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Probabilités et Analyse Harmonique/Probability Theory and Harmonic Analysis

Théorémes local et de renouvellement pour une convolution généralisée
sur la demi droite

Léonard Gallardo et Khalifa Triméche
Presented by G.F.D. Duff, F.R.S.C.

Résumé.Soit * la convolution sur A[{IR,.) associée & un opérateur différentiel singulicr L. Pour une
probabilité u sur IR avec des hypothéses de moments adéquates, on étudic conument normaliser les
oc

mesures {u*™;n € IN} (resp. ¢; » Z u*";z > 0) pour qu'elles convergent vaguement si n — +x

n=0
(resp. £ — +00). Les résultats dépendent de L et d'une étude fine de ses fonctions propres.
Local and renewal theorems for a generalized convolution on the half line

Abstract. Let + be the convolution on Af(IR,) associated to a singular differential operator L.
If p is a probability measure on R4 with suitable moment conditions. we study how to normalize

oc
the measures {u*";n € N} (resp. {e;» Zu"'}) in order to get weak convergence if n -~ +x

n=0
(resp. T — +00). The results depend on the type of L and on a precise study of its eigenfunctions.

1) Généralités. On considére sur ]0,+oc[ un opérateur différemticl L =
02 + A'(z)/A(z)d; (07 désigne la dérivée nieme en z). On suppose A(r) =
z?+1B(z),a > —1/2,B > 0 est une fonction C* paire sur R avec B(0)) = 1.
De plus A est croissante. !'l"g:lA = 400, A'/A est décroissante. lim,,c A'/A=2p >0
et il existe 6 > 0,9 > 0 tels que pour T > xo on ait

(1) (B'/B)(z) =2p—- (2 + 1)z~! + e **D(x) si p > 0 ou e™* D(r) si p= 0.

ol D est une fonction C* sur [zo,+oc|, bornée avec toutes ses dérivées. Les
opérateurs de Bessel et de Jacobi sont des exemples types avec respectivement
A(z) = z%0%! (et p = 0) et A(z) = 2%(shz)?**(chz)®*®*'(a > 3 > -1/2 et
p=a+p8+1>0)([6]).

D’aprés [4] 1'équation aux valeurs propres Lu = —(A? + p?)u a pour tout A € '
une unique solution ¢, telle que pa(0) = 1 et £}(0) = 0 et deux autres solutions
lindairement indépendantes 4 telles que /A(z)P1a(z) ~ eFN*(x — +x) ([5]).
La fonction ¢ : € — C telle que px(z) = c(A)Pa(z) + c(—A)P_a(x) est la fonction
d'Harish Chandra. Pour tout A€€ et z > 0.0n a

(2) wa(z) = /0 K (z. u)cos (Au) du,
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ot K(z,.) > 0 est de classe C= sur | — z, z|, paire et & support dans [—z.z] ([8]). De
plus pour tous z,y € Ry, il existe une probabilité notée €. * ¢, (¢ pour mesure de
Dirac) & support dans [|z —y|. z+y] telle que pA(2)#a(y) = (ex*€,. %22). La convolée
de p et v € M(R,) est alors définie par (p*v, f) = (4 8 v,u) si f est une fonction
continue et & support compact dans IR, et u(z,y) = (€: * €, f). On munit ainsi
R, d'une structure d'hypergroupe commutatif de mesure de Haar m(dz) = A(r)dr
et de mesure de Plancherel |c(A)|=2d) ([2], [4], [8]). Le comportement de |c(A)|~* &
l'infini a été établi en [5] ; pour le voisinage de zéro nous avons utilisé [9] (th. 3.72)
et obtenu le résultat suivant :

Proposition 1. Il existe des constantes positives k, k). k2 telles que
)sip>0eta>—1/2;VAC, || > k = kA2 < Jo(A)|72 < ko AP
2)sip>0eta>-1/2VA€C, A < k= kM2 < e(N)]™2 < ko] AR
sip=0eta>0;VAeC, |\ < k= kAP <c(A)]7? < kAPt

Sous les conditions précédentes, posant ¥ = 1/2si p > 0,y = asip = 0 et
ai(A) = AtY2¢()), on a }\irl(l)cl(k) =¢;(0) #0.

2) Propriétés asymptotiques de i, et . Soit la fonction G = 47'(A'/4) +
2-T(A"/A) — p%. On écrira G(z) = (a® — 1/4)z~% + x(z). D'aprés (1). il existe
§ > 0,z > 0 et des fonctions D;(i = 1,2) de classe C* sur [zo. +oc| bornées avec
leurs dérivées et telles que G(z) = e~**Dy(z) si p > 0 et x(z) = e™*Dy(x) si p = 0.

Théoreme 1. Pour tout entier n > 0, tout A\€C* et >0, 0n a
. n-1
(3) \/A(x)@‘\(z) = ¢i™* Z ay(z)(iIN)"% + Ra(A, ).
=0

ou les fonctions réelles a, s'obtiennent par les relations

ao(z) = 1, 2a},,(z) = —a}(z) + G(z)a,(z) (s > 0)
et

@ IR s 2 ([ laneiae) eap (W[ (G 0lat).

De plus, a,(z) = O(e~%%) si p > 0 et a,(z) = C,z™* + O(e™**) si p = 0. ou C; est
une constante.

Démonstration (idée) La fonction vA®, est solution de I'équation différentielle ' =
((iA)® + G)v ; on en déduit alors une équation intégrale pour le terme d'erreur R,
qu’on résout par la méthode de variation de la constante.

Soit Wa(u) = (w/2)2eili+2a)m/4y/2H(D(y) avec H{V la fonction de Hankel de
premiére espéce d’indice a.
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Théoreme 2. Si p > 0. il existe une constante C > 0. telle que pour tous AeRet
>0

(5)  IVA@EA(r) - Wa(A2)l <

{ C (22)"*® ezp (C I weisplx(lde) — 1] sia > 1/2
C [exp (C 1= mlx(®ldt) 1] si e €] = §. 41

/2+a -a-1/: LN
© WAl < C 2o+ ey ey [ o).

Démonstration (idée) La fonction VA®, est solution de l'équation uw”(r) +
((1/4 — a®)z~2 + A?) w(z) = x(z)w(z). Une résolution par approximations succes-
sives de donnée initiale 11,(Az) conduit a (5). Pour (G) on applique une méthode
analogue a la fonction VA, qui satisfait la méme équation mais avec une donnée
initiale équivalente a z'/2+® si r — 0.

Corollaire 1(formules de Mehler-Heine). Si p=0oup>0eta =1 /2 on a powr
AeR

(M lim_A@)E(z) = Wal)

®  _lim_/B@)ex(z) = VA2 la @)@ + 1) (M),
ol ja(A) = 2°T(a + 1)AJ,() et J, est la fonction de Bessel de premiére cspece.

