) that the assignation p — wp is
smooth and its exterior derivative vanishes.

Examples of symplectic manifolds include all cotangent spaces, all Kahler man-
ifolds (and therefore all projective varieties), and many others. For instance, using
a special type of surgery that works in the neighbourhood of codimension-2 sym-
plectic submanifolds, Gompf [5] has shown that all finitely generated groups can
be realised as the fundamental group of a 4-dimensional symplectic manifold.

It turns out that the interplay between the differential condition dw = 0 and
the pointwise non-degeneracy condition gives rise to a rich and subtle theory.
By Darboux’s theorem, any symplectic form is locally equivalent to the standard
form 3, ¢;cn d2i A dy; of R2". Thus there is no local symplectic invariant, and
therefore there is no hope of deriving a global invariant by integration of a local
one (except the volume) . Global invariants must be constructed by other means.
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One way of doing this, due to Gromov, is to consider the space of all almost
complex structures compatible with the given symplectic form. Recall that an
almost complex structure is any smooth assignation p — J, where Jp is a real
automorphism of the tangent space T, M whose square is —id (that is to say, it
makes each real 2n-dimensional tangent space T, M into a n-dimensional complex
vector space where the multiplication by /=1 is given by application of J).
It is compatible with w if w is J-invariant and if the form w(J-,-) defines a
Riemannian metric (given the J-invariance of w, this second condition boils down
to w(Jv,v) > 0 for all non-zero v). Thus each choice of a compatible almost
complex structure determines a compatible Riemannian metric and conversely.
Note that the three objects w,J,g have all the features of a Kahler structure,
except that J is not necessarily integrable. An almost complex structure J is
integrable the complex structure that it defines on TM is induced by a complex
structure on the manifold M; in other words, J is integrable if there is, near each
point p, a local real diffeomorphism f onto an open set of C® whose differential at
each point p’ sends the automorphism Jy» of T, M to the one on Ty(,)C* = C*
given by multiplication by v/=1. On any (symplectic) manifold of real dimension
at least 4, the integrable structures are rare in the space of all almost complex
structures. In dimension 2, the two notions coincide.

It is very easy to see that the space J(M,w) of almost complex structures
compatible with a given symplectic form is a non-empty contractible infinite-
dimensional space. Now fix any such structure J. Given a Riemann surface (X, )
(here j denotes the complex structure, viewed as an almost complex structure) a
map u: ¥ = M is called (7, J)-holomorphic (or J-holomorphic or simply pseudo-
holomorphic if there is no confusion) if the differential at each point is complex
linear with respect to the structures induced by j and J. In other words, it must
satisfy the generalised Cauchy-Riemann equation

dju=0

where d;u € A%(Z,u* (TM)) is the (j, J)-anti-complex part of du. In local
coordinates, the operator 9 is given by

(8su)(p) = Ou/dy — J,0u/dz.

This is an elliptic first order operator, hence Fredholm !. Note however that,
although the equation makes sense, the operator is not yet defined globally be-
tween two Banach spaces, since the space A%!(Z,u*(T'M)) depends on the map
u. There is a trick, due to Gromov, that constructs global function spaces and
some elliptic operator between them, in such a way that the zeroes of that oper-
ator are the (j, J)-holomorphic curves. It is not necessary to give here the details

! A linear operator between two Banach or Fréchet spaces is Fredholm if its image is a
closed subspace of finite codimension and if the kernel is finite dimensional too. The difference
dim ker — dim coker is the indez of the Fredholm operator.
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of this construction. It is more useful to explain, instead, the following equivalent
construction.

Endow J with the C*-topology. This gives a Fréchet space. As explained in
[23], all relevant constructions can be carried out in this C* framework (although
one uses in the proofs the larger Banach manifolds endowed with some Sobolev
norm).

Now, for any given homology class & € H,(M,Z) and any non negative integer
g, consider the space My(a) of all non-multiply covered C®-maps f: (24, j) =
(M, J) which are (j, J)-holomorphic and which realize the class a, where Lyisa
real closed orientable surface of genus g, j is a (necessarily integrable) complex
structure on ¥4 and J belongs to J(M,w). Here g and « are fixed but f, j and
J are allowed to take any value. Thus, up to the conformal group of reparametri-
sations, this is the space of J-holomorphic curves of genus g in class a, for any
w-tame J. A basic fact is that the projection

P:Mga) > T

sending f to J is essentially equivalent to the 8 operator (once globalised), and is
therefore easily seen to be a Fredholm map between Fréchet manifolds, whose real
index is dimr 7g + 2(c(a) — n(g — 1)). Here 7y is the Teichmuller space of genus g
and c is the first Chern class of T, M (note that since . is contractible, the Chern
classes of (T'M, J) do not depend on the choice of J € J). Thus, if J is a regular
value of P which is in the image of P, the space My(e, J) = P~1(J) is a smooth
manifold of real dimension equal to Index(P). When the group of conformal
reparametrizations is independent of the structure j, the quotient is a manifold
(of unparametrized curves) of dimension Index(P) — dimg (Conf(g)) generically.
Of course, the conformal group depends on the structure j and therefore may
vary from points to points in My(a), but in many interesting cases the structure
J which appears with the maps f is fixed by some constraints. This is of course
the case for rational curves (that is those of genus 0), but also for those which
are sections of irrational ruled manifolds.

For instance, in a 4-dimensional manifold M, the dimension of the unpara-
metrized moduli space Mgy(a), for a class a that can be represented by an em-
bedded real surface, is equal to 2(3g — 3+ a - @ + ¢ — n(g — 1) — dimcConf(g))
where e, is the Euler characteristic of £,. This is because the Chern number of
a is the sum of the Euler characteristics of the tangent and normal bundles, and
in the embedded case, the latter is equal to the self-intersection of the surface.

Of course, the interest in considering these moduli spaces is that any embedded
J-holomorphic curve is necessarily symplectic in the sense that the restriction of
w to that surface is non-degenerate. Actually, it is easy to see that, conversely,
given any smooth embedded symplectic surface S, there is a compatible J such
that S becomes J-holomorphic, and one can moreover choose that J to be generic
with respect to any other property.
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Finally, let me mention that as in algebraic geometry, there is also here a com-
pactness theorem which forms, with the positivity of intersection, the cornerstone
of the holomorphic approach:

THEOREM 2.1. Let (M,w) be a geometrically bounded symplectic manifold and
fir(Bg,7:) = (M, J;), i > 1, a sequence of holomorphic maps of fized genus g such
that:

1) the images of the maps f; all lie in some compact set of M,

2) the sequence {J;} belongs to a compact set K, and

3) there exists an upper bound A on the w-areas of the curves:

/ fiw<A foralli>1.

Z4

Then there ezists a subsequence weakly converging to a J-cusp-curve, for some
JEK.

See [1] for a precise definition of geometric boundedness (which depends on the
data (M,w, J)). Any compact manifold or any cotangent bundle is geometrically
bounded, and this property is stable under products. See [23, 1] for the definition
of cusp-curves and weak convergence. In the ambient space M, this theorem
essentially means that the curves C; (the image of f;, that we may consider as
singular 1-dimensional complex submanifolds) converge to a connected union of
J-curves, one of which has genus g and all other having genus 0 (these rational
curves are produced by bubbling off). A particular case of this theorem is that
any moduli space M g(a, J) has a natural compactification. The question is then:
does this compactification assign to M ¢(a, J) a boundary of dimension less than
the dimension of M g(a, J)? If yes, can this be used to define natural cycles? Can
one derive symplectic invariants from these cycles?

The answers to these questions have first been given in the context of weakly
monotone symplectic manifolds. This is where the so-called Gromov invariants
were first defined (see below). More recently, these constructions have been gen-
eralised to all symplectic manifolds, thanks to Deligne and Kontsevich [10, 11]
idea of extending to the symplectic case the stack construction in algebraic ge-
ometry. This gave rise to the theory of virtual stable marked pseudo-holomorphic
curves, that I will explain in the next sections.

