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NEW TRENDS IN SYMPLECTIC GEOMETRY 

FRANÇOIS LALONDE 

RÉSUMÉ. Je présente ici un survol des développements récents en géo-
métrie symplectique. Cette géométrie—qu'on appelle aussi la topologie 
symplectique—a passé par trois moments forts au coure des quinze dernières 
années: les travaux de Conley-Zehnder qui l'ont enracinée dans le Calcul 
des Variations et la Dynamique, la percée fondamentale de Gromov qui a 
permis de la voir comme une généralisation très féconde de la géométrie 
kahlérienne, et enfin les découvertes de Seiberg-Witten et de Taubes qui 
ont montré la relation surprenante que la théorie quantique des champs 
entretient avec le symplectique, relation qui implique en particulier la co-
incidence entre les invariants de Seiberg-Witten (de type gauge) et ceux 
que Gromov construit avec les courbes holomorphes généralisées. Je décris 
ici les éléments de la théorie des courbes pseudoholomorphes de Gromov, 
les invariants qu'on en tire, les applications de cette théorie aux princi-
paux problèmes de la géométrie symplectique. J'explique enfin comment 
les courbes stables—suivant une idée de Deligne et Kontsevich—peuvent 
servir à étendre la théorie de Gromov à toutes les variétés symplectiques. 
Je termine avec une courte présentation de la théorie de Taubes reliant la 
théorie de gauge de Seiberg-Witten à celle de Gromov. 

1. Introduction. Symplectic geometry, that is the study of manifolds en-
dowed with a symplectic form (also called "symplectic topology"), has gone 
through a series of revolutions during the last 15 years. The first one, initiated by 
Conley and Zehnder, has rooted the study of symplectic manifolds in the fields of 
Dynamics and Calculus of variations. More precisely, it was realised that many 
essential features of the theory could be related to the study of the critical points 
of an infinite dimensional functional—the Action functional—whose index and 
coindex are both infinite (that is to say, at each critical point, the dimensions of 
the positive-definite and negative-definite subspaces are infinite). 

The second one due to Gromov has related Symplectic geometry to Kahler 
Geometry. This is done by considering a symplectic manifold as a generalised 
Kahler manifold—where the complex structure is not necessarily integrable—and 
by extending to this non-integrable case the study of the families of holomorphic 
curves (called in this context pseudo-holomorphic or J-holomorphic). It turns 
out, for deep reasons, that the topological invariants of these (finite-dimensional!) 
families are fine invariants of the underlying symplectic structure. Recently, ideas 
due to Deligne and Kontsevich have led many mathematicians to the development 
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34 FRANÇOIS LALONDE 

of a theory oî stable J-holomorphic curves that works in a//symplectic manifolds, 
even untamed ones. 

The third revolution, which is perhaps the most surprising, has revealed a 
tight relation between Symplectic geometry and Quantum physics. Note that 
there is obviously a close relation between Symplectic geometry and Classical 
physics since the former can be viewed as the framework of Hamiltonian dynam-
ics. The relation with Quantum field theory has emerged from a totally different 
origin: it is Witten's and Taubes' wonderful insights that have been responsible 
for recognising that the Gauge theoretical Seiberg-Witten equations in QFT pro-
vide invariants of 4-dimensional manifolds that are essentially equivalent to those 
provided by Gromov's pseudo-holomorphic curves. In the same vein, the Quan-
tum «(homology of symplectic manifolds, whose product structure is expressed in 
terms of Gromov's pseudo-holomorphic invariants, have been intensively studied 
recently. In some sense. Quantum cohomology is a powerful interface between 
QFT and Kahler geometry; for instance, it is rich enough to transform physical 
intuitions from QFT into precise conjectures on the number of algebraic curves 
passing through generic points of projective varieties! 

In this survey, I wish to describe the recent developments in our understand-
ing of symplectic geometry which are due to the progress in the theory of J-
holomorphic curves. Thus I will review the recent development of stable (marked) 
J-curves, the relation of J-curves with Seiberg-Witten invariants and the appli-
cations of these new tools to some of the most significant problems of symplectic 
geometry. But before doing this, I will first quickly recall what the J-holomorphic 
curve approach is, why it cannot be applied to all symplectic manifolds, and why 
stable pseudo-holomorphic curves are needed. 

2. Preliminaries and basic facts. A symplectic manifold is a manifold M 
equipped with a closed non-degenerate differential 2-form u) with real values. This 
means (1) that at each point p G M, the form w is a real anti-symmetric bilinear 
form Up on TPM, which is non-degenerate in the sense that the map v >-* Wp{v, •) 
is an isomorphism from TpM onto VM, and (2) that the assignation p i-^ Wp is 
smooth and its exterior derivative vanishes. 

Examples of symplectic manifolds include all cotangent spaces, all Kahler man-
ifolds (and therefore all projective varieties), and many others. For instance, using 
a special type of surgery that works in the neighbourhood of codimension-2 sym-
plectic submanifolds, Gompf [5] has shown that all finitely generated groups can 
be realised as the fundamental group of a 4-dimensional symplectic manifold. 

It turns out that the interplay between the differential condition dw = 0 and 
the pointwise non-degeneracy condition gives rise to a rich and subtle theory. 
By Darboux's theorem, any symplectic form is locally equivalent to the standard 
form 52i<i<n dxi A dy,- of R 2 n . Thus there is no local symplectic invariant, and 
therefore there is no hope of deriving a global invariant by integration of a local 
one (except the volume). Global invariants must be constructed by other means. 
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One way of doing this, due to Gromov, is to consider the space of all almost 
complex structures compatible with the given symplectic form. Recall that an 
almost complex structure is any smooth assignation p —t Jp where Jp is a real 
automorphism of the tangent space TpM whose square is —id (that is to say, it 
makes each real 2R-dimensional tangent space TpM into a n-dimensional complex 
vector space where the multiplication by y/—ï is given by application of J ) . 
It is compatible with w if w is J-invariant and if the form w ( J - , ) defines a 
Riemannian metric (given the J-invariance of w, this second condition boils down 
to u{Jv,v) > 0 for all non-zero v). Thus each choice of a compatible almost 
complex structure determines a compatible Riemannian metric and conversely. 
Note that the three objects u,J,g have all the features of a Kahler structure, 
except that J is not necessarily integrable. An almost complex structure J is 
integrable the complex structure that it defines on TM is induced by a complex 
structure on the manifold M; in other words, J is integrable if there is, near each 
point p, a local real diffeomorphism / onto an open set of C whose differential at 
each point p' sends the automorphism Jp/ of Î^Af to the one on TfÇp')Cn = C n 

given by multiplication by y/—î. On any (symplectic) manifold of real dimension 
at least 4, the integrable structures are rare in the space of all almost complex 
structures. In dimension 2, the two notions coincide. 

It is very easy to see that the space J{M,LJ) of almost complex structures 
compatible with a given symplectic form is a non-empty contractible infinite-
dimensional space. Now fix any such structure J . Given a Riemann surface (S, j ) 
(here j denotes the complex structure, viewed as an almost complex structure) a 
map w: E —> M is called {j, J)-holomorphic (or J-holomorphic or simply pseudo-
holomorphic if there is no confusion) if the differential at each point is complex 
linear with respect to the structures induced by j and J . In other words, it must 
satisfy the generalised Cauchy-Riemann equation 

dju = 0 

where dju 6 A0'1(E,«*(7,M)) is the (j, J)-anti-complex part of du. In local 
coordinates, the operator dj is given by 

{dju){p) = du/dy - Jpdu/dx. 

This is an elliptic first order operator, hence Fredholm *. Note however that, 
although the equation makes sense, the operator is not yet defined globally be-
tween two Banach spaces, since the space A0'1(E, u'{TM)) depends on the map 
u. There is a trick, due to Gromov, that constructs global function spaces and 
some elliptic operator between them, in such a way that the zeroes of that oper-
ator are the {j, J)-holomorphic curves. It is not necessary to give here the details 

1 A linear operator between two Banach or Fréchet spaces is Fredholm if its image is a 
closed subspace of finite codimension and if the kernel is finite dimensioned too. The difference 
dim ker — dim coker is the index of the Fredholm operator. 
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of this construction. It is more useful to explain, instead, the following equivalent 
construction. 

Endow J with the C^-topology. This gives a Fréchet space. As explained in 
[23], all relevant constructions can be carried out in this C0 0 framework (although 
one uses in the proofs the larger Banach manifolds endowed with some Sobolev 
norm). 

Now, for any given homology class Q G ̂ ( M , Z) and any non negative integer 
g, consider the space Mg{ot) of all non-multiply covered C^-maps / : (Eg, j ) -> 
(A/, J ) which are {j, J)-holomorphic and which realize the class a, where Eg is a 
real closed orientable surface of genus g, j is a (necessarily integrable) complex 
structure on Eg and J belongs to J{M,w). Here g and a are fixed but / , j and 
J are allowed to take any value. Thus, up to the conformai group of reparametri-
sations, this is the space of J-holomorphic curves of genus g in class a, for any 
w-tame J . A basic fact is that the projection 

V:Mg{a)-+J 

sending / to J is essentially equivalent to the dj operator (once globalised), and is 
therefore easily seen to be a Fredholm map between Fréchet manifolds, whose real 
index is dima?^ + 2(C(û;) - n{g -1)). Here Tg is the Teichmuller space of genus g 
and c is the first Chern class of T»Af (note that since J is contractible, the Chern 
classes of (TM, J) do not depend on the choice of J € J ) . Thus, if J is a regular 
value oîV which is in the image ofV, the space Mg{a, J) = V~l{J) is a smooth 
manifold of real dimension equal to Index^) . When the group of conformed 
reparametrizations is independent of the structure j , the quotient is a manifold 
(of unparametrized curves) of dimension Index(77) - dimR(Conf(5)) generically. 
Of course, the conformai group depends on the structure j and therefore may 
vary from points to points in Mg{a), but in many interesting cases the structure 
j which appears with the maps / is fixed by some constraints. This is of course 
the case for rational curves (that is those of genus 0), but also for those which 
are sections of irrational ruled manifolds. 