Démonstration (idée) : (7) résulte dn Théortme 2. Pour (8) on utilise (7).
I'expression ¢, en fonction de ¥4, et une méthode de caleul par inversion de Fourier
qui sera détaillée ailleurs.

3) Le théoréme local. La transformée de Fourier d'une probabilité p € A/, (R)
est définie par () = (i, ¢») pour [ImA| < p. Soit alors b(xr) = —dFa(7)|axa. On
voit facilement & partir de (2) que b > 0 est bornée sur IR si p > O et que b(r) < a?
si p = 0. Ainsi b(z) = (u,b) < +oo pour toute p € M (Ry) si p > 0 et pour u
ayant un moment d'ordre 2 si p = 0. Dans ce cas on a immédiatement

9 (A = a(0) — b(p)A*/2+0(X*) si A — 0.

Théoreme 3. Soit p € M;(R,),1 # € et b(u) < +o0. On suppose p > () ou
p = 0eta> 0 et soit v la constante de la Proposition 1. Alors la suite des
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mesures n'1+l(u(0))~(u+1+x) p*" converge vaguement vers Cuyom(= Cyito(T) A(r)dr)
ot C, = (21)~Yex(0)]22T (v + 1)b(p)~*1 > 0.

Démonstration (esquissée) : pour f € D,(R) (espace des fonctions paires de classe
C™ sur R et & support compact) et pour tout 7 > 0, on a par inversion de Fourier

o)™ [ S = ( [+ /qm) A7 ) @A) e

On peut alors passer a la limite quand n — +oo suivant la démarche classique grace
a (9), a la Proposition 1 et aux lemmes suivants :

Lemme 1. Soient m et (m;)ie; (avec I = N ou R, ) des mesures de Radon positives
sur R,. Si pour tout f € D,(R), iE‘_mm(m,‘, f) = (m, f) alors m; converge vaguement

vers m quand ¢ — +00.

Lemme 2. Soit ¢ € M;(R,). S'il existe & > 0 tel que [0.a] C suppy. alors pour
tout n > 0, il existe a = a(n) < 1 tel que |2(A)] < a/1(0) pour tout A 2> 7.

Lemme 3. Soit u € M(IR,) et 2o € suppu avec zo # 0. Alors [0,2z0] C suppp*?.

Remarque : On notera que 2(0) = 1sip=0et 0 < 2(0) < 1si p > 0. On
remarquera aussi que pour tout € R, ¢o(z) > 0 et que o(z) =1si p=0.

4) Théoremes de renouvellement. Pour n entier > 0. soit la fonction d,(r) =
O Pasip(T)a=0 (z = 0). A l'aide de (2), on montre qu'on a toujours [du(r)| < 2.
Si p = 0 on a dn(z) = 0 si n est impair et |d(z)| < 1+ |dn(z)] pour tout { < n
si n est pair. Pour u € M,(R,), on pose alors dn(u) = (u,|da]). Si p = 0. on
noogera que da(p) = b(u) (cf. §3). Si p =0 et pu admet un moment d'ordre n (i.c.

z"u(dz) < +00), js est de classe C" sur R. De plus

Proposition 2 : Si p = 0, si n est pair et si d (1) < +oc, 1 est de classe C" sur IR.

Ihmmg_‘i Soit u € M(R,),u # €. Sip>0o0usip=0eta>0ect d(y) <

+00,v = 2 u*" est une mesure de Radon et on a
n=0

a) si p > 0 et si da(p) < +00, \/A(:t)e”(e, * V) converge vaguement si I — 4+

vers la mesure (d,(u))"'m.
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b) si p=0et a > 0, on suppose da(p) < +oosi 0 < a < 1/2¢t poura > 1/2.0 =
n+ravecn € N° et —1/2 < r < 1/2, on suppose soit que x a un moment d’ordre
n + 2 soit que dag42(p) < +20 si n = 2k ou 2k — 1. Si de plus ¢;(A) = A**'/2¢())
est de classe C* sur IR, avec des dérivées polynomialement bornées. il existe alors
une constante a > 0 telle que z2%(e. * V') converge vaguement vers am si » — +x.

c) dans le cas de l'opérateur de Bessel, on suppose da(u) < +o0si 0 < 0 < 1/2 et
pour a > 1/2,a=n+r.n € N* et —1/2 < r < 1/2, on suppose soit que y# a u
moment d’ordre n+2. soit que dax42(pt) < +00 si n = 2k ou 2k — 1. Alors 7%*(c, * 1)
converge vaguement vers (ady(p))~'m si z — +oc.

Démonstration (idées) a) Pour f € D,(R). on a (e, *x v.f) = Uf(r) =
(2m)~ 12, FA(1 = 2(A))"'@a(z)c(=A)~'dA. On utilise alors I'holomorphic de Ia
fonction A — ®,(z)c(—A)"! dans le demi plan supérieur pour estimer cette intégrale

+x .
sur un contour adéquat. Pour b) si & > 1/2 on écrit U f(z) = (2m)~! /(; FOAN1 -

2(N) "1 (@aA(z)e(=A)"! + @_a(x)c(A)~1)dA, on utilise le théoreme 1 en procédant &
des intégrations par parties pour trouver un équivalent de chacun des termes ct on
utilise le théoréme 2 pour évaluer le reste. Pour 0 < a < 1/2 on utilise le corollaire
1. Pour c) le calcul direct est possible car p)(z) = jo(Az). Dans tous les cas on
besoin du lemme 1 pour conclure.

Remarques.1) Pour des analogues classiques des théoremes étudiés ici on pent con-
sulter [1], [7], pour le cas de R" et [3] pour le cas des espaces symétriques.

2) Les idées utilisées ici permettent aussi d'obtenir des théorémes locaux et de re-
nouvellement pour d’autres structures de convolution comine certains hypergroupes
polynomiaux. On trouvera tous les détails dans une-prochaine publication.
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S.L. Singh and S.N. Mishra

Presented by B. Bierstone, F.R.S.C. U

Abstract. The purpose of this note is to provide a substantial improvement of recent -

results of Pathak [5).

In a well-written paper, Pathak (5] obtained some interesting results improving
several coincidence and fixed point theorems. In the present note we provide a substantial
improvement of his main results([5, Theorems 2 and 4]) by removing the assumptions of
continuity, and replacing the completeness of the space by a set of weaker conditions. We
also drop the weak compatibility requirement from his Theorem 2.

We generally follow the notations and definitions used in [5]. Let (X,d) be a
metric space. Let (CB(X),H) and (CL(X),H) denote respectively the hyperspaces (cf.
Nadler [4]) of nonempty closed bounded subsets of X and nonempty closed subsets of
X, where H is the Hausdorff metric induced by d.

The following is the main result of Pathak[5,Theorem 2].