3. Gromov’s invariants. The simplest application of pseudoholomorphic
curves in symplectic geometry is the construction of the Gromov (or Gromov-
Witten) invariants. They are invariants of the symplectic structure, defined in the
following way. Let a be any homology class in H2(M,Z) and k a non-negative
integer. Fix a generic structure J and consider the evaluation map

evi Mo(a,J) xg (S? x ...x §?) = (M x ...x M)
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defined by ev(u,z;,...,2x) = (u(z1),...,u(zx)), where G = PSL(2,R) is the
reparametrization group acting in the obvious way on both factors and xg de-
notes the quotient by this diagonal action. Now given homogeneous homology
classes ay,...,ax in H.(M,Z), one can form their product in H(M,Z2)® ...®
H(M,Z) = H(M x ... x M,Z), take a representative of it which is transver-
sal to ev and finally take the inverse image by ev. With the index fomula for
pseudo-holomorphic curves, it is easy to compute the dimensions of the cycles a;
so that this inverse image be 0-dimensional. When, moreover, the inverse image
is independent of all choices (J, representatives of a;) and defines a compact
oriented 0-cycle, one gets an invariant by counting these points with appropriate
signs. This will be the case as soon as the image of the evaluation map defines
a geometric object in M x ... x M which shares all the properties of a compact
oriented cycle, except that one allows boundaries of codimension at least 2 (over
R). Following McDuff-Salamon [23], let’s call this a pseudo-cycle. The main result
of this section is that the Gromov compactness theorem implies that the image of
the evaluation map always defines a pseudo-cycle when the symplectic manifold
(M,w) is weakly monotone.

DEFINITION. A symplectic manifold (M,w) is weakly monotone if, given
any compatible J, there is no rational J-holomorphic curve in homology classes
a with Chern index —2n + 3 < ¢;(a) < 0

THEOREM 3.2. In a weakly monotone manifold, the image of the evaluation
map always defines a pseudo-cycle. Thus the Gromov invariants are well-defined
in this case.

Before explaining what is the problem with non weakly monotone manifolds
and how it has been solved, let me first review other applications of pseudo-
holomorphic curves, which are especially interesting from a geometric point of
view.

4. Foliations by J-holomorphic curves. There are many other applica-
tions of pseudo-holomorphic curves to symplectic and contact geometry. For in-
stance, these curves have been extensively used in the series of papers [16, 17, 18]
by Lalonde-McDuff to prove the Non-squeezing theorem for all symplectic man-
ifolds and to develop a new intrinsic geometry of the infinite dimensional group
of Hamiltonian diffeomorphisms of a symplectic manifold introduced by Hofer in
1990 [6] (called Hofer’s geometry). See [15] for a review of these results. Another
example is the application by Eliashberg and Hofer of pseudo-holomorphic curves
to 3-dimensional contact geometry. A contact structure on a 3-manifold V' is a
maximally non-integrable distribution of 2-planes. If the distribution is expressed
as the kernel of a 1-form a, this means that a A da nowhere vanishes. In other
words da is non-degenerate on the kernel of a. The Reeb flow is the vector field
X defined as the kernel of da (which is therefore transversal to ker da) and such
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that a(.X) = 1. In order to attach fine invariants to the contact structure or to
study the behaviour of the Reeb foliation on V, one fruitful approach is to embed
V =V x {1} in its symplectization M = V x (0, 00) endowed with the symplectic
form da+a Adz. It turns out that, in some cases, the periodic orbits of X can be
found as the boundary of pseudo-holomorphic discs in M (see Hofer [7]). There
is actually a tight relation between the properties of pseudo-holomorphic curves
in the symplectization and the properties of the Reeb flow. The development of
this method has led to the definition of a new homology, called contact homol-
ogy, which encodes some of the most subblte invariants of the contact structure
(this work is ongoing, a full definition of contact homology has not yet appeared,
except very recently in a combinatorial way in a preprint by Chekanov [2]).

Since any 3-manifold admits a contact structure, there is some (speculative)
hope that a symplectic program could eventually be developped in order to study
three-dimensional geometry. In this vein, Thurston and Eliashberg have recently
collaborated on the development of a theory tha would unify contact structures
and two-dimensional foliations, called the theory of confoliations. Similarly, Hofer
and Wisocki have recently shown that the three-sphere admits a characterization
purely in terms of dynamical properties of the Reeb flow [9].

As a last example of applications of J-curves, I wish to describe briefly their use
in the classification of rational and ruled symplectic 4-manifolds. This terminology
refers to the complex geometry of surfaces: a rational manifold is diffeomorphic
to the projective plane, and a ruled one is diffeomorphic to a S2-bundle over a
closed oriented real surface. The clasification is then the following. Recall first
that a minimal manifold is one that cannot be expressed as the blow-up of another
manifold: in complex terms, this means that it does not contain an exceptional
divisor, and in symplectic terms this means that it does not contain an embedded
symplectic 2-sphere of self-intersection —1.

THEOREM 4.3 (GRoMoV, TAUBES). On a manifold diffeomorphic to CP?,
any symplectic structure is equivalent to the standard Fubini-Study structure.

The proof of this theorem relies both on the theory of J-curves as developped
by Gromov in [4] and on the equivalence, due to Taubes, of Gromov’s and Seiberg-
Witten’s invariants [28](see below).

THEOREM 4.4 (GROMOV, LALONDE-MCDUFF). On a manifold diffeomor-
phic to a S2-fibration, any symplectic structure is equivalent to a standard Kahler
one (and is therefore classified by the cohomology class of the form).

Here is a sketch of the main steps of the proof for the case when M is dif-
feomorphic to £y x S2, where I, is the surface of genus g (there is of course
also a topologically non-split S2-fibration over X4, but the proof in that case is
similar to the case when the underlying manifold is topologically split). See [19]
for details.
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(1) First, one finds a symplectic 2-sphere of self-intersection 0 by first con-
structing a solution to the Seiberg-Witten equations and then using Taubes’
equivalence between these invariants and Gromov invariants (see §7 below). This
shows that there is a non-vanishing Gromov invariant attached to the class of
the S%-fiber and consequently there is at least one J-holomorphic 2-sphere in the
class of the fiber, for a generic J. This gives the required symplectic 2-sphere of
self-intersection 0.

(2) For generic J, consider the moduli space of unparametrised rational J-
curves in the class F of the fiber. By a regularity criterion (see [8]) similar to
the one given by the Riemann-Roch in the complex case, the differential of the
Fredholm projection is everywhere onto along the points in Mo(F, J), so that this
moduli space (which is non-empty by (1)) is a smooth real manifold of dimension
2. The Gromov compactness theorem then gives a description of the degenerations
that may arise if that space is not compact. A careful study of these accidents
(which consists of bubbling off leading to the decomposition of the curve into
two or more components) shows that they connot happen for generic J’s. Hence
one easily derives from this that the manifold M is actually foliated by smooth
embedded J-holomorphic spheres in class F.

(3) Suppose that the base of the fibration M were a sphere instead of a surface
of genus ¢ = 2. Then the same argument as in steps 1 and 2 would show that the
class B of the flat sections of the fibration M — S2 is foliated by w-symplectic
2-spheres too. We would then have two foliations, one for each S2-direction. This
would give a diffeomorphism f from 52 x S2 to itself which would send the straight
S2-coordinates to the curved ones. Denote by w,; = wo @ w; the standard split
symplectic form on 2 x $2 , where each w; is the standard area form on S? whose
area is the same as the integral of w on that same factor (hence at the cohomology
level [w] = [w']). Denote by w’ the pushforward of this split symplectic structure
by f. Then, by construction, the two foliations considered above are w-symplectic
as well as w’-symplectic. This implies that J is compatible with both w and «’ and
therefore that the segment wy = A’ +(1—A)w, A € [0, 1], between them is formed
of non-degenerate forms, hence of symplectic forms in the same cohomology class
as [w] = [w']. There is a basic theorem of symplectic geometry, due to Moser
and whose proof is elementary, which states that such a segment is necessarily
induced by a diffeotopy ¢:e[o,1) in the sense that ¢; (w:) = w. Hence ¢} (v') = w,
which shows that w is equivalent to w’. This is the line of the argument when the
base has genus 0. Such an argument breaks down in genus > 0 because the index
formula readily implies that a generic J never admits a foliation of £, x S? by
J-curves of genus g. The argument in genus > 0 is actually completely different.

(4) Let’s go back to the general case of genus g. The idea is to reduce the proof
to the case of genus 0. For this, we consider a wedge of 2g circles A on X4 which
cuts X4 into a 4g-polygon, and all intersect at the point z € X4 say. The inverse
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image of each such circle v; by the projection m: M — Si, is a hypersurface H; of
M. It is well-known that the restriction of a symplectic form to any hypersurface
always has at each point a kernel of dimension 1 (this is an easy exercise of
linear algebra). In particular, each hypersurface H; has such a vector field called
characteristic flow, which is necessarily transversal to the S2-fibers of  since the
form is non-degenerate on each such fiber. This induces a flow, and therefore a
monodromy (or one turn map)

R,‘ZSZ - 52

where here S? is the fiber F; over the point z, and the map is defined by beginning
at a point p € S? and flowing along the characteristic flow till one comes back
to the same fiber. This map is actually a symplectic diffeomorphism of S? and
therefore is Hamiltonian. It is now very easy to convince oneself that, if all maps
R;,1 < i < 2g were the identity, then the form w would be equivalent to a split
form. Indeed, in this case, up to diffeomorphism one can arrange that the form
be split near 7=1(A). But then, by cutting the manifold along 7~*(A), one gets
a form on a the product P x S? of a polygon and a sphere, which is split near
the boundary. After identification of the boundary with a single fiber, one gets
a manifold ruled over the sphere, and by (3) our symplectic form is known to be
equivalent to a standard split one. Since this equivalence can be made to be the
identity near a fiber where the form is already split (relative case), this shows
that the equivalence on S? x S2 can be carried to an equivalence between w and
a split form wepjic on the space P x S? and finally on the original space M.