For instance, in a 4-dimensional manifold M, the dimension of the unpara-
metrized moduli space A^g(a), for a class a that can be represented by an em-
bedded real surface, is equal to 2(3^ - i + a • a + Cg-n{g - I)- dimcConf (5)) 
where eg is the Euler characteristic of Eg. This is because the Chern number of 
a is the sum of the Euler characteristics of the tangent and normal bundles, and 
in the embedded case, the latter is equal to the self-intersection of the surface. 

Of course, the interest in considering these moduli spaces is that any embedded 
J-holomorphic curve is necessarily symplectic in the sense that the restriction of 
w to that surface is non-degenerate. Actually, it is easy to see that, conversely, 
given any smooth embedded symplectic surface S, there is a compatible J such 
that 5 becomes J-holomorphic, and one can moreover choose that J to be generic 
with respect to any other property. 
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Finally, let me mention that as in algebraic geometry, there is also here a com-
pactness theorem which forms, with the posit! vity of intersection, the cornerstone 
of the holomorphic approach: 

THEOREM 2.1. Let{M,u) be a geometrically bounded symplectic manifold and 
/,-: (Eg,ji) —> (M, J,), i> 1, a sequence of holomorphic maps of fixed genus g such 
that: 

1) the images of the maps /, all lie in some compact set of M, 
2) the sequence {Ji} belongs to a compact set K, and 
3) there exists an upper bound A on the u-areas of the curves: 

j f-u<A for all { > 1. 
J s s 

Then there exists a subsequence weakly converging to a J-cusp-curve, for some 
J(=K. 

See [1] for a precise definition of geometric boundedness (which depends on the 
data (M, w, J ) ) . Any compact manifold or any cotangent bundle is geometrically 
bounded, and this property is stable under products. See [23, 1] for the definition 
of cusp-curves and weak convergence. In the ambient space M, this theorem 
essentially means that the curves C,- (the image of / , , that we may consider as 
singular 1-dimensional complex submanifolds) converge to a connected union of 
J-curves, one of which has genus g and all other having genus 0 (these rational 
curves are produced by bubbling off). A particular case of this theorem is that 
any moduli space Mg{oi, J) has a natural compactification. The question is then: 
does this compactification assign to Mg{a, J) a boundary of dimension less than 
the dimension of Aig{a, J)? If yes, can this be used to define natural cycles? Can 
one derive symplectic invariants from these cycles? 

The answers to these questions have first been given in the context of weakly 
monotone symplectic manifolds. This is where the so-called Gromov invariants 
were first defined (see below). More recently, these constructions have been gen-
eralised to all symplectic manifolds, thanks to Deligne and Kontsevich [10, 11] 
idea of extending to the symplectic case the stack construction in algebraic ge-
ometry. This gave rise to the theory of virtual stable marked pseudo-holomorphic 
curves, that I will explain in the next sections. 

3. Gromov ' s invar iants . The simplest application of pseudoholomorphic 
curves in symplectic geometry is the construction of the Gromov (or Gromov-
Witten) invariants. They are invariants of the symplectic structure, defined in the 
following way. Let a be any homology class in . /^(M, Z) and k a non-negative 
integer. Fix a generic structure J and consider the evaluation map 

ev: Mo{a, J) x G (S2 x . . . x 52) -^ (M x . . . x M) 
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defined by ev(u, 21 , . . .,.2*) n- {u(zi),.. .,u{zk)), where G = PSL(2,R) is the 
reparametrization group acting in the obvious way on both factors and XG de-
notes the quotient by this diagonal action. Now given homogeneous homology 
classes a i , . . . ,a* in H*{M, Z), one can form their product in H{M, Ti)® ...® 
H{M,Z) = H{M x . . . x M, Z), take a representative of it which is transver-
sal to ev and finally take the inverse image by ev. With the index fomula for 
pseudo-holomorphic curves, it is easy to compute the dimensions of the cycles a,-
so that this inverse image be O-dimensional. When, moreover, the inverse image 
is independent of all choices (J, representatives of a,) and defines a compact 
oriented 0-cycle, one gets an invariant by counting these points with appropriate 
signs. This will be the case as soon as the image of the evaluation map defines 
a geometric object in M x . . . x M which shares all the properties of a compact 
oriented cycle, except that one allows boundaries of codimension at least 2 (over 
R) . Following McDuff-Salamon [23], let's call this a pseudo-cyc/e. The main result 
of this section is that the Gromov compactness theorem implies that the image of 
the evaluation map always defines a pseudo-cycle when the symplectic manifold 
{M,w) is weakly monotone. 

DEFINITION. A symplectic manifold (M,w) is weakly monotone iî, given 
any compatible J , there is no rational J-holomorphic curve in homology classes 
a with Chern index —2n + 3 < ci(a) < 0 

THEOREM 3.2. In a weakly monotone manifold, the image of the evaluation 
map always defines a pseudo-cycle. Thus the Gromov invariants are well-defined 
in this case. 

Before explaining what is the problem with non weakly monotone manifolds 
and how it has been solved, let me first review other applications of pseudo-
holomorphic curves, which are especially interesting from a geometric point of 
view. 

4. Foliations by J-holomorphic curves. There are many other applica-
tions of pseudo-holomorphic curves to symplectic and contact geometry. For in-
stance, these curves have been extensively used in the series of papers [16, 17, 18] 
by Lalonde-McDuff to prove the Non-squeezing theorem for all symplectic man-
ifolds and to develop a new intrinsic geometry of the infinite dimensional group 
of Hamiltonian diffeomorphisms of a symplectic manifold introduced by Hofer in 
1990 [6] (called Hofer's geometry). See [15] for a review of these results. Another 
example is the application by Eliashberg and Hofer of pseudo-holomorphic curves 
to 3-dimensional contact geometry. A contact structure on a 3-manifold K is a 
maximally non-integrable distribution of 2-planes. If the distribution is expressed 
as the kernel of a 1-form a, this means that a Ada nowhere vanishes. In other 
words da is non-degenerate on the kernel of a. The Reeb flow is the vector field 
X defined as the kernel of da (which is therefore transversal to ker do) and such 
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that Qr(.Y) = 1. In order to attach fine invariants to the contact structure or to 
study the behaviour of the Reeb foliation on V, one fruitful approach is to embed 
V = V x {1} in its symplectization M = V x (0, oo) endowed with the symplectic 
form da + a Ad*. It turns out that, in some cases, the periodic orbits of X can be 
found as the boundary of pseudo-holomorphic discs in M (see Hofer [7]). There 
is actually a tight relation between the properties of pseudo-holomorphic curves 
in the symplectization and the properties of the Reeb flow. The development of 
this method has led to the definition of a new homology, called contact homol-
ogy, which encodes some of the most subblte invariants of the contact structure 
(this work is ongoing, a full definition of contact homology has not yet appeared, 
except very recently in a combinatorial way in a preprint by Chekanov [2]). 

Since any 3-manifold admits a contact structure, there is some (speculative) 
hope that a symplectic program could eventually be developped in order to study 
three-dimensional geometry. In this vein, Thurston and Eliashberg have recently 
collaborated on the development of a theory tha would unify contact structures 
and two-dimensional foliations, called the theory of confoliations. Similarly, Hofer 
and Wisocki have recently shown that the three-sphere admits a characterization 
purely in terms of dynamical properties of the Reeb flow [9]. 

As a last example of applications of J-curves, I wish to describe briefly their use 
in the classification of rational and r«/edsymplectic 4-manifolds. This terminology 
refers to the complex geometry of surfaces: a rational manifold is diffeomorphic 
to the projective plane, and a ruled one is diffeomorphic to a 52-bundle over a 
closed oriented real surface. The clasification is then the following. Recall first 
that a minimal manifold is one that cannot be expressed as the blow-up of another 
manifold: in complex terms, this means that it does not contain an exceptional 
divisor, and in symplectic terms this means that it does not contain an embedded 
symplectic 2-sphere of self-intersection — 1. 

THEOREM 4.3 (GROMOV, TAUBES). On a manifold diffeomorphic to C P 2 , 
any symplectic structure is equivalent to the standard Fubini-Study structure. 

The proof of this theorem relies both on the theory of J-curves as developped 
by Gromov in [4] and on the equivalence, due to Taubes, of Gromov's and Seiberg-
Witten's invariants [28](see below). 

THEOREM 4.4 (GROMOV, LALONDE-MCDUFF) . On a manifold diffeomor-
phic to a S2-fibration, any symplectic structure is equivalent to a standard Kahler 
one (and is therefore classified by the cohomology class of the form). 

Here is a sketch of the main steps of the proof for the case when M is dif-
feomorphic to Eg x 5 2 , where Eg is the surface of genus g (there is of course 
also a topologically non-split 52-fibration over Eg, but the proof in that case is 
similar to the case when the underlying manifold is topologically split). See [19] 
for details. 
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(1) First, one finds a symplectic 2-sphere of self-intersection 0 by first con-
structing a solution to the Seiberg-Witten equations and then using Taubes' 
equivalence between these invariants and Gromov invariants (see §7 below). This 
shows that there is a non-vanishing Gromov invariant attached to the class of 
the 52-fiber and consequently there is at least one J-holomorphic 2-sphere in the 
class of the fiber, for a generic J . This gives the required symplectic 2-sphere of 
self-intersection 0. 