THEOREM 1. Let (X,d) be a complete metric space, f : X -+ X, and T : X -+ CB(X)
be f~weak compatible continuous mappings such that T(X) C f(X) and
(1)  H(Tx,Ty) ¢ h max{d(fx,fy),d(fx,Tx),d(fy,Ty),[d(fx,Ty)+d(fy,Tx))/2}
is satisfied for all x,y € X and 0 < h < 1. Then there exists a point t such that ft € Tt.

Mathematics Subject Classifications(1991): 47H10, 54H25. 54C60
Key words: Coincidence point, fixed point, weak compatibility, multi—valued maps.
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The following two results improve the above theorem substantially.

THEOREM 2. Let Y (# ¢) be an arbitrary set, (X,d) a metric space, f: Y -+ X and
T : Y - CL(X) such that T(Y)C f(Y) and (1) is satisfied for all x, y € Y, 0 ¢ h < 1. If one of
T(Y) or f(Y) is a complete subspace of X, then there exists a point t € Y such that ft € Tt.

Proof. Let X, € Y be arbitrary, and choose x, € Y such that txl € Tx0 .Such a
choice is permissible since Tx0 C f(Y). Since we may assume 0 < h < 1, we choose a point
Xy €Y such that d(fx2,fxl) <k H(Txl,Txo), where k = 1/yh . In fact, following the
constructive prqof technique of Pathak [5, p. 72), we construct a sequence {xn} € Y such

that fx ;€ Tx and d(fx ;.0 ) <k H(Tx ,Tx _;),n=1,2,.. . Now setting x =

n+1’

Xo41 andy = x_ in (1), it can be easily verified that {fx_} is a Cauchy sequence.

If f(Y) is a complete subspace of X, then {fx_} being contained in f(Y) has a limit in

it. Call it u. Let t € { u. Then ft = u. By (1),

d(fx, , . Tt) < B(Tx,,Tt)

¢ h max{d(fx,,ft),d(x, , Tx, ), (&, Tt), [d(Ex, Tt)+d(ft,Tx,))/2}
¢ h max{d(bx,,ft),d(fx,,fx, | )40, TE),[d(Bx, TO+(TE L )1/2)-

Making n -+ o we have d(ft,Tt) < h d(ft,Tt), i.e. ft € Tt. The other case, when T(Y)isa
complete subspace of X, essentially pertains to the previous case as T(Y) € f(Y). This
completes the proof.

Now we derive a hybrid fixed point theorem from Theorem 2. Recall that a point
z € X is a hybrid fixed point of f: X » X and T : X - CL(X) if fz € Tfz.

COROLLARY 1. Let (X,d) be a metric space, f : X - X and T : X -+ CL(X) such
that T(X) ¢ f(X) and (1) is satisfied for all x, y € X, 0 ¢ h < 1. If T(X) or f(X) is a
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complete subspace of X, then there exists a point t € X such that ft € Tt. Further, if T
is f-weakly compatible and f(ft) = ft, then f and T have a common fixed point, indeed,
ft € THt.

Proof. It comes from Theorem 2 (when Y = X) that there exists a point t € X such
that ft € Tt. If T is f — weakly compatible, then by the lemma of Pathak [5, p. 74}, {Tt =
Tft. Hence ft € Tt implies f(ft) € f(Tt) = Tft. Consequently ft is a fixed point of T if f(ft)
= ft. This completes the proof.

Corley [1, Theorem 1] has shown that a hybrid fixed point is a maximal point in
certain Pareto maximization problems (see [1, p. 529]). Therefore Corollary 1 has a big
potential for applications to Pareto type of maximization problems.

The following is an extension of the main result of Das and Naik [2].

THEOREM 3([5,Theorem 4]). Let (X,d) be a complete metric space, andlet f, T :
X + X be two f — weak compatible maps such that T(X) € f(X) and
(2) d(Tx,Ty) < h max{d(fx,fy), d(fx,Tx), d(fy,Ty), d(f,Ty), d(fy,Tx)}
forall x,y € X and 0 < h < 1. If one of f or T is continuous, then there exists a unique
common fixed point of f and T.

We improve the above theorem as follows.

THEOREM 4. Let (X,d) be a metric space, and let f, T : X + X be such that T(X) ¢
f(X) and (2) is satisfied for all x, y € X and 0 < h < 1. If one of T(X) or f(X) is 2 complete
subspace of X, then there exists a point t € X such that ft = Tt. Further,

(i)  if there exist v ,w € X such that fv = Tv and fw = Tw, then fv = fw ;
(i) if T is f — weak compatible, then f and T have a unique common fixed point.

Proof. Pick x;, € X. Following [2] and (5], we find a Cauchy sequence {fx } € f(X),

where Tx = fxn+l' n=0,1,2,... If{(X)is complete then, {ﬁ(n} has a limit in f(X),

say u. Let t € { 1y 50 that ft = u. We note that {Tx,} also converges to ft. Setting x = x,
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and y = t in (2) and passing over to the limit, we find that d(ft,Tt) < h d(ft,Tt). Soft =
Tt. Now let v, w € X be such that fv = Tv and fw = Tw, then by (2), d(fv,fw) = d(Tv,Tw)
< k d(fv,fw). This proves (i). Finally, if T is { — weak compatible, then appealing to the
lemma of Pathak [5], fTt = Tft. Thus ft = Tt yields fft = fTt = Tft , and hence ft is a
coincidence point of f and T. Therefore by (i), ft = {(ft), proving ft is a common fixed
point of f and T. The uniqueness of the common fixed point can be easily verified.

The following exmples provide an insight into our results, and establish clear and

applicable superiority over those of [5]. The sequence {fx_} (respectively {Tx})

constructed in the proof of Theorem 4 may be called the orbit of f with respect to T
(respectively the orbit of T with respect to f).

EXAMPLE 1. Let X = { x : 0 < x < 2 and x is rational } be endowed with the usual
metric. Let Tx = {0, 2}, fx = 2 — x, x € X. Then T(X) = {0, 2} ¢ f(X) = X . It is easily
seen that all the hypotheses of Theorem 2 (with Y = X and T(X) complete) are satisfied,
and ft € Tt, t = 0, 2. However, Theorem 1 can not be applied as X is not complete.

The doubling function D (cf. below) finds significance in chaotic dynamical theory
(see, for instance, Devaney (3, p. 24]). We introduce an auxiliary function T so that our
Theorem 4 may make the orbit of D with respect to T behave nicely.

EXAMPLE 2. Let X = [0,1] be endowed with the usual metric. Let D, T : X -+ X be
such that Dx = 2x mod 1 and Tx = x/2, 0 ¢ x < 1/2, Tx = x/2—1/4,1/2 < x ¢ 1. Then
T(X) = [0,1/4] ¢ D(X) = X, and | Tx — Ty| < (1/4)|Dx — Dy| for all x, y € X. Theorem 3
can not be applied to T and f = D, since both the maps are discontinuous. However,
Theorem 4 applies, and 0 is the unique common fixed point. More importantly, for any

€ X, the sequence {Dx_: Dx_= Tx__.,n= 1,2, ...} converges to 0. In particular,
X0 n n n—1’ &

if 0 ¢ xy < 1/2, then Dx = 2xo/ 4" . n=12...
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UN CRITERE GENERALISE DE LE PAGE
ET COMMUTATIVITE

A. EL KINANI, M. OUDADESS

Presented by G.A. Elliott, F.R.S.C.