(5) There remains the critical step: how to show that our form w on M is
equivalent to a form that makes all the monodromies trivial? Note first that by
the theorem of normal forms near a symplectic manifold, the form w can be
considered split near the fiber F;, that is on a neighbourhood of the form D x 52
where D is a small disc centered at z. Now the first observation is that, if the form
w is deformed so that the area it gives to the disc D becomes sufficiently large
(without changing the form in the vertical direction of the fiber), then one gets
enough place to perturb each hypersurface so that the monodromy R; becomes
trivial. Note that the perturbation needed here can a be arbitrarily large; this
is why this step requires a large deformation of w, which obviously changes the
cohomology class of w. This is proved using the geometric properties of Hofer’s
geometry. It is a purely symplectic step where pseudoholomorphic curves do not
intervene. See [19] for details.

(6) Putting the last steps together gives a deformation of the symplectic struc-
ture from the original form to a split form: the first one from w = w;=¢ to w;— /3
is a deformation that changes the cohomology class, it joins the original form w to
a form where all monodromies R; are trivial. The second deformation is actually
an isotopy, it joins the form w3 to a standard split form wy/3 = wspiie. Of course,



42 FRANGOIS LALONDE

we can add finally a deformation inside the space of split forms between w53 and
a split form wy in the same cohomology class as w. Let’s denote by w;¢p, 1) this
whole deformation. In this last step, I describe how to change a deformation w,
of the symplectic form, whose ends wg and w; are in the same cohomology class,
into a genuine isotopy w; joining the same ends. This means that the image [w}]
of w, in H%(M,R) is a single point. Actually, it is enough to require that the
classes [w]] belong to the line L of H%(M, R) passing through 0 and [wo] = [w;]
because a rescalling of each form takes them back to a single point and therefore
defines a genuine isotopy.

This is a rather more elaborate step, so I will have to describe this in a very
sketchy way. The basic observation is that if S is a symplectic surface in a 4-
dimensional symplectic manifold, then the symplectic structure near the surface
has a canonical form which is adapted to the Thom class of the normal bundle
of S in the sense that there is a representative & of that Thom class such that
w + 7® is a symplectic form for all 7 > 0 (this can be expressed by saying that
the Thom class is the normal factor of the symplectic form). Hence the existence
of a t-family of w,-symplectic surfaces S; in a given homology class o enables
one to change the path w; to a path w; = w; + nPD(a) where 7 is any smooth
positive function of ¢. Note here that we only need two such classes. Indeed, as
I said above, it is enough to transform w,; into a deformation w; whose classes
[w}) € H3(M,R) = R2? all lie on the line L of H?(M,R). But in order to do
this, we only need to deform w; in a direction L; of H2(M,R) whose slope is
respectively less than the slope of L if [w;] lies above L, or greater than the slope of
L if [we] lies under L (note that [w;] alway lies in the first quadrant of H2(M, R)).
One finally gets the existence of these two classes by showing that both the class
F of the fiber and the class n,B + naF (for any sufficiently large ratio n;/n;)
have non-zero Gromov invariants. As before, this is proved by showing that the
Seiberg-Witten invariants corresponding to these classes do not vanish. 1

5. The negative multiple curve problem. As I explained in the last sec-
tion, many of the most significant problems of symplectic geometry depend on the
“good behaviour” of pseudo-holomorphic curves in symplectic manifolds. This is
why the Gromov invariants, the Floer homology and other similar tools were first
defined only when this behaviour is tamed, that is when the manifold is weakly
monotone. It is time to explain what the problem is when the manifold is not
weakly monotone. Consider a class o € Ha(M'Z) such that ¢(a) is negative but
larger than —2n + 1, and assume that that class admits J-rational representa-
tives for generic J. Assume moreover that a is not a primitive class, say a = 26,
and suppose that @ too contains J-rational representatives. The compactifica-
tion of My(e, J) is formed of all reducible curves whose components are multiple
branched coverings of some rational curves, with the obvious constraint that the
homology class realised by the sum of the components (counting multiplicities)
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is equal to a. In particular, the boundary of the compactification contains the
double covering of any J-rational curve C in class 8. But a simple count, using
the index formula, shows that the dimension of the moduli space of #-rational-J-
curves is greater than the dimension of the moduli space of a-rational-J-curves
(this actually is obvious since the Chern index appears with positive sign in the
index formula). Hence, in this situation, the boundary of the compactified mod-
uli space has a dimension greater than its “interior”, so that one is incapable of
defining in such a case any sensible notion of (pseudo-) cycle through any eval-
uation map. For reasons slightly more subbtle, the same problem prohibits the
application of J-curves to the definition of Floer homology or to a direct proof
of the Non-squeezing theorem.

To solve this problem, one is led to deform the 8, equation in some “virtual
way” .

6. Virtual stable pseudoholomorphic curves. Deligne and Kontsevich
have noted that the notion of stack in algebraic geometry should have an ana-
logue in the smooth category that would apply to all symplectic manifolds. This
program, that solves the negative multiple curve problem, has been conducted
simultaneously and independently by many mathematicians, namely Fukaya-Ono
[3], Ruan [25], Hofer-Salamon (unwritten yet) and Liu-Tian [14] with slightly dif-
ferent approaches. We will describe here Liu-Tian’s approach. They are all based
on the notion of (marked) stable pseudoholomorphic curves.

A stable J-holomorphic cusp-curve is defined in the following way. First, we
denote by My x the moduli space of Riemann surfaces of genus g with k£ marked
points, assuming that 2¢g + & > 3. Each point of that space can be presented as
(%, z1,...,zk) where X is a Riemann surface and the k points are distinct. Two
such objects are identified whenever there is a biholomorphism sending marked
points to marked points. Denote by /\;ig_k the Deligne-Mumford compactifica-
tion of Mg x. Thus it consists of all stable maps with k points, that is to say a
connected Riemann surface whose worst singularities are ordinary (transversal)
double points, with total genus g (the total genus is the genus of the surface
obtained by index 1 surgery on the double points) and k& marked points with
the condition that, on each component ¥; of this connected union, the relation
2g; + ki > 3 be always satisfied, where this time k; is the sum of the numbers
of singularities and marked points of the #*#-component. It is moreover required
that the graph formed by the components of the curve is a tree. Two such ob-
jects are identified in the obvious way, by biholomorphisms that respect both the
singularities and the marked points. The main motivation for this definition is
that a stable curve only admits a finite group of automorphisms

Finally, the J-holomorphic stable maps are J-holomorphic maps defined on
the connected Riemann surfaces ¥ = UX; with the weaker restriction that the
relation 2g; + k; > 3 is needed only when the restriction of the map to that
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component is a “ghost” (sent to a point). There is an obvious notion of equiva-
lence, and the quotient is the moduli space Fy k(M) of stable maps. Again the
automorphism group is finite. Denoting by F x(M, @) the same space with the
additional condition that the maps realise the homology class a € Ha(M ) we
get as an easy consequence of Gromov’s compactness theorem:

THEOREM 6.5. fg,k(M, a) is both Hausdorff and compact.

Now the basic idea is to use the finiteness of the automorphism group to
construct an orbifold structure on the space of J-holomorphic stable maps. Once
this is done, we perturb the §; equation by adding an inhomogeneous term,
depending on the stable map, in such a way that the multiple curve problem
desappears (note that this problem is due to the fact that a covering of a J-
holomorphic cuve is also a J-holomorphic curve, but that propery is killed when
such a perturbation is introduced). The new “virtual stable maps” are then the
solution of this non-homogeneous equation. One can then show that they behave
well in all symplectic manifolds in the sense that the give rise to evaluation
maps—naturally associated to the marked points—which do define pseudo-cycles,
at least if one uses rational coefficients.