(2) For generic J , consider the moduli space of unparametrised rational J-
curves in the class F of the fiber. By a regularity criterion (see [8]) similar to 
the one given by the Riemann-Roch in the complex case, the differential of the 
Fredholm projection is everywhere onto along the points in Mo{,F, J), so that this 
moduli space (which is non-empty by (1)) is a smooth real manifold of dimension 
2. The Gromov compactness theorem then gives a description of the degenerations 
that may arise if that space is not compact. A careful study of these accidents 
(which consists of bubbling off leading to the decomposition of the curve into 
two or more components) shows that they connot happen for generic J ' s . Hence 
one easily derives from this that the manifold M is actually foliated by smooth 
embedded J-holomorphic spheres in class F. 

(3) Suppose that the base of the fibration M were a sphere instead of a surface 
of genus g = 2. Then the same argument as in steps 1 and 2 would show that the 
class B of the flat sections of the fibration M -¥ S2 is foliated by w-symplectic 
2-spheres too. We would then have two foliations, one for each 52-direction. This 
would give a diffeomorphism / from S2 x 5 2 to itself which would send the straight 
52-coordinates to the curved ones. Denote by w5t = wo ® wi the standard split 
symplectic form on S2xS2 , where each w,- is the standard area form on S2 whose 
area is the same as the integral of w on that same factor (hence at the cohomology 
level [w] = [w']). Denote by w' the pushforward of this split symplectic structure 
by / . Then, by construction, the two foliations considered above are w-symplectic 
as well as w'-symplectic. This implies that J is compatible with both w and w' and 
therefore that the segment ut = Aw' + (1 — A)a;, AG [0,1], between them is formed 
of non-degenerate forms, hence of symplectic forms in the same cohomology class 
as [w] = [w']. There is a basic theorem of symplectic geometry, due to Moser 
and whose proof is elementary, which states that such a segment is necessarily 
induced by a diffeotopy <f>tç[o,\] in the sense that ^'(wt) = w. Hence <^(u/) = w, 
which shows that u is equivalent to oi'. This is the line of the argument when the 
base has genus 0. Such an argument breaks down in genus > 0 because the index 
formula readily implies that a generic J never admits a foliation of Eg x S2 by 
J-curves of genus g. The argument in genus > 0 is actually completely different. 

(4) Let's go back to the general case of genus g. The idea is to reduce the proof 
to the case of genus 0. For this, we consider a wedge of 2g circles A on Eg which 
cuts Eg into a 45-polygon, and all intersect at the point a: G Eg say. The inverse 
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image of each such circle 7,- by the projection n: M -ï Sig is a hypersurface Hi of 
M. It is well-known that the restriction of a symplectic form to any hypersurface 
always has at each point a kernel of dimension 1 (this is an easy exercise of 
linear algebra). In particular, each hypersurface //,• has such a vector field called 
characteristic flow, which is necessarily transversal to the 52-fibers of TT since the 
form is non-degenerate on each such fiber. This induces a flow, and therefore a 
monodromy (or one turn map) 

Ri:S2-+S2 

where here 5 2 is the fiber Fx over the point x, and the map is defined by beginning 
at a point p G 5 2 and flowing along the characteristic flow till one comes back 
to the same fiber. This map is actually a symplectic diffeomorphism of S and 
therefore is Hamiltonian. It is now very easy to convince oneself that, if all maps 
Ri,l < i <^g were the identity, then the form ui would be equivalent to a split 
form. Indeed, in this case, up to diffeomorphism one can arrange that the form 
be split near 7r-1(A). But then, by cutting the manifold along 7r-1(A), one gets 
a form on a the product P x 5 2 of a polygon and a sphere, which is split near 
the boundary. After identification of the boundary with a single fiber, one gets 
a manifold ruled over the sphere, and by (3) our symplectic form is known to be 
equivalent to a standard split one. Since this equivalence can be made to be the 
identity near a fiber where the form is already split (relative case), this shows 
that the equivalence on S2 x 5 2 can be carried to an equivalence between OJ and 
a split form wBpiit on the space P x S2 and finally on the original space M. 

(5) There remains the critical step: how to show that our form w on M is 
equivalent to a form that makes all the monodromies trivial? Note first that by 
the theorem of normal forms near a symplectic manifold, the form ui can be 
considered split near the fiber Fx, that is on a neighbourhood of the form DxS2 

where D is a small disc centered at x. Now the first observation is that, if the form 
u> is deformed so that the area it gives to the disc D becomes sufficiently large 
(without changing the form in the vertical direction of the fiber), then one gets 
enough place to perturb each hypersurface so that the monodromy Ri becomes 
trivial. Note that the perturbation needed here can a be arbitrarily large; this 
is why this step requires a large deformation of w, which obviously changes the 
cohomology class of w. This is proved using the geometric properties of Hofer's 
geometry. It is a purely symplectic step where pseudoholomorphic curves do not 
intervene. See [19] for details. 

(6) Putting the last steps together gives a deformation of the symplectic struc-
ture from the original form to a split form: the first one from w = Ut=o to wt=:1/3 
is a deformation that changes the cohomology class, it joins the original form u to 
a form where all monodromies Ri are trivial. The second deformation is actually 
an isotopy, it joins the form W1/3 to a standard split form W2/3 = w,piit • Of course. 
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we can add finally a deformation inside the space of split forms between W2/3 and 
a split form LJI in the same cohomology class as w. Let's denote by iOte[o,i] this 
whole deformation. In this last step, I describe how to change a deformation wt 
of the symplectic form, whose ends WQ and ui are in the same cohomology class, 
into a genuine isotopy u't joining the same ends. This means that the image [w't] 
of ui't in //r2(M, R) is a single point. Actually, it is enough to require that the 
classes [wl] belong to the line L of H2{M,K) passing through 0 and [WQ] = [wi] 
because a rescalling of each form takes them back to a single point and therefore 
defines a genuine isotopy. 

This is a rather more elaborate step, so I will have to describe this in a very 
sketchy way. The basic observation is that if 5 is a symplectic surface in a 4-
dimensional symplectic manifold, then the symplectic structure near the surface 
has a canonical form which is adapted to the Thom class of the normal bundle 
of S in the sense that there is a representative $ of that Thom class such that 
w + r $ is a symplectic form for all T >0 (this can be expressed by saying that 
the Thom class is the norma//acior of the symplectic form). Hence the existence 
of a ^-family of a;(-symplectic surfaces St in a given homology class a enables 
one to change the path wt to a path u't=LJt + TtPD(a) where Tt is any smooth 
positive function of t. Note here that we only need two such classes. Indeed, as 
I said above, it is enough to transform ut into a deformation w't whose classes 
[u't] G i ï 2 ( M , R ) = R 2 all lie on the line L of H2{M,R). But in order to do 
this, we only need to deform ut in a direction Lt of H2{M, R) whose slope is 
respectively less than the slope of L if [ut] lies above L, or greater than the slope of 
L if [ut] lies under L (note that [wt] alway lies in the first quadrant of H2{M, R)) . 
One finally gets the existence of these two classes by showing that both the class 
F of the fiber and the class niB + n^F (for any sufficiently large ratio 711/712) 
have non-zero Gromov invariants. As before, this is proved by showing that the 
Seiberg-Witten invariants corresponding to these classes do not vanish. | 

5. The negative multiple curve problem. As I explained in the last sec-
tion, many of the most significant problems of symplectic geometry depend on the 
"good behaviour" of pseudo-holomorphic curves in symplectic manifolds. This is 
why the Gromov invariants, the Floer homology and other similar tools were first 
defined only when this behaviour is tamed, that is when the manifold is weakly 
monotone. It is time to explain what the problem is when the manifold is not 
weakly monotone. Consider a class a G ^ ( M ' Z ) such that C(Q) is negative but 
larger than —2n + 1, and assume that that class admits J-rational representa-
tives for generic J . Assume moreover that a is not a primitive class, say a = 20, 
and suppose that /? too contains J-rational representatives. The compactifica-
tion of A^o(a, J ) is formed of all reducible curves whose components are multiple 
branched coverings of some rational curves, with the obvious constraint that the 
homology class realised by the sum of the components (counting multiplicities) 
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is equal to a. In particular, the boundary of the compactification contains the 
double covering of any J-rational curve C in class 0. But a simple count, using 
the index formula, shows that the dimension of the moduli space of /?-rational-J-
curves is greater than the dimension of the moduli space of a-rational-J-curves 
(this actually is obvious since the Chern index appears with positive sign in the 
index formula). Hence, in this situation, the boundary of the compactified mod-
uli space has a dimension greater than its "interior", so that one is incapable of 
defining in such a case any sensible notion of (pseudo-) cycle through any eval-
uation map. For reasons slightly more subbtle, the same problem prohibits the 
application of J-curves to the definition of Floer homology or to a direct proof 
of the Non-squeezing theorem. 

To solve this problem, one is led to deform the dj equation in some "virtual 
way". 

6. Virtual stable pseudoholomorphic curves. Deligne and Kontsevich 
have noted that the notion of stack in algebraic geometry should have an ana-
logue in the smooth category that would apply to all symplectic manifolds. This 
program, that solves the negative multiple curve problem, has been conducted 
simultaneously and independently by many mathematicians, namely Fukaya-Ono 
[3], Ruan [25], Hofer-Salamon (unwritten yet) and Liu-Tian [14] with slightly dif-
ferent approaches. We will describe here Liu-Tian's approach. They are all based 
on the notion of (marked) stable pseudoholomorphic curves. 