Abstract: Considering a generalized criterion of Le Page type, we give a theorem from which
follow, without further calculations, all results originated by the condition [jxy] < a|yx] of
Le Page.

Résumé: Considérant un critére généralisé de type Le Page, nous donnons un théoréme duquel
découle, sans autres calculs, tous les résultats de commutativité issus de la condition [peyf < aflyx]
de Le Page.

Dans toute la suite, A sera une algébre de Banach complexe pour une norme || et C(4)
le centre de A. Pour x € A, on désignera aussi par p(x) le rayon spectral de x.

C. Le Page a considéré ([5]) la condition [xy|< afyx] dans une algébre de Banach
unitaire et a montré qu'elle entraine la commutativité. Divers auteurs ont examiné le méme
probléme dans le cas non unitaire. D'autres ont introduit des fonctions dans I'inégalité soit
a gauche soit a droite, et reprennent a chaque fois I'idée de Le Page qui consiste a utiliser la
fonction exponentielle. Nous donnons ici un énoncé qui recouvre tous les cas.

Théoréme: Soit (4,]}[) une algébre de Banach, (E, p) un espace normé; S:4 —> E une

application linéaire continue. Soit de plus /" un espace vectoriel, g:F — R*et
T:A — Fdeux applications quelconques. S'il existe a > 0 tel que:

p(Suv)) < ag(T(vu)) a

pour tous u,v € 4; alors on a:
() S[(xy)z] = S[z(xy)] pour tous x,y,z € A. Si de plus A admet une unité approchée a
gauche ou a droite, alors S(xy) = S(3x) pour tous x,y € 4.
(i) Si (1) est vérifiée pour tout u € A' = ABC ettout v e 4, alors S(xy) = S(yx) pour
tous x,y €A.

Preuve: Si A4 est non unitaire, on considére Al =4@C.
(@) Nous reprenons ici I'argument classique de Le Page. Pour x,y,z dans 4, soit
l'application f* définie, sur C et a valeurs dans E, par
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)= S[e"‘:rcye'“z ]
Elle est holomorphe. De plus elle est bornée car p(f (L)) < ag(T(yx)) pour tout A. Elle est
donc constante. On obtient alors la premiére conclusion 4 partir de f*(0) = 0. La deuxiéme
résulte de la premiére en remplagant x ou y (selon le cas) par e,, ol (g;), est une unité

approchée a gauche ou a drotte.
(ii) Pour x, y dans A, on considére la fonction g définie, sur C et & valeurs dans E par:

gA) = S(e'M ye“).
Elle est holomorphe. De plus elle est bomée car p(g(A)) <ag(7(y)). Elle est donc
constante. On obtient alors la conclusion a partir de g°(0)=0.

Comme conséquence du théoréme précédent, on retrouve des résultats classiques sur la
commutativité,

1°) Sionprend E=F=A4, S=T=1Id, et p=q=||, (1) devient:

lbevl < afpad] @

La premiére conclusion de I'assertion (f) dit que A2 = C(A). Ceest (i) du théoréme IL.1
de [8]. Si lalgebre admet une unité approchée i gauche ou a droite, la deuxiéme
conclusion de (i) implique la commutativité, d'ou le résultat de Baker et Pym (ou il s'agit
d'une unité approchée bornée ([1])) et le résultat de C. Le Page ([5]) dans le cas unitaire.

Remarque: On sait que la condition (2) n'implique pas la commutativité ([2]). Si on
suppose qu'elle est vérifiée pour u dans A' et v dans 4, alors 4 est commutative par
().

Remarque: Si on prend E=44 ,, et S:A—E la surjection canonique, F =4 et
T=1Id,, (1) devient:

[sCuv)< . @
Alors, d'aprés (f), A est commutative modulo son radical dés qu'elle admet une unité
approchée (2 gauche ou 2 droite). Cette condition ne nous semble pas avoir été considérée
auparavant.
2°)Sionprend E=F=A4,S=T=1Id,, p=|{|etg=p, (1) devient:
[bevf) < ap(var) @

et on est ramené a (2) par pS{. .
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3° Sionprend E=F=A, S=T=1d,, p une norme quelconque d' espace vectoriel et
q=p, (1) devient:

p(uv) <ap(vi). &)
Dans ([6]), Mocanu considére la condition:
p(x) S ap(x), Vx e A. ©)

Soient u = x+Ae dans4' et v dans A. Le produit uv = (x+Ae)v = xv+Av est dans 4; et
l'on a:

P(uv) < ap(uv) = ap(v)
cest a dire (5). Alors (ii) assure que l'algébre 4 est commutative. Comme cas particulier
nous avons la condition:

v(x) € ap(x) Q)]
ou v est I'image numérique ([9]) et la condition:
el < axp(x) ®

considérée par C. Le Page dans le cas unitaire ([5]) et par R. A. Hirschfeld, W. Zelazko
dans le cas non unitaire ([3])

4°) Si on considére F = A, T = Id,, (E, p) un espace normé quelconque et la condition:
PS@v))<ajvul, ue A ,veAa. o)
La condition (9) est équivalente a la condition:
P(SGy +y)) < ayx+y| (10)
posée dans [7]. On retrouve ainsi le résultat principal de G.Niestegge.

§°) Sionprend E = 4, S = Id,, (1) devient:
byl < 2g(T(3m)) (1)
Clest la condition considérée dans [4] dont on retrouve les résultats. Par la premiére

conclusion de (f), A? c C(A) et par la deuxiéme, A est commutative dés qu'elle est a
unité approchée ( 4 gauche ou a droite).
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Remﬁr(ue: Par (i1), on sait maintenant que l'algibre est commutative si on a (11) avec x
dans A'et y dans 4.
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ASYMPTOTIC BEHAVIOUR OF THE HALF DISC
POLYNOMIALS AND RANDOM WALKS
ON A DISCRETE CONE

Maher MILI

Presented by P.C. Greiner, F.R.S.C.

Abstract

In this work we give a Mehler-Heine formula for the half disc polynomials
and we study the random walk on the hypergroup (T,*) defined by the set

T = {(pg) € N’[p-gq € 21\'} and the convolution » generated by these
polynomials.(See [1] page 145).

The half disc polynomials {Qf,','q) ;p.q € N,p — g € 2IN} are defined on
Dy = {(z,9) € R?| 2 + y? < 1 and y > 0} by
(n) =D 2 3 2y=4\(,2 4 2 2R3+ (g 2 | 2y _
Q(z,y) = REFD (a(z? + 41) ) (2 + y)IRETH (22 4+ 47) - 1),
where R{Z"? is the Jacobi polynomial normalized by ‘R.Sf,"m(l) =1.