7. Seiberg-Witten equations and Taubes’ theory. In 1994, Seiberg and
Witten found a system of elliptic PDE’s, of gauge theoretical nature, when they
were investigating the consequences of a certain supersymmetric quantized Yang-
Mills theory [26, 27). Witten realised that this system of equations would greatly
simplify Donaldson-Taubes’s theory of instantons as invariants of the differential
structures of 4-manifolds (see [29]). Indeed, the replacement of the Yang-Mills
equations by the SW-equations leads to a theory that is essentially as rich as the
Donaldson one, but with the enormous advantage that the space of solutions to
the SW-equations already forms a compact set in most cases. The SW-equations
have already led to

(1) a reformulation and simplification of Donaldson’s theory;

(2) a proof of the Thom conjecture on the minimal genus of a smooth em-
bedding of a real closed oriented surface that realises a given homology class of
dimension 2 in CP? (the conjecture states that it should be equal to the genus
of the faithful holomorphic curve in the given class); extension of the proof to
many other 4-manifolds, the so-called manifolds of non-simple type (see [12]);

(3) the proof of the Theorems 4.3 and 4.4 above;

(4) many applications to the classification of tight contact structures (the tight
contact stuctures, introduced by Eliashberg at the end of the 80’s, are essentially
the structures that behave in a rigid way; they are opposed to the overtwisted
contact structures that behave in a way that is prescribed by purely topological
considerations). See [22, 13, 24]

Here is in a few words a summary of Seiberg-Witten’s theory, as presented in
Lalonde-McDuff [19].
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From their definition, it is clear that the Gromov invariants of (M,w) depend
only on the deformation class of w. Taubes’s main result is that they coincide with
certain Seiberg-Witten invariants and so depend only on the smooth structure
of M together with the first Chern class ¢;(J) of any w-tame almost complex
structure J. We must state his result somewhat carefully since ruled surfaces
have b = 1, which means that the Seiberg-Witten invariants depend both on
the metric and the perturbation used to define them. Normally we will consider
metrics of the form g; defined by

.‘I.I(-’B,y) = w(:c, Jy),

where here we assume that J is w-compatible, ie that w(Jv, Jw) = w(v,w) as
well as w(v, Jv) > 0.

To be consistent with usual notation we denote by K the complex line bundle
with first Chern class —c¢;(w) and let E be a complex line bundle whose Chern
class ¢;(E) is denoted e € H?(M,Z). Given such E let Wg denote the Spin°-
structure on M with determinant bundle Lg = K~! @ E?. The (perturbed)
Seiberg-Witten equations on Wg may be written as

(1) Da(®) =0, Fi=o0(®)-in,

where F;‘" is the self-dual part of the curvature of a connection A on Lg, o is a
quadratic function of the spinor ®, and 7 is a real self-dual 2-form. The number
of solutions of equations (1) (counted with sign) is independent of the choice of J
and 7 as these vary along a generic path (J;, ;) provided that this path does not
cross the “wall” where there are reducible solutions. (These are solutions with
® =0, which pose problems because the gauge group does not act freely at such
points.) Because [iF4] = 2mc¢;(Lg) and because w A a = 0 for all antiselfdual
forms a, such reducible solutions occur exactly when

2mei1(Lg) U [w] = [p] U [w].
Taubes considers perturbations of the form
N = 4rw +iFA"°, T — 00,

where Ay is the connection on K~! which is defined by g;. We define SWk(LEg)
to be the number of solutions of equations (1) for some fixed (large) value of r.
It is not hard to see that this invariant is well-defined and independent of w up
to deformation. Moreover, Taubes’s theorem can be stated in this language as

SWx (Lg) = £Gr (PD(e)).

Therefore, in order to conclude our survey of the classification of (rational or
irrational) ruled symplectic 4-manifolds, it is enough to show that SW k(LEg) is
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nonzero for classes e which are Poincaré duals of homology classes A = m[F] +
n[X] with either n = 0 and m = 1 or n/m arbitrarily large. Here [F] is the class of
the fiber and [X] is the class of the section. As observed by Li-Liu and Ohta-Ono,
this can be done by using a wall-crossing formula. The point is that ruled surfaces
always have metrics g of positive scalar curvature, and it is well-known that the
unperturbed Seiberg-Witten equations have no solutions in this case. Further, the
number of times that a path from the pair (g,0) to a Taubes pair (g7, 7,) crosses
the wall is 1 (when counted with multiplicities). Therefore, provided that the wall-
crossing number (that is the jump in the number of Seiberg-Witten solutions) is
nonzero for the class e, the Taubes invariant SW g (Lg) will be nonzero. Note that
this is possible only when the formal dimension of the Seiberg-Witten solution
space is > 0. When e € H%(M) is Poincaré dual to A, this dimension is exactly
the number 2k(A) = ¢1(A) + A - A which occurs in the definition of the Gromov
invariant.
By calculating this wall-crossing number, one shows:

ProprosITION 7.6 (Li1-Liu, OHTA-ONoO). Let (M,w) be a symplectically ruled
surface over ¥ where g = genus () > 0, and let e € H*(M, Z) be Poincaré dual
to A = m[F) + n[Z], where the fiber class [F] and base [Z] are as defined in §3.
Then, if k(A) > 0,

+Gr (A) =SWk(Lg)=(n+ l)g.

8. Topological rigidity of Hamiltonian loops. As a last application of
virtual stable pseudoholomophic curves, let me describe briefly the surprising
phenomenon of topological rigidity of Hamiltonian loops, discovered recently by
Lalonde-McDuff-Polterovich [21].

Consider the following question: is the group of Hamiltonian diffeomorphisms
C'-closed in the group of symplectic diffeomorphisms (or equivalently in the full.
group of all diffeomorphisms)? This has been studied in the paper [20]. In order to
explain some of the results therein, let’s recall that the flux of a path of symplectic
diffeomorphisms ¢;,t € [0, 1], beginning at the identity, is given by integrating
over time the w-dual of the time-dependent vector field that generates the path.
Since the path is symplectic, this dual is necessarily closed, as well as its integral,
which therefore defines a class in H!(M, R), called the flux of ¢;, which turns out
to be independent up to homotopy of the path that keeps its endpoints ( id and
¢,) fixed. Another definition of the flux is the assignation to ¢, of the element of
H!(M,R) defined as the composition

H(M,2) 5 Hy(M, Z) [vg

where the first map is simply given by v(s) — ¢:(v(s)), which we will refer
to as the trace on v of ¢(t) (this trace obviously makes sense as a map from
H;(M,Z) - H;+1(M,R) for any ). Since the dual of the trace map behaves
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like a derivation, we will sometimes call 04 a derivation. An essential algebraic
ingredient in this study is the image of the Fux homomorphism m; (Diff, (M)) —
H'(M,R) where the Flux is defined as above (using either definition). We will
denote by I' this image, called the Flux subgroup. Then the basic facts needed
can be expressed in the following way:

1 Suppose that a symplectic diffeomorphism is given as the endpoint of a
symplectic path ¢, € [0,1]. Then ¢, is Hamiltonian if and only if the
flux of the path ¢, belongs to the subgroup I' C H*(M,R). That is to say
the knowledge of I is the essential ingredient in order to decide if a given
symplectic diffeomorphism is Hamiltonian.

2 The group of Hamiltonian diffeomorphisms is C!-closed in the group of
symplectic diffeomorphisms if and only if the subgroup I' C H!(M,R) is
discrete (in the sense that each element 4 of T is included in some open
neighbourhood of H!(M,R) whose intersection with T' contains only 7).
Clearly, discreteness is equivalent to the fact that T’ be topologically closed
in H'(M,R). This (discreteness or C-closure) is known as the Flux con-
jecture.

Putting this together, and using both soft and hard methods, we established in
[20] that the Flux conjecture holds in many cases, for semi-monotone manifolds
for instance or spherically rational ones. We feel that we have enough evidence to
state, as a conjecture, that the Flux conjecture should hold in all closed symplec-
tic manifolds. It is however much more speculative to decide whether or not the
CP-flux conjecture (stating that Diffyam(M) is C%-closed in the identity compo-
nent of the group of symplectic diffeomorphisms) is true in general. In [20], we
were only able to establish this for a special class of manifolds including tori.
This seems a crucial question of symplectic topology: as in the case of Eliash-
berg’s C°-closedness of the group symplectic diffeomorphisms that prompted the
development of the theory of capacities, the C%-closedness of the group of Hamil-
tonian diffeomorphisms is related to the extent to which the CC-invariants of
Hamiltonian paths (like Floer homology) are genuinely attached to Hamiltonian
diffeomorphisms.