A stable J-holomorphic cusp-curve is defined in the following way. First, we 
denote by Mgtk the moduli space of Riemann surfaces of genus g with k marked 
points, assuming that 2g + k >Z. Each point of that space can be presented as 
(E, x i , . . . , Xfc) where E is a Riemann surface and the k points are distinct. Two 
such objects are identified whenever there is a biholomorphism sending marked 
points to marked points. Denote by Mgtk the Deligne-Mumford compactifica-
tion of Mgtk- Thus it consists of all stable maps with k points, that is to say a 
connected Riemann surface whose worst singularities are ordinary (transversal) 
double points, with total genus g (the total genus is the genus of the surface 
obtained by index 1 surgery on the double points) and k marked points with 
the condition that, on each component E, of this connected union, the relation 
2gi + fc,- > 3 be always satisfied, where this time ki is the sum of the numbers 
of singularities and marked points of the i^-component. It is moreover required 
that the graph formed by the components of the curve is a tree. Two such ob-
jects are identified in the obvious way, by biholomorphisms that respect both the 
singularities and the marked points. The main motivation for this definition is 
that a stable curve only admits a finite group of automorphisms 

Finally, the J-holomorphic stable maps are J-holomorphic maps defined on 
the connected Riemann surfaces E = UE,- with the weaker restriction that the 
relation 2gi + /:,•> 3 is needed only when the restriction of the map to that 
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component is a "ghost" (sent to a point). There is an obvious notion of equiva-
lence, and the quotient is the moduli space ^ ^ ( M ) of stable maps. Again the 
automorphism group is finite. Denoting by ^ ^ ( M , a) the same space with the 
additional condition that the maps realise the homology class a G / ^ ( M ) , we 
get as an easy consequence of Gromov's compactness theorem: 

THEOREM 6.5. ^ ^ ( M , a) is both Hausdorff and compact. 

Now the basic idea is to use the finiteness of the automorphism group to 
construct an orbifold structure on the space of J-holomorphic stable maps. Once 
this is done, we perturb the dj equation by adding an inhomogeneous term, 
depending on the stable map, in such a way that the multiple curve problem 
desappears (note that this problem is due to the fact that a covering of a J-
holomorphic cuve is also a J-holomorphic curve, but that propery is killed when 
such a perturbation is introduced). The new "virtual stable maps" are then the 
solution of this non-homogeneous equation. One can then show that they behave 
well in all symplectic manifolds in the sense that the give rise to evaluation 
maps—naturally associated to the marked points—which do define pseudo-cycles, 
at least if one uses rational coefficients. 

7. Se iberg-Wit ten equat ions and Taubes ' theory. In 1994, Seiberg and 
Witten found a system of elliptic PDE's, of gauge theoretical nature, when they 
were investigating the consequences of a certain supersymmetric quantized Yang-
Mills theory [26, 27]. Witten realised that this system of equations would greatly 
simplify Donaldson-Taubes's theory of instantons as invariants of the differential 
structures of 4-manifolds (see [29]). Indeed, the replacement of the Yang-Mills 
equations by the SW-equations leads to a theory that is essentially as rich as the 
Donaldson one, but with the enormous advantage that the space of solutions to 
the SW-equations already forms a compact set in most cases. The SW-equations 
have already led to 

(1) a reformulation and simplification of Donaldson's theory; 
(2) a proof of the Thom conjecture on the minimal genus of a smooth em-

bedding of a real closed oriented surface that realises a given homology class of 
dimension 2 in C P 2 (the conjecture states that it should be equal to the genus 
of the faithful holomorphic curve in the given class); extension of the proof to 
many other 4-manifolds, the so-called manifolds of non-simple type (see [12]); 

(3) the proof of the Theorems 4.3 and 4.4 above; 
(4) many applications to the classification of tight contact structures (the tight 

contact stuctures, introduced by Eliashberg at the end of the 80's, are essentially 
the structures that behave in a rigid way; they are opposed to the overtwisted 
contact structures that behave in a way that is prescribed by purely topological 
considerations). See [22, 13, 24] 

Here is in a few words a summary of Seiberg-Witten's theory, as presented in 
Lalonde-McDuff [19]. 
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From their definition, it is clear that the Gromov invariants of (M,u) depend 
only on the deformation class of w. Taubes's main result is that they coincide with 
certain Seiberg-Witten invariants and so depend only on the smooth structure 
of M together with the first Chern class ci(J) of any w-tame almost complex 
structure J . We must state his result somewhat carefully since ruled surfaces 
have 6J = 1, which means that the Seiberg-Witten invariants depend both on 
the metric and the perturbation used to define them. Normally we will consider 
metrics of the form gj defined by 

gj{x,y) =u{x,Jy), 

where here we assume that J is w-compatible, ie that u{Jv,Jw) = ui{v,w) as 
well as u{v, Jv) > 0. 

To be consistent with usual notation we denote by K the complex line bundle 
with first Chern class —ci (w) and let i? be a complex line bundle whose Chern 
class ci{E) is denoted e G H2{M,Z). Given such E let WE denote the Spin0-
structure on M with determinant bundle LE = K~l ® E2. The (perturbed) 
Seiberg-Witten equations on WE may be written as 

(1) £ * ( * ) = 0, . F + = <r($) - fT,, 

where FJ^ is the self-dual part of the curvature of a connection A on LE, a- is a 
quadratic function of the spinor $ , and T; is a real self-dual 2-form. The number 
of solutions of equations (1) (counted with sign) is independent of the choice of J 
and 7, as these vary along a generic path ( Jt, T^) provided that this path does not 
cross the "wall" where there are reducible solutions. (These are solutions with 
$ = 0, which pose problems because the gauge group does not act freely at such 
points.) Because [IFA] = 27rc1(LB) and because w A a = 0 for all antiselfdual 
forms a, such reducible solutions occur exactly when 

27rci(I,B)U[w] = [7/]U[u;]. 

Taubes considers perturbations of the form 

Tjr = 4rw + J F J 0 , r -J- oo, 

where AQ is the connection on A ' - 1 which is defined by gj. We define SWK{LE) 
to be the number of solutions of equations (1) for some fixed (large) value of r. 
It is not hard to see that this invariant is well-defined and independent of w up 
to deformation. Moreover, Taubes's theorem can be stated in this language as 

SW/f(LB) = ±Gr(PD(e)) . 

Therefore, in order to conclude our survey of the classification of (rational or 
irrational) ruled symplectic 4-manifolds, it is enough to show that SW^ (Lg) is 
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nonzero for classes e which are Poincaré duals of homology classes A = m[F] + 
n[E] with either n = 0 and m = 1 or n/m arbitrarily large. Here [F] is the class of 
the fiber and [E] is the class of the section. As observed by Li-Liu and Ohta-Ono, 
this can be done by using a wall-crossing formula. The point is that ruled surfaces 
always have metrics g of positive scalar curvature, and it is well-known that the 
unperturbed Seiberg-Witten equations have no solutions in this case. Further, the 
number of times that a path from the pair {g, 0) to a Taubes pair {gj,r)r) crosses 
the wall is 1 (when counted with multiplicities). Therefore, provided that the wall-
crossing number (that is the jump in the number of Seiberg-Witten solutions) is 
nonzero for the class e, the Taubes invariant SWic(Z«£;) will be nonzero. Note that 
this is possible only when the formal dimension of the Seiberg-Witten solution 
space is > 0. When e G H2{M) is Poincaré dual to A, this dimension is exactly 
the number 2k{A) = Ci(A) + A • A which occurs in the definition of the Gromov 
invariant. 

By calculating this wall-crossing number, one shows: 

PROPOSITION 7.6 (Li-Liu, O H T A - O N O ) . Let{M,w) be a symplectically ruled 
surface over E where g = genus (E) > 0, and let e G H2 {M, Z) be Poincaré dual 
to A = m[F] + n[E], where the fiber class [F] and base [E] are as defined in §5. 
TVien, i/A:(A) > 0, 

±Gr (A) = SWK{LE) = (« + I)9-

8. Topological rigidity of Hamiltonian loops. As a last application of 
virtual stable pseudoholomophic curves, let me describe briefly the surprising 
phenomenon of topological rigidity of Hamiltonian loops, discovered recently by 
Lalonde-McDuff-Polterovich [21]. 

Consider the following question: is the group of Hamiltonian diffeomorphisms 
enclosed in the group of symplectic diffeomorphisms (or equivalently in the full 
group of all diffeomorphisms)? This has been studied in the paper [20]. In order to 
explain some of the results therein, let's recall that the flux of a path of symplectic 
diffeomorphisms ^t,^ € [0,1], beginning at the identity, is given by integrating 
over time the w-dual of the time-dependent vector field that generates the path. 
Since the path is symplectic, this dual is necessarily closed, as well as its integral, 
which therefore defines a class in H1 (M, R) , called the flux of fa, which turns out 
to be independent up to homotopy of the path that keeps its endpoints ( id and 
^i) fixed. Another definition of the flux is the assignation to <j>t of the element of 
H1{M,'R.) defined as the composition 

Hi{M,Z)% H2(M,Z)J-4 H 

where the first map is simply given by 7(5) •-> ^(7(5)) , which we will refer 
to as the trace on 7 of <t>{t) (this trace obviously makes sense as a map from 
Hi{M,Z) -* / f , + i (M, R) for any »). Since the dual of the trace map behaves 
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like a derivation, we will sometimes call 9^ a derivation. An essential algebraic 
ingredient in this study is the image of the Fux homomorphism TTI (Diffu,(M)) -t 
/ / ' ( M , R ) where the Flux is defined as above (using either definition). We will 
denote by F this image, called the Flux subgroup. Then the basic facts needed 
can be expressed in the following way: 

1 Suppose that a symplectic diffeomorphism is given as the endpoint of a 
symplectic path ^t,^ G [0,1]. Then <j>i is Hamiltonian if and only if the 
flux of the path fa belongs to the subgroup F C HX{M, R) . That is to say 
the knowledge of F is the essential ingredient in order to decide if a given 
symplectic diffeomorphism is Hamiltonian. 