Introducing polar coordinates, the polynomials Q(,'_'q) can be written as

QM (),6) = 125,*'*’(coso)(cosx)v'lz‘,fi':’-’*”(cosz,\) = R D (cost)UL (cos),

where Ul (cos)) = (cosA)’R(:;_a"+l)(cos2A)

with A € [0, 7] and 6 € [0,7]. These polynomials are orthogonal with respect to
the measure dmg(),0) = (sin))*"~Scos® Asin?0d)dd and we have

/0 ; / i QA 0)QL (X, 8)(sinA)*"~Scos® Asin?8dAd8 = (ko)™ 6p,p60.0',
where °
(2n - 1)(2n - 2)T (252 + 1) 7 (B2 + 2) (r(2n - 2))2
(9+ 1)2(51 +2n - 2)’(p+ 2n ~ 1)r(L;! +2n- z)r(egﬂ +2n— 1) '
We denote by T = {(p.q) eN?|p-gqe€ 2]N}. We have for all (p,q) € T,

Q0| < 1.

hpo =

sup
(xve)E[ol ';') X{o,ﬂ'] :

1. Mehler-Heine Formula .
For (p,q) € T, let 2. =(p+2n-1)" —(¢+1)%,
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Theorem 1-1: Let C > 0 be an arbitrary constant. Then there exist real numbers
Nc >0,C;, >0 and C; > 0 such that for every (p,q) € T satisfying fpq 2 Nc,

and for every real number ) € [0 ] we have
[
(‘":'\)’""(cos,\)iU,‘,j;’(m,\) = 20n-3)(2n 3)'%‘—’5%%1 +R(p,q,)),

where Jan—3 is the Bessel function of first kind and order 2n-3 and the function R
satisfies the following inequality

Ir(p, g, M| S C1A? + Cag +1)*2%.
Corollary 1-1.(Mehler- Heine Formula): We have

n -(2n-3)
p—++o00,9—+00 g-q)(cos—) (211 - 3)'( ) Jg,.._;(z)
(p.g)ET

This limit holds uniformly in every bounded interval.
2. Law of Large Numbers .

It is proved by T.H.Koornwinder in [5] that the polynomials Qm satisfy the
following linearization formula

A 0RO = Y Cra.r.d,p"a")Q(20),
(7" q")ET

where there are finitely nonzero terms and the coefficients C(p, ¢,p',¢',p",¢") are
nonnegative. Then we can define a convolution structure on M(T), the space of
bounded measures on T, by taking

S * Sy = ., C(2,0,P¢,",0")6(m %)
(»"¢")ET
for two Dirac measures and, more generally, for all 4 and v in M(T) we have

pro= Y > wlii(k D) * k-

(iLJ)ET (K )ET

Proposition 2-1: With the convolution *, the involution (p,q)~ = (p,q) and the

unit element (0,0), (T,*) is a commutative hypergroup with the Haar measure
3" h7b(p,q) and dual Dy with Plancherel measure dmp(), 6).

(P.)ET

Remark 2-1: This hypergroup has been cited in [1] page 145.

Definition 2-1: i) By a random walk of law p on (T, *) we mean every Markov
chain on T with markovian kernel

P((i,)4) = (b *#)(A), ACT, (L) €T.
The iterated kernels of P are given by
P ((G,5), 4) = (8.5 * K")(A),

where p™ = p + p» - - - # p, the n*® power of convolution of p.
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ii) We say that the probability u on T is adapted if the hypergroup generated
by mean of the convolution structure * by the support of u is equal to T.(See [4]).

Taking r = cos), the polynomial QM can be written as
QU(2,0) := Q)(r,8) = o 1)U (cosﬂ)r’R(:;_"— (92

where U, is the Tchebycheff polynomial of the second kind of degree q.
We denote by M,(T) the set of probability measures on T. The Fourier
transform of a probability u in M;(T) is the function given by

B0 = 3 upa)QER(6)
(P)ET
For a random vector (X,Y) of law x on T, we have

M0.0) = E(QF)(1.0)
and for p and v in M,(T), we have the relation
H=v(),8) = (7, 0)5(),0).

Definition 2-2: For a probability u on T, we define the numbers V;(u) and Va(u),
if they exist, by

- = D #(p,q)grQ""( r,6)

Vi(p) = ——#(r 6)

e ?

=0 (Pq)ET =0
V() = it 0...,=~ 3 s ) gz ).,
= (p.9)ET =°

Proposition 2-2: For (p,q) € T, we have

1
Vl(5(p.q))=8("—_1)'(P2—92+(4"—2)p+(4n—6)q)

(¥ +9-2) , forall(p,gq)€Tandg>1
Va(§ip.)) = { 3
2%p.9) 1 , forall(p1)eT

0 , forall(p,0)eT.
Proposition 2-3: For every u and v in M,(T), we have
Vilurv)=Vi(p) + Vi(v), i=12
Notations
i) In the following, we denote V;(é5,)) = Vi(p,9), t = 1,2. Then V;(p)

can be considered as the integral < V;,p > of the function V; with respect to the
measure y.

ii) We mean by Si = (Xi,Yi), the position at the instant k of a random
walk of law pu in (T, *) starting from (0, 0).
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Lemma 2-1: The processes
8(n - NV)(Sk) = X} - Y2 + (4n - 2) Xy + (4n - 6)Y; ,

V+Ye-2 , ifYig{0,1)
Wa(Se)={ 1 , ifYi=1
0 . ifYi=0

arc two positive submartingales.

Lemma 2-2: Let V(S,) = Tx be a positive submartingale. Then the sequence of
random variables k~2Ty converges to zero almost surely.

Corollary 2-1: The sequences of random variables (k=2 X )renw and (k7%Yy ien
converge to zero almost surely.

Corollary 2-2.(Law of Large Numbers): We suppose that p has a moment of
Xr Y

order 2. Then Ixm ( o —) (0,0), a.s.

3. The lelt Central Theorem .

Proposition 3-1: For every 8 € R and ) € Ry, we have
sm(—?—) i A call gl

2P ((h +1)sinJe Uxi. Y"(cos?_;)) me e

where a and b are two positive constants depending only on p.

Al

Corollary 3-1: For fixed A, 8, we have

lim ( ;?)ol\zn-a(ﬂx. ) = =0t

A
Ya ﬁ)
Remark 3-1: Let u € M;(IR; xIR4 ), the set of probability measures on R xIR,..
The Hankel-mixcd transform of u is defined by

x [to° [t
Hyan s =55 [ [ Ay MrnsOuitdsdy)

k—+o00

If we consider the density of probability u;(z,y) with respect to the Lebesgue
measure on IR; x IR, given by

2 _ ~(2n- e 1 g2
miz,y)=2 ;a 3(45) (2n-2) 2y4 Se~fre h,

then:  Hy,._3(m)(20)= e eV,

The Paul Lévy continuity theorem is available for the transform Hyon-3:
(see [3]), so we have
Thorem 3-1.(Limit Central Theorem): Let u € M(T) be such that

- p is adapted,

- the random walk of law p on T has a moment of order 2.