In our study of the C'-flux conjecture, we were led to a related problem. To
explain this, consider a closed symplectic manifold (M,w) and a loop ¢¢[o,1) of
symplectic diffeomorphisms based at the identity. Then the homotopy class of
that loop contains a Hamiltonian loop exactly when the composite map

Hy(M,R) % Hy(M,R) Ivgp

described above vanishes. When it vanishes, we say that the loop ¢;¢[o,1] is Hamil-
tonian up to homotopy (or even simply Hamiltonian by abuse of terminology).
Thus, a priori, the fact that the loop be Hamiltonian up to homotopy seems to
depend heavily on the choice of the symplectic form. We showed in [21] that this
is not the case:
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THEOREM 8.7 (LALONDE-MCDUFF-POLTEROVICH). Let (M,w) be a closed
symplectic manifold and ¢.¢[0,1) be a loop based at the identity in the group
Diff, (M) of symplectic diffeomorphisms. Then, if the fluz of that loop vanishes,
the trace map itself

Hi(M,R) 3 Hy(M,R)

vanishes. Actually, all trace maps
Hi{(M,R) 3 Hi 1 (M,R)

vanish. In other words, all trace maps vanish for elements of m;(Ham(M)).
This theorem has the following obvious corollary:

CoROLLARY 8.8 (TOPOLOGICAL RIGIDITY OF HAMILTONIAN LOOPS).  Let
M be a closed manifold, and v € m(Diff(M)). Suppose that this loop has w;-
representatives, i = 1,2, for symplectic forms wy and w, on M. Then the first
representative is Hamiltonian (up to homotopy) if and only if the second is.

This topological rigidity implies the following Hamiltonian stability: given an
element ¢, in m(Ham(M,w)) generated say by closed 1-forms )\;, any other
symplectic form w’ (that can belong to a different cohomology class) obviously
gives rise to a w'-path beginning at the identity, by integrating the w’-dual of the
closed 1-forms ;. But if o’ is sufficiently close to w, the endpoint of the new path
is C'-close to the identity and therefore can be joined to the identity using the
theory of generating 1-forms. This gives a w’-loop in the same homotopy class of
loops in Diff(M). Hence, by the theorem, the trace map must also vanish, which
implies that this new loop is also Hamiltonian (up to homotopy)!

COROLLARY 8.9 (HAMILTONIAN STABILITY). Let ¢; be a Hamiltonian loop
with respect to some symplectic form w. There is a neighbourhood of w in the
space of symplectic forms and, for each ' in this neighbourhood, there is a loop
@, in the same homotopy class of loops which is Hamiltonian with respect to w'.
The correspondance ' — ¢} can be made continuous.

Here is finally the relation between the topological rigidity of Hamiltonian
loops and the Flux conjecture:

COROLLARY 8.10. The rank over Z of the group
H, = m(Diff,(M))/m(Ham(M))

(which is identified with T by the Flur homomorphism) is not greater than the
first Betti number of M. In particular, it 1s finitely generated over Z.
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PROOF. Suppose not, then there are symplectic loops ¢, ..., ¢, with m >
B1(M) independent over Z, mod 7;(Ham(M)). Thus their fluxes A; must also be
independent over Z in H!(M,R). Perturb the form w to a rational form w’ and
do the same for the new loops and fluxes (denoting them with a prime symbol).
Recall that this can be done so that the new loops are in the same homotopy
classes in Diff(M) as the former ones. Since the new fluxes are rational, there
is a non-trivial integral linear combination of them )\ = X;in;A} that vanishes,
and therefore by the Main theorem, the loop ¢’ = I1;(¢)™ has trivial derivation.
Thus the corresponding loop ¢ = II;(¢;)"* has also trivial derivation and must
a fortiori have trivial flux. But this means that the loop is in m(Ham(M)), a
contradiction with the hypothesis. m

CoROLLARY 8.11. The Fluzr conjecture holds when the first Betti number of
M is 1.
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CAUCHY-MIRIMANOFF POLYNOMIALS
CHARLES HELOU

Presented by M. Ram Murty, F. R. S. C.

RESUME. Les polyndmes P, = (X + 1)® — X" — 1, de Cauchy, ont
des facteurs cyclotomiques simples. Mirimanoff conjectura que le facteur
restant, Ey,, est irréductible sur Q. Le groupe de Galois de E,, est déterminé
par ceux de polynémes auxiliares. Sur un corps fini Fp, Ey, est réductible
si n est impair; mais pour N premier, on déduit du nombre de facteurs
sur Fp un critére d'irréductibilité sur Q. Enfin, si p est premier, E;, est
irréductible sur Q.

1. Introduction. For any integer n > 2, let Pp(X) = (X +1)" - X" -1
and let E, be the remaining factor of P,, in Q[X], after removing X and the
cyclotomic factors. Then

(1) Pu(X)=(X+1)"—X"—1=X(X+1)"(X2+ X +1)*"Eq(X)

where for even n, ¢, = e, = 0; for odd n, ¢, =1 and e, = 0,1 or 2 according as
n=0,20r 1 (mod 3). Cauchy noted (1) for odd » in 1839 ([2,3,6]). Mirimanoff
studied E,, for prime n in 1903 ([4]) and conjectured its irreducibility over Q.
Most of his results are valid for all odd n and his conjecture seems to hold for
all n > 2. Moreover, for odd n > 9, E, is reducible modulo every prime p.
For prime n, if E,, has at most 3 irreducible factors modulo some prime p then
it is irreducible over Q. Also for odd n, the Galois group of E, over Q is an
extension of a subgroup of &5 by a subgroup of &,_; and presumably it is the
wreath product of &3 by &, , where & is the symmetric group on k letters
and r, = 2=3=2¢a This is reminiscent of some results of P. Morton on the
Galois group of periodic points of polynomial maps ([5]). Another generalization
of Mirimanoff conjecture ([7]), and several other helpful ideas, were suggested by
G. Terjanian. The irreducibility of Ej,, for odd prime p, is due to M. Filaseta.

ix

2. Preliminary results. For any integer m > 0, let {,, = e in C. Then
(3 is a root of P, if n = £1 (mod 6); and so is —1 if n is odd. These are the
only roots of unity that are roots of P,. Indeed, if m > 4 and n > 3 then
[(Cm + 1)?| = (2cos Z)* > 2 > [¢7 + 1|. Moreover, P, has no other real roots

m
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than 0 and (if » is odd) —1, since P, has at most one root in R. A multiple root z
of P, is characterized by (z+1)"~! = z"~! = 1, whose solutions in C are z = g
( = 1,2) provided n =1 (mod 6). The multiplicity of a root is < 2, since P,, P,
and P, have no common root. Therefore X2+ X + 1 is a simple or double factor
of P, according asn = —1or 1 (mod 6). Hence the factorization in (1), with E,
in Z[X] having only simple roots in C, none of which is real nor a root of unity.
Moreover, Ej, is, like Py, a reciprocal polynomial, i.e. if E,(X) = :’_‘__0 ar X*
with dy, its degree then ag,_x =ax (0< k< d ). Thus, if z is a root of E,, then
so are its complex conjugate Z and its inverse 1 Note also that if n is prime, then

L +En is a monic polynomial in Z[X], whose roots are then algebraic integers.

LEMMA 1. For n > 2, E, has at least 2v, roots of absolute value 1 in C with
Va=[2]-1ifn=1 (mod6), v, = [2] otherwise and [z] the largest integer
<z

PROOF. Pyn(e®) = 2wn(§)e's", where, for z € R, wy(z) = 27~ cos” z —
cosnz. Thus, e**® are roots of E, lf and only if% is a zero # § of wy, in (0, §).
For integers § < k < 2 4 — 1, the continuous function w, has opposite signs
at the endpomts of '::’, y‘—";.l)l] and thus has a zero in this interval. Moreover
wn(m — z) = (=1)"wa(z), and wyp(3) = 0 if and only if n is odd. Hence w, has
vp zeros in (%, %

We assume untll §4 that n is odd > 9. Then E,(—X — 1) = E,(X) and
En(%) = 5= En(X). Hence, if z is a root of E, in C, then so are the elements
of

1 1 z

(2) Orb(z) = {z,—,—z—l,—m,—l—;,—z_'_l}

which are distinct, since z # 1,-2, —-21;,(3,(32. This set is the orbit of 2
under the action of the group of unimodular transformations 7 = {X, 3 ¥
-X - 1,—x+_1,—x—)\‘t— %57} on C — {0, —1}. The group 7 is isomorphic to
&3. The roots of E,, in C are thus partitioned into r, = ds = ‘3‘2" orbits. In
every orblt. there are at most two elements of absolute value 1, namely z a.nd 2,
since z2 + z + 1 # 0. Moreover 7, = v, of Lemma 1. Hence

LEMMA 2. For odd n > 9, the roots of E,, in C are partitioned into r,, orbits
(2); and E, has exactly 2r, roots of absolute value 1, two conjugates in each
orbit.