2 The group of Hamiltonian diffeomorphisms is enclosed in the group of 
symplectic diffeomorphisms if and only if the subgroup F C H1{M, R) is 
discrete (in the sense that each element 7 of F is included in some open 
neighbourhood of H1{M,R) whose intersection with F contains only 7). 
Clearly, discreteness is equivalent to the fact that F be topologically closed 
in Hl{M,Ti). This (discreteness or enclosure) is known as the Flux con-
jecture. 

Putting this together, and using both soft and hard methods, we established in 
[20] that the Flux conjecture holds in many cases, for semi-monotone manifolds 
for instance or spherically rational ones. We feel that we have enough evidence to 
state, as a conjecture, that the Flux conjecture should hold in all closed symplec-
tic manifolds. It is however much more speculative to decide whether or not the 
C0-flux conjecture (stating that DiffHam(M) is C0-closed in the identity compo-
nent of the group of symplectic diffeomorphisms) is true in general. In [20], we 
were only able to establish this for a special class of manifolds including tori. 
This seems a crucial question of symplectic topology: as in the case of Eliash-
berg's C0-closedness of the group symplectic diffeomorphisms that prompted the 
development of the theory of capacities, the C0-closedness of the group of Hamil-
tonian diffeomorphisms is related to the extent to which the C0-invariants of 
Hamiltonian paths (like Floer homology) are genuinely attached to Hamiltonian 
diffeomorphisms. 

In our study of the C'-flux conjecture, we were led to a related problem. To 
explain this, consider a closed symplectic manifold {M,u) and a loop ^te[o,i] of 
symplectic diffeomorphisms based at the identity. Then the homotopy class of 
that loop contains a Hamiltonian loop exactly when the composite map 

Hi(M,R) H Hi{M,R) •'-T R 

described above vanishes. When it vanishes, we say that the loop 0tg(o,i] is Hamil-
tonian up to homotopy (or even simply Hamiltonian by abuse of terminology). 
Thus, a priori, the fact that the loop be Hamiltonian up to homotopy seems to 
depend heavily on the choice of the symplectic form. We showed in [21] that this 
is not the case: 
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THEOREM 8.7 (LALONDE-MCDUFF-POLTEROVICH). Let (M,w) be a closed 
symplectic manifold and ^te[o,i] be a loop based at the identity in the group 
Diffu,(M) of symplectic diffeomorphisms. Then, if the flux of that loop vanishes, 
the trace map itself 

Hi{M,R)%H2(M,R) 

vanishes. Actually, all trace maps 

H{(M,R)%Hi+1{M,R) 

vanish. In other words, all trace maps vanish for elements o/7ri(Ham(M)). 

This theorem has the following obvious corollary: 

COROLLARY 8.8 (TOPOLOGICAL RIGIDITY OF HAMILTONIAN LOOPS). Let 

M be a closed manifold, and 7 G 7ri(Diff(M)). Suppose that this loop has w,-
representatives, i = 1,2, for symplectic forms ui and u? on M. Then the first 
representative is Hamiltonian (up to homotopy) if and only if the second is. 

This topological rigidity implies the following Hamiltonian stability, given an 
element fa in Tri (Ham(M) w)) generated say by closed 1-forms At, any other 
symplectic form w' (that can belong to a different cohomology class) obviously 
gives rise to a w'-path beginning at the identity, by integrating the w'-dual of the 
closed 1-forms At. But if w' is sufficiently close to u, the endpoint of the new path 
is C1-close to the identity and therefore can be joined to the identity using the 
theory of generating 1-forms. This gives a w'-loop in the same homotopy class of 
loops in Diff(M). Hence, by the theorem, the trace map must also vanish, which 
implies that this new loop is also Hamiltonian (up to homotopy)! 

COROLLARY 8.9 (HAMILTONIAN STABILITY). Let fa be a Hamiltonian loop 
with respect to some symplectic form w. There is a neighbourhood of u in the 
space of symplectic forms and, for each u' in this neighbourhood, there is a loop 
<f>'t in the same homotopy class of loops which is Hamiltonian with respect to u'. 
The correspondance u' M- $ can be made continuous. 

Here is finally the relation between the topological rigidity of Hamiltonian 
loops and the Flux conjecture: 

COROLLARY 8.10. The rank over Z of the group 

Hw = jr1(Diffu(M))/jri(Ham(M)) 

(which is identified with F by the Flux homomorphism) is not greater than the 
first Betti number of M. In particular, it is finitely generated over Z. 
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PROOF. Suppose not, then there are symplectic loops ^ i , . . . , ^ m with m > 
/3i(Af) independent over Z, mod 7ri(Ham(M)). Thus their fluxes A,- must also be 
independent over Z in Hl{M, R). Perturb the form w to a rational form w' and 
do the same for the new loops and fluxes (denoting them with a prime symbol). 
Recall that this can be done so that the new loops are in the same homotopy 
classes in Diff(M) as the former ones. Since the new fluxes are rational, there 
is a non-trivial integral linear combination of them A' = E.-TiiAJ that vanishes, 
and therefore by the Main theorem, the loop 0' = H , - ^ ) " ' has trivial derivation. 
Thus the corresponding loop <}> = U,-^,-)"* has also trivial derivation and must 
a fortiori have trivial flux. But this means that the loop is in 7ri(Ham(M))1 a 
contradiction with the hypothesis. a 

COROLLARY 8.11. The Flux conjecture holds when the first Betti number of 
M is 1. 
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CAUCHY-MIRIMANOFF POLYNOMIALS 

CHARLES HELOU 

Presented by M. Ram Murty, F. R. S. C. 

R é S U M é . Les polynômes Pn = {X + 1)" — Xn — 1, de Cauchy, ont 
des facteurs cyclotomiques simples. Mirimanoff conjectura que le facteur 
restant, En, est irréductible sur Q. Le groupe de Galois de En est déterminé 
par ceux de polynômes auxiliares. Sur un corps fini Fp, En est réductible 
si n est impair; mais pour N premier, on déduit du nombre de facteurs 
sur Fp un critère d'irréductibilité sur Q. Enfin, si p est premier, .Ejp est 
irréductible sur Q. 

1. Introduction. For any integer n > 2, let Pn{X) = (X + l ) n - X n - 1 
and let En be the remaining factor of Pn, in Q>{X], after removing X and the 
cyclotomic factors. Then 

(i) pn{x) = {x + \)n-xn-\ = x(x + i)e-(x2 + x + i r - ^ x ) 

where for even n, fn = e„ = 0; for odd n,en = \ and en = 0,1 or 2 according as 
n = 0,2 or 1 (mod 3). Cauchy noted (1) for odd n in 1839 ([2,3,6]). Mirimanoff 
studied En for prime n in 1903 ([4]) and conjectured its irreducibility over <Q. 
Most of his results are valid for all odd n and his conjecture seems to hold for 
all n > 2. Moreover, for odd n > 9, i?„ is reducible modulo every prime p. 
For prime n, if En has at most 3 irreducible factors modulo some prime p then 
it is irreducible over Q. Also for odd n, the Galois group of En over Q is an 
extension of a subgroup of &r

3
n by a subgroup of 0 r i l ; and presumably it is the 

wreath product of 0 3 by (5 r n , where (5fc is the symmetric group on k letters 
and r n = "~3~2 e" . This is reminiscent of some results of P. Morton on the 
Galois group of periodic points of polynomial maps ([5]). Another generalization 
of Mirimanoff conjecture ([7]), and several other helpful ideas, were suggested by 
G. Terjanian. The irreducibility of Eip, for odd prime p, is due to M. Filaseta. 

2. Preliminary results. For any integer m > 0, let Cm = e"^? in C. Then 
Cs is a root of Pn if n = ±1 (mod 6); and so is - 1 if n is odd. These are the 
only roots of unity that are roots of Pn. Indeed, if m > 4 and n > 3 then 
KCm + 1)"| = ( 2 c o s ^ ) " > 2 > K ,̂ + 1|. Moreover, Pn has no other real roots 
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than 0 and (if n is odd) - 1 , since P^ has at most one root in M. A multiple root x 
of Pn is characterized by (x +1)"-1 = a:""1 = 1, whose solutions in C are x = C3 
(; = 1,2) provided n = 1 (mod 6). The multiplicity of a root is < 2, since Pn, P^ 
and Pfl have no common root. Therefore X2 + X + lisa simple or double factor 
of/^ according as n = - 1 or 1 (mod 6). Hence the factorization in (1), with E„ 
in Z[X] having only simple roots in C, none of which is real nor a root of unity. 
Moreover, En is, like Pn, a reciprocal polynomial, i.e. if En{X) = SfcLo 0*^* 
with dn its degree then adn-k = afe (0 < fc < dn). Thus, if x is a root of En then 
so are its complex conjugate x and its inverse i . Note also that if n is prime, then 
-En is a monic polynomial in Z[X], whose roots are then algebraic integers. 

LEMMA 1. For n > 2, En has at least 2i/n roots of absolute value linC with 
v* - [e] - ! j f n - ! ( m o d 6 ) . ^n = [f] otherwise and [x] the largest integer 
< x. 

PROOF. Pn{eie) = 2wn{^)e^r, where, for x € 1 , wn{x) = 2 n - 1 c o s n x -
cosnx. Thus, c* ' ' are roots of En if and only if | is a zero ^ | of u;n in (0, f ). 
For integers f < A < ^ — 1, the continuous function «;„ has opposite signs 
at the endpoints of [^p, ' +

n '"] and thus has a zero in this interval. Moreover 
Wn(v - x) = {-l)nWn{x), and u)n(f ) = 0 if and only if n is odd. Hence tun has 
i/n zeros in ( | , | ) . 