M. Mili 79

Then the sequence of random vectors (k'_!lX,,,k'—!"Yk) converges in law when k
tends to infinity to the random vector whose probability density is given by

£2oy? 2
2‘/ ga”’i(4b)°(2""z)zy2(z2 — )3 TR 2>0,y20,z2
T
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TRANSFORM _ON R" :
M.A.MOUROU-K,TRIMECHE

Presented by J. Arthur, F.R.S.C.

Ahstract: We use the generalized continuous wavelet transform associated with the Bessel operator on
10, +29{, to desive inversion formulas for the Wey! integral transform and the Radon transform on R n22

1. The Weyl integral transform.

Notations : We denote by
- LP(x2%*1dx), p € [1, + o[, a > - 172, the space of measurable functions f on [0,+e°| such

that j: )P x2%*1 dx < + oo,

- LY([0,+o0], dx) the space of integrable functions on [0,+e°[ with respect to the Lebesgue
measure
- L™([0,+°°[, dx) the space of essentially bounded functions on [0,+e°] with respect to the

Lebesgue measure.

1) Fourier-Bessel transform—Generalized convolution product.

The Fourier-Bessel transform T (f) of a function fin L'(x2** !dx) is defined by
¥ A€ R, FOM) = [ 0 jo 0" dx,
where j (s) = 2°[(a+1) s J,(s), with J  the Bessel function of the first kind and order .
Remark: For each A € @, the function x —-> j, (Ax) is the unique solution of the equation.
Leu = - A u,u(0) =1, v(0) = 0,
a? d .

where L = o] + el the Bessel operator on Jo, +o[,

The generalized translation operators T x 2 0, are defined for smooth functions on [0,+°[ by

C{a+l) 2a
T = it or(r +y? +2 x ycos 8 )(sing)>%ds.

The generalized convolution product of two smooth functions f and g is defined by
v x20, 450 = [ T,Anew) ¥ 'dy.
For the properties of the Fourier-Bessel transform and the generalized convolution product, we
can see [3] and [4].

2) The Weyl integral transform.
The Weyl integral transform W, is defined in [4] for suitable functions on [0,+°] by

2 +1

Y y20, W,00) = Trasig ), () ) x dx.
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For fin L!(x2%*'dx) the function W (f) belongs to L'([0,+[, dx), and we have the relation:
F(H=F, o W,(f), where F,isthe Fourier-cosine transform defined on L'([0,+<<[, dx) by

VAER, F M) =[] fmcosthnax.

The Riemann-Liouville integral transform B is defined on L™({0,+ee[, dx) by

_2T(a+) x2@ 2_2a-1R
By(N(x) = Zmobio— ,,,mj'; fy)(o2-y2)* 12 dy.

Remarks:(i) Forall A € R and x20wehave: j,(Ax)= B_(cos(A.))(x).
(ii) Forall fe L'(x?**!dx)andg € L*Y]0,+|, dx) we have
J: W, ((y) g(y) dy = J: f(x) B (g)(x) x2** 'dx.

II. The Radon transform on R".

Notation : We denote by LP(R?), p € [1, + =}, the space of mesurables functions on R" such that
for p € [1, + <, Il = ( [ WP dx)'P < + cmand [, = 55 Suplf(x)] < + o

x€R"
Let f be a function on IRY, integrable on each hyperplane in R". We define the Radon
transform Rf of f by
Rf(6,5) = Ryf(s) = J'q' o o5 100) dm(x),
where <,> denotes the usual inner product in R", 0 in the unit sphere sl of R® s € R"and dm

is the Lebesgue measure on the hyperplane {x € R : <x,0> = s}( see [1]).
For f € LY(IR% and 0€S™"! the function Rg(f) belongs to LY(IR), and we have the identity :

f' (s0) = (Rgf)*(s),where A denotes the usual Fourier transform defined on LY(RM by
A0 = Jgo hoo et MPax,
Remark : Let f(x) = f,(lix(}) be a radial function in L'(R"). Then Rf is independentof 0 € S™!

and we have the relation
n/2
(IL1) Ryf = }L—Iziw(n-z)n(fo)

Notation: We denote by L(S™! x R) the space of essentially bounded functions on
$™! x IR, with respect to the measure dedt,where d9 is the surface measure on §>i,
The dual Radon transform 'R is definedon L(S"! x IR) by
'Re(x) = _[s,,, 2(6,<x,8>)d0.
Remark:(i) Forall f€ L'(R%) and g € L(S™' x IR) we have
fin1fig RAO.5) 8.5)dsad =fer f0'Rgdx.

(i) If g € L™(R) then 'Rg is radial and we have the relation

n/2
lz':nlz) Bya-2y2 8(1IxII).

'Rg(x) =
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1) Classical continuous wavelet transform on R".
The classical continuous wavelet transform on R",is defined for regular functions by
s ©ab) = fgo fET,mdx, a>0,b € R”,
where g, (x) =a™ " g((x-bjla) and g is a classical wavelet on IR", i.e.a function in L3%(R")

satisfying the admissibility condition: There exists a constant 0 < Cg<+ o, such that
Cg -Flﬁ(a}\)lz%, for almost every A € R"
This transform is studied in [2]. In particular we have the following inversion formula.
= (n) o, 0 da
(L1 =2 Jo ao S OEMEL W) 25 ae,

where both f and f are in L'(R").

We prove also another inversion formula.
Theorem ML1: Let g€ L%R") be a classical waveletsuchthat 3 € L(R"). Then for
f € LA(R" and 0 <€ < b < =0, the function

F30= G [7 fon S5O0 Br
belongs to L2(IR®) and satisfies: E_A 55'2 W IF=0 - flp=0,
2) Generalized wavelets.
A generalized wavelet is an even function g in L?(x*®* ') satisfying the admissibility condition
(1L2) 0<Cy=f; FE@MPS <

Proposition HLI1: Let0» g € L2(x®**1dx) such that F(g) is right continuous in O and
satisfying : 3 y>0 such that F(g)(A) - F(g)(0) =O(AY), as A —-> 0*.Then the condition (111.2)

is equivalent to ¥F(g)(0) =0.
Remark: Let g(x) = 8o(MxiD) be a radial functionon R". Then g is a classical wavelet on R" if and
only if g, isa generalized wavelet associated with the Bessel operator L(,-3)/2.