For every root z of E, in C, let g, be the monic polynomial with roots the
elements of Orb(z). A straightforward computation gives

(3) 9:(X) = XS +3X° + 4, X+ (2, —5) X3+, X2+ 3X +1

witht, = 6 — J(2) and J(X) = %’f—;}; The definition and expression of g,
are valid for any z € C — {0,—1} and we have

(4) 9:(X) = X3(X + 1)2(J(X) - J(2)).
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All elements in Orb(z) have the same image by J. If # Z 7 (mod 2)7, in R,
. 3

then J(e*?) = ;cc‘;i%':_ll . So, if z is a root of E,, then J(z) € R and g. €

R[X]. The roots of E, being partitioned into r, orbits, E, is the product of the

corresponding polynomials g,, with leading coefficient n. Thus

LEMMA 3. Foroddn >9,ifz,...,z,. are representatives of the root orbits
of E, in C, then E, = n[[;~, g.;, with g.; € R[X] given by (3). For a root 2
of E,, t, = 6 — J(2) is a real algebraic number; if n is prime, it is an algebraic
integer.

Let T, be the monic polynomial with roots ¢; = ¢, i.e. Tn (X) = [[;2, (X —t;).
Then T, € Q[X]; if n is prime, T, € Z[X]. For, the automorphisms of C permute
the roots of E, hence of T}, and thus fix its coefficients. By Lemma 3 and (4),

(5) Ea(X) = (~1)"nX*(X + 1)*T, (6 - J(X)).

It follows that if E,, is irreducible over Q, then so is T},.

3. Some Galois groups. For odd n > 9, let z; = ¢'% (1 < j < r,) be
representatives of the root orbits of E, in C. Write t; = t,, = 6 — J(z;) and
9i = gz;- Let K =Q(ty,...,tr,) and L = Q(z1,..., 2,) be the splitting fields of
T, and E, over Q. Note that K C R. Let G = Gal(L|Q), N = Gal(L|K), Gk =
Gal(K|Q) be the Galois groups of L|Q, L|K, K|Q. Foro € G and 1 < j < rp, the
root o(z;) of Ey is in the orbit of some zx (1 < k < rp), i.e. 0(2;) = Ro,j(2x,(j))
with R, ; € T, 7o(j) = k. Then o(t;) = t,(j) and 7, € &,,. The map o — 7, is
a homomorphism from G into &, with kernel N and image ~ Gg. It identifies
Gk with a subgroup $ of &, , i.e. G/N ~ $. Also, for 7,0’ € G, we have
Rgi0,j = RgjRot z,(j) (1 £ j < rp). This relation may be interpreted as defining
an element of H!($, ®5"), class of a 1-cocycle w — (Rr,,j)1<j<ra, Where 7 € G
is any extension to L of the element of Gk corresponding to = € ). Thus

PROPOSITION 1. For odd n > 9, any o € Gal(L|Q) is given by o(z;) =
Ro,j(2x,(j)), o(t;) = tz,(j), where Ry ; € T, 15 € &, (1 < j < ry). The map
o — T, induces an isomorphism between Gal(K|Q) and a subgroup $ of 6, .
And Gal(L|Q) is an extension of Gal(L|K) by $.

Since L|K is the compositum of K(z;)|K, lifting by K of Q(z;)|Q(;)
(1 < j < ry), we consider

LEMMA 4. Let n be odd > 9 and z a root of E,, in C.

a) We have Q(z) N K = Q(t.) and Gal(K(z)|K) ~ Gal(Q(2)|Q(¢;)) =~ Tz,
where T, is a subgroup of T of order |{T;| = 2 or 6.

b) For a Q-conjugate 2’ of z, T;» = T,. The minimal polynomial of z over Q
is the product of [Q(t;) : Q] minimal polynomials over K of such z' in different
orbits.
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c) If|T:| = 2 then, for any 2"’ € Orb(z), |T,#| = 2; and, if |z| = 1 then all the
roots of the minimal polynomial of z over Q have absolute value 1.

PROOF. a) Let u, be the minimal polynomial of z over Q(t;), T the set of
R € T such that R(z) is a root of u, and G, = Gal(Q(z)|Q(t.)). Any s € G,
is characterized by s(z) = R,(z) with R, € T,. If s is the restriction to Q(z) of
some o € Gal(L|Q) and z = R(z;) with 1 < j < r, and R € T, then 7, (j) = j
and 0(z;) = Ro,j(2;), so that R, = RR, ;R~'. Hence the isomorphism s — R
from G, onto the subgroup 7; of 7. Also, |T;| is the degree of u, and divides
|7] = 6. Since u, € R[X] has no real roots, its degree is even and is thus 2 or 6.
Let K; = Q(z) N K; then H; = Gal(Q(z)|K;) is a2 normal subgroup of G, with
|H| even. But |G| = 2 or 6, and in the latter case G, ~ 3. Thus H, = G,,ie.
K, = Q(t;) and Gal(K(2)|K) ~G. ~T,.

b) Let U, be the minimal polynomial of z over @, and 2’ a root of U,. For
R € T, R(2') is aroot of U, if and only if there is a field isomorphism 75 from Q(2)
onto Q(z') such that 7r(z) = R(Z'). In this case, 7r(t;) = 1., and s = 7 !7p
is in G, and satisfies s(z) = R(z2), so that R € 7;. Similarly, TR} € Gy, S0
that R € T;.. It follows that 7, = 7;, and the roots R(2') of u,s are those of U,
that lie in Orb(2’). Hence U, is the product of u,: for 2’ taken in different orbits.
Since [K(2') : K] = [Q(2") : Q(t.)], u, is also the minimal polynomial of 2’ over
K. The degree of u, is |T;+| = |Tz| = [Q(z) : Q(¢;)]. The result follows.

c) Let |7:| = 2 and 2” € Orb(2). Then t,» =1, and u,» is a factor of g, of
degree 2 or 6. If it was 6, then u,» = g,» = g,, implying u, = g,, a contradiction.
Thus |7z#| = 2.If |z| = 1, i.e. 7= 2, then u;(X) = (X — z)(X — 1); and for a
root z' of Uz, T+ = T; implies u(X) = (X — 2/)(X — L), so that 27 = L, ie
|| = 1.

CoRroLLARY 1. In Q[X], if T, is irreducible, then E, is either irreducible or
is the product of 3 irreducible factors (according as g is irreducible over Q(t)
or not).

PROOF. U, is the product of r, polynomials u,, irreducible over K, all of
degree d = 6 or 2. So U, is an irreducible factor of E, in Q[X] of degree dr,. If
d =6, ie. g; = u;, then E, = U, is irreducible over Q. Otherwise, U, and every
U.u, for 2" € Orb(z), have degree 2r, so that E, has 3 irreducible factors.

COROLLARY 2. For odd n > 9, Gal(L|Q) is an extension of a subgroup of
&5 by a subgroup of &,_.

PROOF. L is the compositum of the fields K(z;), and Gal(K(z;)|K) can be
identified with a subgroup of &3 (1 < j < r,). Therefore Gal(L|K), which is
naturally embedded in the direct product of these Gal(K(z;)|K), can be viewed
as a subgroup of &3". The result then follows from Proposition 1.

Moreover, since every Gal(K(z;)|K)) is isomorphic to &3 or to one of its
subgroups of order 2, then, for 1 < i,j < rp, K(z;) N K(z;) is equal to K or to
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K (z;) or to its quadratic subfield over K. Hence, enumerating the subgroups of
B3 and the corresponding subfields of K (z;), we get

LEMMA 5. Foroddn > 9 and1<i,j <r,, K(z;) NK(z;) is either equal to
K or to K(z;) = K(z;) or to K(/u;) = K(,/uj), where u; = —(4t; + 3).

Thus, if the degree [K(y/u:, \/4;) : K] = 2* then K(z;) N K(z;) = K and
Gal(K (zi,2;)|K) ~ Gal(K(z)|K) x Gal(K(z;)|K). By induction, letting F =
K(\/u1,-.-,/%r,), which is the splitting field of T, (—-i‘i“t") over Q, we have:

If [F : K] = 2™, then Gal(L|K) is isomorphic to the direct product of the
Gal(K () |K) (1< j < 1a).

The latter holds for the examples we examined (n < 25). Other computations
(for n < 49) gave Gal(K|Q) ~ &,,. These results suggest that, for odd n > 9,
Gal(L|Q) is plausibly the semi-direct product of &3" by &, _, or more precisely
the wreath product of &3 by &, .