We assume until §4 that n is odd > 9. Then En{-X - 1) = En{X) and 
^ n ( x ) = : x ^ ^ £ ' n ( ^ ) • H e n c e . if -z is a root of En in C, then so are the elements 
of 

(2) 0[bW = {4, - , - I , - - i T , - , - i , - -± T ) 
which are distinct, since z £ l , -2 , -5 ,C3,C | - This set is the orbit of z 
under the action of the group of unimodular transformations T = {X, jf, 
-X - l . - j f + r » - ^ 1 » - ; ^ } on C - {0 , -1} . The group T is isomorphic to 
©3. The roots of En in C are thus partitioned into rn = p̂- = n~3~2 e" orbits. In 
every orbit, there are at most two elements of absolute value 1, namely z and -, 
since z2 + z + 1 ^ 0. Moreover rn = i/n of Lemma 1. Hence 

LEMMA 2. For odd n > 9, the roots ofEn in C are partitioned into r„ orbits 
(2); and En has exactly 2rn roots of absolute value 1, two conjugates in each 
orbit. 

For every root z of En in C, let gt be the monic polynomial with roots the 
elements of Orb(z). A straightforward computation gives 

(3) gz{X) = X6+3X5+tzX4 + [2tz - 5)X3 + tzX2 + 3X + 1 

with t̂ , = 6 - J(z) and J{X) = x3(x+i) ' • ̂ he definition and expression of ^ 
are valid for any 2 € C - {0, - 1 } and we have 

(4) gi{X)=X2{X + l)2{J{X)-J{z)). 
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All elements in Orb(z) have the same image by J. If 6 £ n (mod 2)n, in K, 

then J{ei0) = ^(cose+V)3• S o ' i f z i s a r o o t o f En, then J(z) G 1 and g, G 
W[X]. The roots of E„ being partitioned into rn orbits, En is the product of the 
corresponding polynomials g2, with leading coefficient n. Thus 

LEMMA 3. For odd n > 9, if z j , . . . , zrn are representatives of the root orbits 
of E„ in C, then En = nH^g^, with gZi G IK[X] given by (3). For a root z 
of En, tz = 6 — J{z) is a real algebraic number; if n is prime, it is an algebraic 
integer. 

Let Tn be the monic polynomial with roots tj = tZi, i.e. Tn {X) = Hja i (^—*;')• 
Then Tn G Q ^ ] ; if n is prime, T„ G Z[X]. For, the automorphisms of C permute 
the roots of E„ hence of T„ and thus fix its coefficients. By Lemma 3 and (4), 

(5) En{X) = ( - l ) r - n X 2 r - p f + l)2 r"Tn(6 - J(X)). 

It follows that if En is irreducible over Q, then so is T„. 

3. Some Galois groups. For odd n > 9, let Zj = e'e' (1 < J < rn) be 
representatives of the root orbits of En in C. Write tj = iij = 6 — J{ZJ) and 
gj = gZi. Let K = Q(ti ,...,trn) and L = Q ( z i , . . . , zrn ) be the splitting fields of 
T„ and E„ over Q. Note that A" C K. Let G = Gal(Z,|Q), N = Ga\{L\K), GK = 
Ga^^jQ) be the Galois groups of L|Q, L\K, K\Q. For a £ G and 1 < j < rn, the 
root (T(ZJ) of En is in the orbit of some ^* (1 < fc < T*,,), i.e. <r{zj) = R(T,j{zva(j)) 
with Raj € T, KaU) = k. Then o-{tj) = <w<T(j) and ira G 0r„ . The map <7 H^ TF,, is 
a homomorphism from G into (5rn with kernel TV and image a GK • It identifies 
GK with a subgroup i) of <Srn) i-e. G/TV a S). Also, for <r, (T7 G G, we have 
Ra'aj = Ba,iB-c',*aIJ) (1 ^ J ^ rn)- This relation may be interpreted as defining 
an element of H1^, ©s"), class of a 1-cocycle IT I-4 (/ÎT,j)i<j<r«i where rff G G 
is any extension to L of the element of GK corresponding to TT G .ft. Thus 

PROPOSITION 1. For odd n > 9, any <T G Gal(L|Q) is given by a{zj) = 
Bcji^U))' vfa) = *•**(])' w / ] e r e ^ . J G T, TT,, G »r„ (1 < i < rn). The map 
a i-t na induces an isomorphism between Gal(A'lQ) and a subgroup S) of 0 r n . 
And Gal(L|Q) is an extension of Gal(L|A') by Sy. 

Since L\K is the compositum of K{ZJ)\K, lifting by K of Q(z,)|Q(<j) 
(1 < j < rn), we consider 

LEMMA 4. Let n be odd > 9 and z a root of En in C. 
a) We have Q(z) D A' = (J(^) and Gal(A'(;:)|A) ~ Gal(Q(2)|Q(t2)) ~ Tz, 

where % is a subgroup of T of order |7^ | = 2 or 6. 
bj For a Q-conjugate z' of z,Tz' = %. The minimal polynomial of z over Q 

is the product of[Q{tz) : Q] minimal polynomials over K of such z' in different 
orbits. 
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c) If\Tz\ = 2 then, for any z" G Orb(z), [TH = 2; and, if |z| = 1 then all the 
roots of the minimal polynomial of z over Q have absolute value 1. 

P R O O F , a) Let Uz be the minimal polynomial of z over Q(t z) , Tz the set of 
ReT such that R{z) is a root of u^ and Gz = Gal(Q(2)lQ(^)). Any s G Gz 

is characterized by s(z) = R,{z) with iî , G 7;. If s is the restriction to Q{z) of 
some <r G Gal(I,|Q) and z = Afzj) with 1 < j < r„ and iî G T, then ir„{j) = j 
and <T(ZJ) = Rajfa), so that R, = RRojR-1. Hence the isomorphism s i-> Rj1 

from Gz onto the subgroup Ts of T. Also, [T ĵ is the degree of u2 and divides 
|T | = 6. Since Uz G M.[X] has no real roots, its degree is even and is thus 2 or 6. 
Let Kz = Q(z) n A; then Hz = Gal((Q)(z)|Az) is a normal subgroup of G2 with 
I ^ J even. But [G l̂ = 2 or 6, and in the latter case Gz d 63 . Thus H2 = Gz, i.e. 
Kz = Q(tz ) and Gal(A(z) |A) ~ G. ~ T.. 

b) Let Uz be the minimal polynomial of z over Q, and z' a root of Uz. For 
R€T, R{z') is a root of Ux if and only if there is a field isomorphism TR from Q(z) 
onto Q{z') such that TR{Z) = iî(z'). In this case, Tjt{tz) = t^, and s = r f 1 ^ 
is in Gz and satisfies s(z) = iî(z), so that iî G ? ; . Similarly, TRrf1 G Gz>, so 
that ReTz'.lt follows that Tz=Tzi and the roots R{z') of uz> are those of Uz 
that lie in Orb(z/). Hence Uz is the product of tiz/ for z' taken in different orbits. 
Since [A(z') : A] = [Q(z') : Q{tz')], uzl is also the minimal polynomial of z' over 
A . The degree of uz- is \TZ'\ = \TZ\ = [®{z) : Q{tz)]. The result follows. 

c) Let | 7 ; | = 2 and z" G Orb(z). Then tz., = tz and uz» is a factor of ^ « of 
degree 2 or 6. If it was 6, then uz» = gz» = flfz, implying uz= gz,& contradiction. 
Thus [Tz"! = 2. If lz| = 1, i.e. z = i , then uz{X) = {X - z){X - i ) ; and for a 
root z' of Uz, Tz' = Tz implies Uz'{X) = {X - z'){X - ±), so that z' = X, i.e. 
|z'l = 1. 

COROLLARY 1. In Q[X], if r „ is irreducible, then E„ is either irreducible or 
is the product of 3 irreducible factors (according as gz is irreducible over Q{tz) 
or not). 

P R O O F . UZ is the product of r„ polynomials uZ', irreducible over A, all of 
degree d = 6 or 2. So C/j is an irreducible factor of En in Q[X] of degree drn . If 
d = 6, i.e. gz = «2, then En = Uz is irreducible over Q. Otherwise, Uz and every 
Uz», for 2" G Orb(z), have degree 2rn so that En has 3 irreducible factors. 

COROLLARY 2. For odd n > 9, Gal(I,|Q) is an extension of a subgroup of 
©3" by a subgroup of (Srii. 

PROOF. L is the compositum of the fields K{zj), and Gal{K{zj)\K) can be 
identified with a subgroup of «3 (1 < j < r n ) . Therefore Gal(L|A), which is 
naturally embedded in the direct product of these Gal(A(zj)lA), can be viewed 
as a subgroup of (Sg". The result then follows from Proposition 1. 

Moreover, since every Gal(A(z,)|A)) is isomorphic to 63 or to one of its 
subgroups of order 2, then, for 1 < i,j < r„, A(2,) fl A(zi) is equal to A or to 
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A'(z,) or to its quadratic subfield over A'. Hence, enumerating the subgroups of 
©3 and the corresponding subfields of A(2,), we get 

LEMMA 5. For odd n > 9 and 1 < i,j < rn, A(z,) D A ( Z J ) is either equal to 
A or to A(z,) = A'(ZJ) or to K(y/ûi) = A(v/ïï7), where u,- = -{4ti + 3). 