Let g € L(x2%*!dx) be a generalized wavelet. We define for smooth functions on [0,+<c[, the
generalized continuous wavelet transform by

B(0(a.0) = [ {Eapx)x"1dx, 3>0,b 20,

1 . 1 .
where g‘_b(x) = WT‘E‘(K)’ with g (x) = 7 g(x/a), and T, b 2 0, are the generalized
translation operators associated with Bessel operator La'

Theorem IIL2: (Plancherel formula) Let g € L%(x?**!dx) bea generalized wavelet. Then for all
f in L2(x2®* !dx) we have

fo a2 ax = El; {3 fo1250@bIF 82 by
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Theorem IIL3: (Inversion formula) Let g€ L%(x2%*'dx) be a generalized wavelet. For f in
L!(x2%*1dx) such that (f) belongs to L'(x?**!dx) we have
= L 2a+1 da
100 == [, (f 9,0@be, 06" 1d0) 5., ac.
Another inversion formula is as follows.

Theorem IIL4: Let ge Lz(xz""dx) be a generalized wavelet such that ¥ (g)e ({0, +o°[ x).Then
for f in L2 (x2®*dx) and 0 < € < § < oo, the function

() A 2a+1 ;‘l
0% = g [7 [; O0ablg, " ab
belongs to 12 (xz‘"'dx) and we have: ‘l)ibm IIt":“5 - fllpa=0.
€00+

1V.LInversion of th y fi sfl n R", using
rali v

1) Inversion of the Weyvl integral transform.
Proposition IV.1: Let g € (L' N L?(R) be an even classical wavelet such that ¢ € L'(R) and
satisfying
(Iv.1) 3 y>2a+1 suchthat $(A)=O0@AY), asA—>0".

Then
(i) The function B, g is a generalized wavelet in 12 (xza"dx) such that 3‘(803) belongs to

L0, +={,dx).
(ii) For all f in L'(x2®*!dx) we have the relation

1
3,6 (N@b) = 557 Bl S5 (We D@ I(0)

From this proposition and Theorems II1.3, II1.4, we deduce the following inversion formulas
for the Weyl integral transform.
Theorem IV.L: Let g € (L' N L)(R) be an even classical wavelet such that § € L'(R) and
satisfying (IV.1). Then

(i)Forall fe L‘ x29* 1 dx) such that & (f) € L}(x2**!dx) we have

f(x) = zc j"' ([ BLISH(W,N(a,)](b) (B,g), () b>**'db) —o5 2(,’, ,ae

(i) Forall f in (L' N LY)(x2®*!dx) and 0<e<d < o, the function
&) = f f" B [s (W, N(a,))(b)(B,8), (%) p2a*lgy 2
8 a,b aZa+J

isfies: i = =0.
satis e_.‘,_‘,,"l..,"‘f" fum 0

2) Inversion of the Radon transform on R".
Proposition 1V.2: Letge (l.l n L2)(m) be an even classical wavelet such that e LI(IR) and
satisfying
(Iv.2) 3y >n-1suchthat §(A)=0QY) , as A —>0".
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Then
(i) The function 'Rg is a radial classical wavelet on R® such that (‘Rg) *» € L™(R").

(i) Forall f in L'(R") we have
S (D(ap) =l J.sn-l SIV(Rgf)(a, < ,6>)dd.

To inverte Rf for radial functions f on IR", we use Relation (II.1) and Theorem IV.1. For
general functions f on R™ we deduce from Proposition IV.2, Relation (II1.1) and Theorem IIL.1, the
- following inversion formulas for the transform R.
Theorem IV.2: Letge (L' n L)(IR) be an even classical wavelet such that § € L'(IR) and
satisfying (IV.2).
(i) Forall f in L'(R® suchthat f belongs to L'(R®), we have

f(x) = Ei_": [IIR" (_[s"" (s; " (RgN(a.<b.0>)d0)(Re)® b(x)db]ﬁﬁiﬁ' ae.
8

(ii) Forallin (L' N L%(IR") and 0 <e <5 < o, the function
da
£ 30 = C::n [} fer st SEReDa, <b82)00)(Re), (9105
B .

satisfies:  lim Bf%0-f(l2=0.

€=0,8~ ¢
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A note on rings with projective socle

- John Clark

Presented by I. Halperin, F.R.S.C.

Abstract

We present an example of a right hercditary ring for which the left socle is not projective,

in response to a remark of Xue Weimin.

1 Introduction

Throughout this note all rings have an identity. In [5] Nicholson and Watters call a ring R
a left PS-ring if its left socle Soc(rR) is projective as a left R-module. Right PS-rings are
defined similarly and in [5] an example is given of a left PS-ring which is not a right PS-ring.
A further instance of this asymmetry is given by Xue Weimin in [7] with an example of a left
semihereditary ring that is not right PS. Xue notes that his example is not left hereditary
and raises the question of whether a one-sided hereditary ring must be PS on both sides. We

respond here with an example of a right hereditary ring R which is not a left PS-ring.

2 The example

Let S be the ring of all eventually constant rational sequences. Thus S is obtained by adjoining
a unit to Q(N), the direct sum of countably infinitely many copies of the field of rationals Q.
Then S is a commutative countable von Neumann regular ring and so, by {3, Theorem 1}, is

hereditary.
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If (a1,a2,...,@n.0,0,a,...) is an element of S which is eventually constant at a and if

b € Q then the multiplication
(a1,az,...,a4,0,a,a,...)b=ab

ensures Q as a left S-module. With the obvious right Q-module multiplication, Q is then an

S-Q-i)imodule. Thus we may form the generalized triangular matrix ring

S Q

0 Q
Since Q is a field and S is a von Neumann regular hereditary ring, it follows from the upper
triangular analogue of [2, Theorem 4.7] (a special case of [6, Theorem 5]) that R is right
hereditary. ‘

We now show that R is not a left PS-ring. To do this we employ a part of [5, Theorem 2.4]

which shows that R is left PS if and only if for each maximal left ideal L of R cither L = Re
for some idempotent e in R or the right annihilator r(L) of L is 0.

It is easy to see that

o™ o]
L=
0o Q
is a maximal left ideal of R which is not generated by an idempotent. On the other hand,
™ @|]o1
=0
0 Q 00

so that r(L) # 0. It now follows from above that R is not left PS, as claimed. (As an alternative

argument, it is straightforward to see that, for the minimal left ideal K generated by

01
T= i
00
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if we define f : R — K to be right multiplication by z then f is an epimorphism which does
not split and so K is not projective.)

Finally we note that the ring R has featured elsewhere. In particular, it appears in [4]
as an example, attributed to L. W. Small, of a right hereditary ring of left global dimension 2
which is finitely generated over its centre. Its opposite ring also appears as Example 2.3 of 1]
(as an example of a left hereditary ring module-finite over its centre in which there are principal

right ideals that are not projective).
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ONDELETTES SUR L'INTERVALLE ET
OPERATEURS D'EXTENSION
A.JOUINI - K. TRIMECHE

Presented by P.G. Roomey, F.R.S5.C.