In the case where n is a prime number, we also have

PROPOSITION 2. For primen > 11 and any root z of E,, inC, g, is irreducible
over Q(t;) and Gal(K(z)|K) ~ Gal(Q(z)|Q(t:)) ~ &3. An irreducible factor of
E, over Q is a product of some g,. And E, is irreducible over Q if and only if
Ty 1s.

PRroOF. The roots of E, are algebraic integers (§1). By Lemma 4, if, for
some root z of E,, the degree of u, is 2, then the minimal polynomial over Q
ofaz; = ¢'% in the orbit of z has all its roots of absolute value 1. Hence, by
Kronecker’s theorem, z; is a root of unity ([8]), which is impossible (§1). Thus
u, has degree 6,i.e.u, =g, and 7, =T.

4. Factorization modulo a prime.

LEMMA 6. Let f € Z[X] be a reciprocal polynomial such that there exists
z in C — {0, -1} for which Orb(2) consists of 6 distinct roots of f. Then f is
reducible modulo every prime p.

ProOF. The roots of f in C can be written in the form «/d where a is an
algebraic integer and d a fixed positive integer (common denominator). Let f =
S r—0a; X7 and L its splitting field over Q. Consider h = z—:- f(&) = Z;=o b; X7,
which is in Z[X], monic, with roots the numerators a of those of f in the ring
OL of integers of L. Let p be a prime number, p a prime ideal of O above p and

Fp, = Z/pZ, F, = OL/p (finite fields with F, C IFy). For @ € Z and a € Oy, let
a=a+pZinF, and a = o + p in Fy; write f =) oa_,XJ Then f and h are
in Fp[X], and they split in F,[X]. The degree of h is n > 6. Let v = dz, v, = d/z,
v2 = —d(2+ 1), y3a = —d/(z+ 1) and y4 = —d(z + 1)/z; they lie in d Orb(z)
and are roots of h. If h were irreducible over F,, then its roots in F, would
be distinct and there would exist 1,02 in Gal(F,(7)|Fp) such that ai(y) = %
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(i =1,2). But then 201 (y) = 73 and 0102(y) = 74 being distinct, Gal(IF, (7)|]Fp)
would be non abelian, impossible. Thus, A is reducible over Fp,. It follows, since
d" f(X) = anh(dX), that if p does not divide d then f is reducible over Fp. If p
divides a, = ap (f reciprocal), then X divides S which is thus reducible over F,.
Now assume p divides d but not a,. We have a,h(a) = Z 0 @jd"Jad = 0. Let
vp be the valuation of L at p. If v, (a) < vp(d) then v,.(a,,a") < vp(ajd" I ad) for
0 <j < n—1so that vp(anh(a)) = vy(ana®), contradicting a,h(a) = 0. Thus,
vp(@) > vy(d), for any root a/d of f and any prime ideal p of @, above p. Hence
p*»(9) divides all such a and we may remove this factor from d and the a’s, thus
getting back to the case p does not divide d. Hence f is reducible over F,.

CoROLLARY. Foroddn > 9 and any prime number p, E,, is reducible modulo
p.

PROPOSITION 3. Let n be a prime > 11. If, for some prime p, Ey, has at most
3 irreducible factors in Fp[X], then E, is irreducible in Q[X].

PROOF. Assume E, is reducible over Q. By Gauss Lemma ([1]), E, = FG
with non-constant F,G € Z[X]. By Proposition 2, F and G are, to within con-
stant factors, products of some g,. So there is z € C — {0, —1} such that Orb(2)
consists of 6 distinct roots of F' (resp. G). Also, F and G are reciprocal polynomi-
als. Hence, by Lemma 6, for any prime p, F and G are products of 2 non-constant
polynomials, so that E,, has 4 non-trivial factors, in F,[X].

5. The case n = 2p. Let p be an odd prime number, Qp the field of p-adic
numbers and v, the normalized valuation of Q,. The Newton polygon (e.g. [1])
of a polynomial f(X) =} 2 a;X* over Q, is the lower convex envelope, in R2,
of the points (#,vp(a;)) (0 < i < m). Let (zo,%0), (z1,%1),---, (2, u) be the
consecutive vertices of this polygon. Then there are fi,..., fx in Qp [X] such that
f= H,_l fi, the degree of f; is ; — z;_; and the roots of f;, in the splitting
field L of f over Q,, have their (normalized) valuation equal to —e(D)Liz¥imr

Ti=Zi—1 )
where e(L) is the ramification index of L|Qy, and ”":": is the slope of the
corresponding side of the Newton polygon. Hence, if a natural number d divides
the denominator of the reduced fraction ”' i"i then for any root v of f; in L,
d divides the ramification index of Q,(7) |Qp, so that d divides the degree of any
irreducible factor of f; in Q,[X].

We have E5y(X) = 2"_1(2"))(" Tand v(()) =1ifk#p, 1 <k <
2p — 1 while up((2")) = 0. Therefore the Newton polygon of E3, consists of 2
line segments with vertices (0,1), (p - 1,0),(2p— 2,1) and slopes :F— Hence
Eop = f1f2, where f1, f2 € Qp[X] have degree p—1 and are lrreducxble It follows
that, in Q[X], E3, is either the product of 2 irreducible factors of degree p— 1 or
is irreducible. Assume that the first case occurs, i.e. Eyp = gh, with g, h € Z[X]
irreducible over Q of degree p— 1. Then g, h are, like Esp, primitive polynomials
i.e. the ged of their coefficients is 1 (Gauss Lemma). Let Eap(X) = 2?252 a; Xt
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9(X) = YhZob;X7 and h(X) = Th_gexX*¥, where the a;,bj,cx € Z. Since
vp(a;i) = lfor i ;6 p—1whilevy(ap—1) =0anda; =3 ; ,; bjer (0 < i < 2p— 2),
then, as in the Eisenstein irreducibility criterion ([1]), one of the polynomials g
or h, say g, has its constant coefficient by not divisible by p and all its other
coefficients b; (1 < j < p— 1) divisible by p. Let z be a root of g in C. Then
1/z is a root of E2p hence of g or h. But 1/z is a root of g;(X) = Xrlg(%) =
Z g1 o bp—1-;X7, i which is an irreducible primitive polynomial of degree p — 1. If
1 / z were a root of g and g, the two polynomials would be associates in Q[X] and
(since they are primitive) in Z[X]; then b,_; = +bo, contradicting the divisibility
of the b; by p. Thus 1/z is a root of h and of g, which are then associates in
Z[X). Hence h = %g; and Pz,,(X) XE2p(X) = £XPg(X)g(+%)- Substituting 1
for X, we get 2% — 2 = £¢(1)?, with g(1) € Z. This implies that 2 is a quadratic
residue modulo 4, a contradiction. Hence

PROPOSITION 4. For any odd prime p, E,, is irreducible over Q.
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BEST UNIFORM RESTRICTED RANGES APPROXIMATION
OF COMPLEX-VALUED FUNCTIONS

GEORGEY S. SMIRNOV AND ROMAN G. SMIRNOV

Presented by Vlastimil Dlab, F. R. S. C.

ABSTRACT. We study the uniform best restricted range approxima-
tions of complex-valued functions by generalized polynomials. The theory,
generalizing the real-valued case, embraces the theorems of existence, char-
acterization, uniqueness and strong uniqueness.

RESUME. Nous étudions les meilleur approximations avec image re-
streint des fonctions de valeures-complexes par polynéms généralisés. Le
théorie, en généralisant le cas de valeur réel, comprend les théoémes de
I'existence, unicité at unisité forte.

1. Introduction. The problems of best uniform restricted range approxima-
tion have been thoroughly studied in the framework of the well-established theory
of best constrained approximation of functions (see the corresponding review in
[1] and the relevant references herein, a modern approach to the problem can be
found in [2]).

In this article we consider the problem of best uniform restrictied range ap-
proximation of complez valued continuous functions, which in analogy with the
real-valued case [3], can be formulated as follows. Let C(Q) be a space of complez-
valued functions defined on a compact set Q, P C C(Q)—a finite-dimensional
subspace in it and Q@ = {Q; | t € Q}—a system of non-empty conver and closed
sets in C. For a given function f € C(Q) set:

(1.1) E(f) = inf IIf —pll,

where
Po={peP|pt)e forall teQ}.

Here || || stands for the uniform norm.

The problem is to investigate the properties of the element p* € Pq providing
the infimum in (1.1).

In this work the problem of existence, characterization, uniqueness and strong
uniqueness of such the element p* is studied for some special system of restrictions
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Q, using the notion of a minimal admissible pair of sets corresponding to the
notion of a characteristical set of best approximation in the classical theory of
uniform approximation.