Thus, if the degree [Kiy/u^,,/^) : A] = 22 then A^z.) fl K{zj) = A and 
Gal(A(z1-,zJ)|A) ~ Ga\{K{zi)\K) x Gal(A(zi) |A). By induction, letting F = 
A( v / ï ï r , . . . , y/ûT^), which is the splitting field of r „ [-^^) over Q, we have: 

If [A : A] = 2 r n , then Gal(L|A) is isomorphic to the direct product of the 
G a l ( A ( z j ) | A ) ( l < j < r „ ) . 

The latter holds for the examples we examined (n < 25). Other computations 
(for n < 49) gave Gal(A|Q) ~ (5r„. These results suggest that, for odd n > 9, 
Gal{L\Q) is plausibly the semi-direct product of ©3" by 0 r n , or more precisely 
the wreath product of (83 by (5r n . 

In the case where n is a prime number, we also have 

PROPOSITION 2. For prime n > 11 and any root z ofE„ in C, gz is irreducible 
over Q{tz) and Gal(A(z)|A) ~ Gal(Q(z)|Q(tz)) ~ (83. An irreducible factor of 
En over Q is a product of some gz. And En is irreducible over Q if and only if 
Tn is. 

P R O O F . The roots of En are algebraic integers (§1). By Lemma 4, if, for 
some root z of En, the degree of uz is 2, then the minimal polynomial over Q 
of a Zj = eie> in the orbit of z has all its roots of absolute value 1. Hence, by 
Kronecker's theorem, ZJ is a root of unity ([8]), which is impossible (§1). Thus 
Uz has degree 6, i.e. uz = gz and Tz = T. 

4. Fac tor iza t ion modulo a p r ime . 

LEMMA 6. Let / G Z[X] be a reciprocal polynomial such that there exists 
z in C — {0 , -1 } for which Orb(z) consists of 6 distinct roots of f. Then f is 
reducible modulo every prime p. 

P R O O F . The roots of / in C can be written in the form a/d where a is an 
algebraic integer and d a fixed positive integer (common denominator). Let / = 
Efe=o a3XJ a n d L i t s splitting field over Q. Consider h = £ / ( £ ) = E"=o bJXJ' 
which is in Z[X], monic, with roots the numerators Q of those of / in the ring 
OL of integers of L. Let p be a prime number, p a prime ideal of OL above p and 
Fp = Z/pZ, F , = 0L/p (finite fields with Fp C F,). For a G Z and Q G O L , let 
a = a -I- pZ in Fp and a = a + p in F9; write / = 5Z£_0

 ajXj. Then / and h are 
in Fppf], and they split in F J X ] . The degree of h is n > 6. Let 7 = dz, 71 = d/z, 
72 = - d ( z + 1), 73 = - d / ( z + 1) and 74 = -d ( z + l ) /z ; they lie in dOrb(z) 
and are roots of h. If h were irreducible over Fp, then its roots in F^ would 
be distinct and there would exist (Ti.ffj in Gal(Fp(7)|Fp) such that o-,(7) = 7^ 
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(i = 1,2). But then O-JO-^J) = 73 and a^j) = 7ibeing distinct, Gal(Fp(7)|Fp) 
would be non abeiian, impossible. Thus, h is reducible over Fp. It follows, since 
dnf{X) = anh{dX), that if p does not divide d then / is reducible over Fp. If p 
divides an = ao ( / reciprocal), then X divides / which is thus reducible over Fp. 
Now assume p divides d but not an. We have a„h{a) = £ ? _ „ ajdn-jaj = 0. Let 
vp be the valuation of L at p. If DP(Q) < ^ ( d ) then î;p(a„an) < vp{ajdn-jaj) for 
0<j<n-lso that vp{anh{a)) = Vp(ana"), contradicting anh{a) - 0. Thus, 
Vp{a) > Vp(d), for any root a/d of f and any prime ideal p of OL above p. Hence 
p«p(d) divides all such a and we may remove this factor from d and the a's, thus 
getting back to the case p does not divide d. Hence / is reducible over Fp. 

COROLLARY. For odd n > 9 and any prime number p, En is reducible modulo 
P-

PROPOSITION 3. l e t n be a prime > 11. /f, for some prime p, £„ has at most 
3 irreducible factors in Wp[X], then En is irreducible in Q[X]. 

P R O O F . Assume E„ is reducible over Q. By Gauss Lemma ([1]), En = FG 
with non-constant F, G G Z[X]. By Proposition 2, F and G are, to within con-
stant factors, products of some gz. So there is z G C - {0, - 1 } such that Orb(z) 
consists of 6 distinct roots of F (resp. G). Also, F and G are reciprocal polynomi-
als. Hence, by Lemma 6, for any prime p, F and G are products of 2 non-constant 
polynomials, so that A„ has 4 non-trivial factors, in Fppf]. 

5. The case n = 2p. Let p be an odd prime number, Qp the field of p-adic 
numbers and Vp the normalized valuation of Qp. The Newton polygon (e.g. [1]) 
of a polynomial f{X) = Y^Lo a•-^, o v e r QP & the lower convex envelope, in R2, 
of the points {i,Vp{ai)) (0 < i < m). Let («o,îto),(«i,»i), . . . ,(«*,»*) be the 
consecutive vertices of this polygon. Then there are / 1 , . . . , /fc in Qp[X] such that 
/ = n . = i /«> the degree of /,- is x,- - x , - ! and the roots of /,-, in the splitting 
field L of / over Qp, have their (normalized) valuation equal to - e ( L ) ^ ' I ^ ~ 1 , 
where e(L) is the ramification index of L|Qp, and ^ '~^- 1 is the slope of the 
corresponding side of the Newton polygon. Hence, if a natural number d divides 
the denominator of the reduced fraction jfi~^."', then for any root 7 of /,• in L, 
d divides the ramification index of Qp(7)|Qp, so that d divides the degree of any 
irreducible factor of /,- in Qp [X]. 

We have E2p{X) = E ^ " 1 ( ^ X * " 1 and Vptf?)) = 1 if A ^ p, 1 < fc < 
2p - 1 while Vp((2/)) = 0. Therefore the Newton polygon of E2p consists of 2 
line segments with vertices (0,1), (p - 1,0), ( 2 p - 2,1) and slopes T-zj- Hence 
A2p = /1/2, where / 1 , /a G Qppf] have degree p— 1 and are irreducible. It follows 
that, in Q[X], A^p is either the product of 2 irreducible factors of degree p— 1 or 
is irreducible. Assume that the first case occurs, i.e. A^p = gh, with g,h £ Z[X] 
irreducible over Q of degree p - 1. Then g, h are, like Aap, primitive polynomials 
i.e. the gcd of their coefficients is 1 (Gauss Lemma). Let A2p(^0 = Ê < = ô 2 a « ^ ' ' 
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9{X) = Ei=o^J' a n d / l(A') = E*=ScfeA'*, where the a . - ^ , ^ G Z. Since 
Vpfai) = 1 for i^p-l while Vp(ap_i) = 0 and a, = Ej+*=i fric* (0 < ? < 2 P - 2 ) ' 
then, as in the Eisenstein irreducibility criterion ([1]), one of the polynomials 5 
or h, say g, has its constant coefficient 60 not divisible by p and all its other 
coefficients ^ (1 < i < p — 1) divisible by p. Let 2 be a root of g in C. Then 
l /z is a root of E^p hence of g or h. But l/z is a root of </i(A') = A ' P - 1 5 ( Y ) = 
E^=o bp-i-jXi, which is an irreducible primitive polynomial of degree p — 1. If 
l / z were a root of 5 and gi, the two polynomials would be associates in Q[X] and 
(since they are primitive) in Z[X]; then 6p_i = ±60, contradicting the divisibility 
of the bj by p. Thus l / z is a root of h and of gi, which are then associates in 
Z[X]. Hence h = ±gi and AzpW = A ^ X ) = ±XPg{X)g{£). Substituting 1 
for X, we get 22p - 2 = ±5(1)2, with 5(1) G Z. This implies that 2 is a quadratic 
residue modulo 4, a contradiction. Hence 

PROPOSITION 4. For any odd prime p, E2p is irreducible over Q. 
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BEST UNIFORM RESTRICTED RANGES APPROXIMATION 
OF COMPLEX-VALUED FUNCTIONS 
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Presented by Vlastimil Dlab, F. R. S. C. 

ABSTRACT. We study the uniform best restricted range approxima-
tions of complex-valued functions by generalized polynomials. The theory, 
generalizing the real-valued case, embraces the theorems of existence, char-
acterization, uniqueness and strong uniqueness. 

RÉSUMÉ. Nous étudions les meilleur approximations avec image re-
streint des fonctions de valeures-complexes par polynôms généralisés. Le 
théorie, en généralisant le cas de valeur réel, comprend les théoèmes de 
l'existence, unicité at unisité forte. 

1. Introduction. The problems of best uniform restricted range approxima-
tion have been thoroughly studied in the framework of the well-established theory 
of best constrained approximation of functions (see the corresponding review in 
[1] and the relevant references herein, a modern approach to the problem can be 
found in [2]). 

In this article we consider the problem of best uniform restrictied range ap-
proximation of complex valued continuous functions, which in analogy with the 
real-valued case [3], can be formulated as follows. Let C{Q) be a space of complex-
valued functions defined on a compact set Q, P C C{Q)—a finite-dimensional 
subspace in it and ÎÎ = {Ut \ i G Q}—a system of non-empty convex and closed 
sets in C. For a given function f G C{Q) set: 

(1.1) E{f):= inf [[/-pli, 
pÇro 

where 
Pn={peP\p{t)€Qt for all teQ}. 

Here || || stands for the uniform norm. 
The problem is to investigate the properties of the element p* G Pn providing 

the infimum in (1.1). 
In this work the problem of existence, characterization, uniqueness and strong 

uniqueness of such the element p* is studied for some special system of restrictions 

Received by the editors June 1, 1997. 
AMS subject classification: 41A10, 41A52. 
© Royal Society of Canada 1997. 

58 



APPROXIMATION OF COMPLEX-VALUED FUNCTIONS 59 

Q, using the notion of a minimal admissible pair of sets corresponding to the 
notion of a characteristical set of best approximation in the classical theory of 
uniform approximation, 

2. Basic definitions, no ta t ions and facts. Let Q be a compact set in the 
complex plane C containing at least n + 1 points. Denote by C{Q) the Banach 
algebra of all complex-valued continuous functions defined on Q with the norm 
| | / | | = maxjgQ | /(0I- F o r every function / G C{Q) introduce the set M(f) := 
{t £ Q \ \f(t)\ = ] | / | |}. Clearly, M(f) is compact. Consider a n-dimensional 
subspace P with a basis { ^ i , ^ •• -, Vn}- The elements p G P have the form 
p = 52"_ j c„¥v, where c„ 6 C; v = 1 , . . . , n. We call them generalized polynomials 
with respect to the system {<pi,'P2,---,lpn], or just polynomials, for short. For 
p G P s e t ^ ( p ) : = { f G Q l p ( O = 0}. 

DEFINITION 2.1 (4). A subset P c C{Q) is called a Haar space if every poly-
nomial p G P \ {0} has no more than n - 1 zeros in Q. 

Let u G C{Q) and r G C{Q) be fixed functions, in addition assume that 
r{t) > 0 for all t € Q. For every point t G Q denote by fit, intQt and dQt 
correspondingly the closed disk, open disk and circle with the origin u{t) and 
radius r{t) in C. 

HYPOTHESIS 2 .1 . Throughout this paper we assume that always for some 
Po € P the condition holds: 

Po(0 ^ int î2< 
for all t G Q. 

For all p G P set B{p) := {< G Q | p{t) G 5fit}. In view of continuity of the 
functions u, r and p the set B{p) is compact. Introduce the following notation: 

P e n := {p G P j p(<) G fit for all i€B}, 

where B CQ; Pfe.n := P, PQ.CI - Pn- Note that for every set B C Q the set Ps.n 
is convex, while for a closed set B P ^ n is closed in P. The inclusion B' C B 
obviously implies Ps.n C Pe'.n-

Let SDt be a set of ordered pairs (A; B), where AcQ,B CQ and A ^ 0. We 
write {A';B') C {A;B) iff A' C A and B' C B. Then the inclusion {A';B') C 
(A; B) is called strict, if at least one of the inclusions A' C A and B' C B is 
strict. 

For a function / G C{Q) and a pair (A; B) G 3K set 

EA{f;PB.a):= igf sup |/(<) - P ( 0 | . 

Clearly, if A = B = Q, EQ{f;PQin) = ÊQ(/;Pn) = E(f). It is easily seen 
that the inclusion (A';B') C (A; B) implies the inequality J 5 A ' ( / ; Pe'.n) < 
EAU'PBSI), which leads, in particular, to EA(f;PB,n) < E(f) for any pair 
(A; B) G M. 
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DEFINITION 2.2. A polynomial q G Pe.n, satisfying the equality 

sup |/(<)-9(01 = ^ ( / ; ^ , n ) 
teA 

is called a best restricted ranges approximation to f on A from PB,n-
A best restricted ranges approximation to f on Q from Pn, or the polynomial 

P* G Pn satisfying 
| | / - p - | | = B(/) 

is called for short a best approximation to f from Pn. 

The compactness argument justifies the validity of the following 

THEOREM 2.1. If A and B are compact subsets ofQ (A ^ 0), then for every 
function f G C{Q) there exists a best restrict ranges approximation to f on A 
from PB in. 

COROLLARY 2.1. For every function f G C{Q) there exists a best approxima-
tion to f from Pn. 

3. Minimal admissible pairs of sets and their properties. Let / G 
C{Q). 

DEFINITION 3.1. An ordered pair (A;B) G SPt is called an admissible pair 
(a. p.) for a function f with respect to Pn, if 

EA(f;PBA) = E{f). 

DEFINITION 3.2. An admissible pair (AQ; BQ) for / with respect to Pn is called 
a minima/ admissible pair (m. a. p.) for a function f with respect to Pn, if the 
strict inclusion (A; B) C (AQ; BQ) implies the absolute inequality: 

EA(f;PB,n)<EAo{f;PBo>n). 

REMARK 3.1. Each a. p. (A;B) for a function f, where A and B are finite 
subsets of Q, admits at least one m. a. p. for f. 

THEOREM 3.1. Let (Ao;Bo) ^M be am. a. p. for f e C{Q) with respect to 
Pn, and p* G Pn is a best approximation to f from Pn- Then simultaneously the 
following inclusions hold: 

(3-2) A o C M ( / - p ' ) , BoCB(p*) . 

THEOREM 3.2. For each function f G C{Q) there exists at least one m. a. p. 
(AQ; BQ) for f with respect to Pn, such that |Ao U Bo| < 2n + 1. 
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DEFINITION 3.3. We call a function / G C(Q) admissible, if it satisfies at least 
one of the two conditions: 

1. f{t) ent for all < GQ; 
2. M(/-p ' )nB(p*) = 0, 

where p* G Pn is some best approximation to / from Pn. 

We denote the set of all admissible functions by Ca{Q). 

THEOREM 3.3. Let P be a Haar space and f G Ca(Q) \ Pn- Then each m. a. 
p. (Ao;Bo) for the function f with respect to Pn satisfies the condition |AoUBo| 
> n + 1 . 

4. Charac te r i za t ion of bes t approximat ion . Let / G C{Q), p* G Pn- Set 
<ri{t) := fit) -P*{t), t G M{f-p'), and <r2{i) := u{t)-p'{t), t G B(p'). 

THEOREM 4.1 (KOLMOGOROV-TYPE CHARACTERIZATION). A polynomial 
p* G Pn is a best approximation to a function f G C{Q) from Pn, if and only if 
for each p G P the conditional inequality holds true 

(4.3) m i n j min Re(p(0MÔ), min Re(p(<WÏÏ ) ) < 0 

For each function / G C{Q) and p* G Pn consider the set 

B = {b(0 = (^(Ô.^(Ô.--- ,MÔ)^(0. < € M(/-p*)} 
u {c(0 = (^i(0.^(0.- - . ^ (0 )^ (0 . t €B{p')}, 

noticing that due to compactness of the sets M{f — p") and B(p*) the set B is 
compact in C n . 

THEOREM 4.2 ( "ZERO IN THE CONVEX HULL" CHARACTERIZATION). A 
polynomial p* G Pn is a best approximation to a function f G C{Q) \ Pn if and 
only if the origin of the space Cn belongs to the convex hull of B. 

THEOREM 4.3. A polynomial p* G Pn is a 6est approximation to f £ C{Q) \ 
Pn from Pn if and only if there exist such sets AQ = {t i, f 2, • - - ̂ fc } C M (/ — p' ), 
BQ = {t'i,t'2, • • • ,t'm} C B(p*) (fc > l,fc + m < 2 n + 1) and positive constants 
Ai , . . . , Afc, A j , . . . , AJ„, that for each polynomial p £ P the condition holds: 

k m 

(4.4) ^A1p(fI)^(iô+EA'»P^)^(ny= 0 

/ = 1 » = 1 

REMARK 4.1. Under the conditions of Theorem 4.3 

|AoUB0|<2n+l- |AonBo|. 
REMARK 4.2. If P is a Haar space and f G Ca{Q) \ Pn, the sets AQ and Bo 

in Theorem 4.3 additionally satisfy the condition [AQ U BO| > n -I-1. 
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5. Uniqueness and s t rong uniqueness of best approx imat ion . We as-
sume throughout this section that P is a Haar space. 

THEOREM 5.1 (UNIQUENESS THEOREM). Each function f G Ca{Q) has a 
unique best approximation in Pn-

THEOREM 5.2 (STRONG UNIQUENESS THEOREM). Letp* e Pn be a best ap-
proximation to a function f G Ca{Q) from Pn- Then there exists such a constant 
7 = lif) > 0 that any polynomial p £ Pn satisfies the inequality: 

(5-5) I l / - P l | 2 > l l / - P l | 2 + 7 | |P*-P | | 2 . 

Define on the set Ca{Q) the operator of best approximation r, which assigns to 
each function / G Ca{Q) its unique best approximation in Pn-

THEOREM 5.3. The operator T is continuous in Ca{Q). 

REMARK 5.1. Theorem 5.2 suggests the standard form of the inequality of 
strong uniqueness (see [5]) in the complex case. Indeed, set 71 = I/47, S = 27" 1 / 2 . 
Then for all such p G Pn that | l p -p* | | <S we have the following inequality 

I l / - P | | > l l / - P , | | + 7 I | | P - P l | 2 -

6. Conclusion. All the results of this paper remain valid for some weakened 
system of restrictions fit, which can be defined as follows. Let X is some open 
subset of Q, then 

o . _ / { z e C | | z - « ( O I < r ( 0 } fotteQ\x 
* " 1 C for < G X; 

moreover, the functions « and r are continuous on Q \ A" and in addition, the 
function r is positive onQ\X. 

A full version of this article containing all the proofs and elucidating details 
will be published elsewhere [6]. 
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CORRIGENDUM TO 
FALTINGS PLUS EPSILON, WILES PLUS EPSILON, 

AND THE GENERALIZED FERMAT EQUATION 

H. DARMON 

On page 7, Une -11: after "differently:": remove the rest of the paragraph, and 
replace it by: "the stalk Ox,P for this sheaf is defined to be the ring of Puiseux 
series in tp"." That should end the paragraph. 

Received by the editors November 6, 1997. 
© Royal Society of Canada 1997. 

64 