2. Basic definitions, notations and facts. Let Q be a compact set in the
complex plane C containing at least n + 1 points. Denote by C(Q) the Banach
algebra of all complex-valued continuous functions defined on @ with the norm
[|fll = maxeeq |f(t)|.- For every function f € C(Q) introduce the set M(f) :=
{t € Q| |f®)) = |Ifll]}. Clearly, M(f) is compact. Consider a n-dimensional
subspace P with a basis {¢1,9,..., ¢n}. The elements p € P have the form
p= Z:=1 cupy, where ¢, € C;v = 1,...,n. We call them generalized polynomials
with respect to the system {¢1,¥2,...,¢n}, or just polynomials, for short. For
p € Pset Z(p) := {t € Q|p(t) = 0}.

DEFINITION 2.1 (4). A subset P C C(Q) is called a Haar space if every poly-
nomial p € P\ {0} has no more than n — 1 zeros in Q.

Let u € C(Q) and r € C(Q) be fixed functions, in addition assume that
r(t) > 0 for all t € Q. For every point ¢t € Q denote by €, intQ; and 3%
correspondingly the closed disk, open disk and circle with the origin u(t) and
radius r(¢) in C.

HyproTHESsIs 2.1. Throughout this paper we assume that always for some
po € P the condition holds:
po(t) € int 2,
for allt € Q.

For all p € P set B(p) := {t € Q | p(t) € 3%}. In view of continuity of the
functions u, r and p the set B(p) is compact. Introduce the following notation:

Ppa:={p€P|pt)eQ foral te B},

where B C Q; Py q := P, Pg,a = Pn. Note that for every set B C @ the set Pp o
is convex, while for a closed set B Ppgq is closed in P. The inclusion B’ C B
obviously implies Pg.q C Pp' q.

Let M be a set of ordered pairs (A; B), where A C Q,B C Q and A # §. We
write (A’; B') C (A;B) iff A’ C A and B’ C B. Then the inclusion (4’; B) C
(A; B) is called strict, if at least one of the inclusions A" C A and B'C Bis
strict.

For a function f € C(Q) and a pair (4; B) € M set

E4(f;Psa):= _inf sup|f(t)— p(t)l.
PEPB,atcA
Clearly, if A = B = Q, Eq(f; Po,a) = Eqg(f; Pa) = E(f). It is easily seen
that the inclusion (A’;B’) C (A;B) implies the inequality Ea:(f; Pp,a) <
Ea(f; Pea), which leads, in particular, to E4(f; Ppa) < E(f) for any pair
(A; B) € M.
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DEFINITION 2.2. A polynomial ¢ € Pp q, satisfying the equality
sup |/ (t) = q(t)| = Ea(f; Pp,q)

is called a best restricted ranges approzimation to f on A from Pgq.
A best restricted ranges approrimation to f on Q from Pq, or the polynomial
p* € Pq satisfying
If = 2"ll = B()
is called for short a best approzimation to f from Pq.
The compactness argument justifies the validity of the following

THEOREM 2.1. If A and B are compact subsets of Q (A # 0), then for every
function f € C(Q) there exists a best restrict ranges approzimation to f on A
from Pgq.

COROLLARY 2.1. For every function f € C(Q) there ezists a best approzima-
tion to f from Pq.

3. Minimal admissible pairs of sets and their properties. Let f €
Cc@Q).

DEFINITION 3.1. An ordered pair (A; B) € M is called an admissible pair
(a. p.) for a function f with respect to Pq, if
EA(f; P,a) = E(f).

DEFINITION 3.2. An admissible pair (Ao; Bo) for f with respect to Pq is called
a minimal admissible pair (m. a. p.) for a function f with respect to Py, if the
strict inclusion (A; B) C (Ao; Bo) implies the absolute inequality:

Ea(f; P,a) < Eao(f; Ppo,a)-

REMARK 3.1. Each a. p. (A; B) for a function f, where A and B are finite
subsets of Q, admits at least one m. a. p. for f.

THEOREM 3.1. Let (Ao; Bo) € M be a m. a. p. for f € C(Q) with respect to
Pa, and p* € Pq is a best approzimation to f from Pq. Then simultaneously the
following inclusions hold:

(32) Ao CM(f-p*),  BoCB(p")

THEOREM 3.2. For each function f € C(Q) there ezists at least one m. a. p.
(Ao; Bo) for f with respect to Pq, such that |AgU Bo| < 2n + 1.
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DEFINITION 3.3. We call a function f € C(Q) admissible, if it satisfies at least
one of the two conditions:

1. f(t) € Q for allt € Q;

2. M(f-p")NB(p*) =9,
where p* € Pq is some best approximation to f from Pg.

We denote the set of all admissible functions by Cq(Q).

THEOREM 3.3. Let P be a Haar space and f € C,(Q) \ Pa. Then each m. a.
p. (Ao; Bo) for the function f with respect to Pq satisfies the condition |AgU Bo|
>n+1.

4. Characterization of best approximation. Let f € C(Q), p* € Pq. Set
o1(t) := f(t) — p*(t), t € M(f — p*), and o2(t) := u(t) — p*(t), t € B(p*).

THEOREM 4.1 (KoLMOGOROV-TYPE CHARACTERIZATION). A polynomial
p* € Pq is a best approrimation to a function f € C(Q) from Pq, if and only if
for each p € P the conditional inequality holds true

(4.3) min{teMn(l}Ep')Re(p(t)r(t)), min, Rz(p(t)az(t))}<0

For each function f € C(Q) and p* € Pq consider the set
B = {b(t) = ($1(t), $2(t), ..., dn(t))o1(t), t € M(f —p*)}
U {c(t) = (¢1(t), $2(t), ..., dn(t))o2(t), t € B(p*)},

noticing that due to compactness of the sets M(f — p*) and B(p*) the set B is
compact in C”.

THEOREM 4.2 (“ZERO IN THE CONVEX HULL” CHARACTERIZATION). A
polynomial p* € Pq is a best approrimation to a function f € C(Q) \ Pa if and
only if the origin of the space C" belongs to the conver hull of B.

THEOREM 4.3. A polynomial p* € Py is a best approrimation to f € C(Q) \
Pq from Pq if and only if there exist such sets Ag = {t1,%2,...tx} C M(f —p"),
Bo = {t},t,...,t5,} C B(p*) (k > 1,k + m < 2n + 1) and positive constants
AL, s M, AL, ...y A, that for each polynomial p € P the condition holds:

(4.4) Zz\lp(t()al(il Z/\ p t, 0’2 i’ =0

REMARK 4.1. Under the conditions of Theorem 4.3
| Ao U Bo| <2n+1- |Ao N Bo|.

REMARK 4.2. If P is a Haar space and f € C4(Q) \ Pa, the sets Ag and By
in Theorem 4.3 additionally satisfy the condition |Ao U Bo| > n + 1.
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5. Uniqueness and strong uniqueness of best approximation. We as-
sume throughout this section that P is a Haar space.

THEOREM 5.1 (UNIQUENESs THEOREM). Each function f € C4(Q) has a
unique best approrimation in Pq.

THEOREM 5.2 (STRONG UNIQUENESS THEOREM). Let p* € Pq be a best ap-
prozimation to a function f € Cy;(Q) from Pq. Then there ezxists such a constant
7 =7(f) > 0 that any polynomial p € Py satisfies the inequality:

(5.5) I =2l > If = 2°II% +7llp* - plI?

Define on the set C,(Q) the operator of best approzimation T, which assigns to
each function f € C;(Q) its unique best approximation in Pq.

THEOREM 5.3. The operator T is continuous in Cs(Q).

REMARK 5.1. Theorem 5.2 suggests the standard form of the inequality of
strong uniqueness (see [5]) in the complex case. Indeed, set v; = 1/4v,8 = 2y~1/2,
Then for all such p € Pq that ||p — p*|| < § we have the following inequality

IlF =2l > I = p*Il + mallp = P*II%

6. Conclusion. All the results of this paper remain valid for some weakened
system of restrictions €, which can be defined as follows. Let X is some open
subset of @, then

Q _{{zeC||z—u(t)|gr(t)} forteQ\ X
PR fort € X;

moreover, the functions u and r are continuous on @ \ X and in addition, the
function r is positive on Q@ \ X.

A full version of this article containing all the proofs and elucidating details
will be published elsewhere [6].
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CORRIGENDUM TO
FALTINGS PLUS EPSILON, WILES PLUS EPSILON,
AND THE GENERALIZED FERMAT EQUATION

H. DARMON

On page 7, line -11: after “differently:”: remove the rest of the paragraph, and
replace it by: “the stalk Ox p for this sheaf is defined to be the ring of Puiseux

series in ti,/m’ .” That should end the paragraph.
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