Résumé

L'objet de ce travail est de construire des opérateurs d'extension sur les espaces de Sobolev Ilk(l-N. 0))
et H: ({0,+o°[), k 20, liés & des analyses multinésolutions sur chaque demi-droite. Ces extensions permettent
d'obtenir des bases d'ondelettes biorthogonales & support compact de LZ(B) adaptées A I'étudo de l'espace de
Sobolev Hk(B). Nous décrivons auparavant les analyses multirésolutions orthogonales et biorthogonales sur
l'intervalle.

L'idée générale consiste A diviser un intervalle I en deux intervalles I, etl,
(décomposition du domaine [1]), de construire deux analyses multirésolutions
biorthogonales respectivement dans Lz(ll) et Lz(lz) (espaces des fonctions de carré intégrables
sur I, et L, par rapport 2 la mesure de Lebesque), et ensuite, d'appliquer certains opérateurs
d'extension “naturels” pour obtenir une analyse multirésolution biorthogonale de L%(1). Plus
précisément, ces opérateurs d'extension conservent la compacité des supports des fonctions de
base, leur régularité ainsi que 1a localisation en temps-fréquence.

Pour réaliser une telle construction, il faut savoir auparavant définir la notion d'analyse
multirésolution sur un intervalle [6). Pour cela nous partons de I'analyse orthogonale Vj(lR) de
I. Daubechies [2] 2 fonctions d'échelle @ et ondelette associée , et on note :

V;0.1)) = Vet{®;u/,,, » Pjx € Vi(R}
et
V,(10,1]) = Vect{p;, , supp ;4 €[0,11}

Définition 1 : Une suite {l}lm.de sous-espaces fermés de L2(/0,1]) est dite une analyse
mudtirésolution sur L([0,1]) associée @ V}( &) si elle vérifie :
vjzj, , 7/}(10.11) (= VJ = VI-(IO.l])

ivj2j, . v, €V,
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La proposition suivante décrit une base du supplémentaire (non orthogonal) de Vj dans

Vi '
Proposition 1 : Soit j, le plus petit entier vérifiant 2 2 4N-4. Pour j2j,onnote:
,\;. = Vect{wj'* ,0<k<2- 2N+I,°q>j”'2k.2’-2N +2<kS2-N ; LNPYNE O0< kS N-2).
Alors )

i)dim X ;= 2

ii) il existe J tel que Vj2J, V., =V, @Xj

Pour obtenir des bases orthonormées d'ondeleties sur l'intervalle [0,1], il suffit

d'orthonormaliser par Gram-Schmidt ([3] , [4]) . La différence entre ces bases est dans la
construction de V;_. Nous allons introduire maintenant la notion d'analyse multirésolution

biorthogonale sur l'intervalle,

Définition 2 : Une analyse mulrirésolution biorthogonale sur 12(/0,1]) associée @ une
analyse multirésolution biorthogonale (‘;( R, V"‘j( &) de Lz( &) est une suite de couples

(Vj ,V* ,) de sous-espaces fermés de Lz(lo.l ]) telle que :
i) Y(10.1]) CV,CV((0.1]) et V{AQID< Vi < Vi 0,1}
i) V,CV, e Vi € Viy
iii) L*(10.1]) = v, @(V3)*

Soit (Vj(R) . V}(R)) une analyse multirésolution biorthogonale de L2(IR) a fonctions
d'échelle conjuguées (g, g*). On suppose que supp g = N,, N,] etonnote :

PP(= Ykex-k: Px)= ¥ kigx-k)
ks=N, -1 k2-N,+1

Notre construction est décrite par le théoréme suviant :

Théoréme 1 : Soit (Vj(m s V}(IR) ) une analyse multirésolution biorthogonale de L*(R) a
Jonctions d'échelle conjuguées (g , g*) @ support compact, et (‘; . V; ) celle de L2(10.1 J)
associée d (Vj(}B , V; (). On suppose que :

(i) g est dérivable de dérivée g'(x) = g(x)-g(x - 1)
(ii) V, contient les demi-constantes :

PG = PS(2' %0y e Pg,j = PP2ix - 20 04),
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Sion pose :
Vi=lfel2(10.1)) / g€V, f= &'} et Vi={feL*(0.1]) /e V;e1 f10) = fil) = O},

alors (\.l j".’;) est une analyse multirésolution biorthogonale de L2 (10,1]). De plus, si P, (resp
P;) désigne le projecteur oblique de L*([0,1]) sur V, (resp V;) parallélement a (v})L (resp

(\7 ; )J' ) alors on a la formule de commutation suivante :
d = d
ax-opj = PjO; .

Un exemple fondamental est obtenu par d dérivations et inlégrations 3 partir de
l'analyse de 1. Daubechies. En plus I'analyse multirésolution biorthogonale obtenue est adaptée
A I'éude des fonctions régulitres des espaces de Sobolev HX(10.1]) et H, k(IO,lj) (ke 2).

Nous décrivons maintenant les analyses multirésolutions biorthogonales segmentées
(sur chaque demi-droite) et les opérateurs d'extension associés. Pour cela, on divise R (I'axe
des temps) en ]-o, 0] (le passé) et [0,+of (le futur). Le temps t = 0 correspond au présent.

Soit Vj(lR) l'analyse multirésolution de I. Daubechies. On définit les opérateurs
d'extension "basse fréquence” Ej et 15'j par:

E;: Vi(==,0]) —> Vi(R) ; E;: V,([0,+]) -—-> V{(R)

Pj x/),0) "‘_’ Pix Pjxno, vl > Pik
et également les deux opérateurs E, et E; d'extension par0:
E, : L%(}<o, 0}) ——> LX(R) i Ep :L([0,+o]) ——>L%(R)
f=>1:f o =Fof mypoe=0 fe>f :f p—_ f JARYOol =

On a alors le résultat fondamental suivant :

Théoréme 2

i) Nl existe une analyse multirésolution biorthogonale ( Vj( o0, 0]), V; (]-=,0]) ) de
L?(}-, 0]) et une analyse multirésolution biorthogonale ( Vi (10,+=/), V; (/0,+=[) ) de
L?(10,+25f) telles que si on pose ;= Ei(V;(]-=,0])) 95' (Vi ([0.+=]) ) et
v e
biorthogonale de L*( R).

ii) On consideére les espaces W] (], 0] )= V, o1 opn¢( V; J-, 0) )£

o(V (] o0 0])) ® E (V ([0 +od)) alors ( V V ) est une analyse multirésolution

et W (J=2,00) =V, . (J=,0]) (v, (]==, 0]))%. On définit de méme les espaces

o1
WJ.([0,+°°[) et W‘ ([0, +<[).
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Si on pose :
W,= E,(W, (-, 0)) ) @E;(W,(J0, +=[)) et W = Eg(Wj(1- =.00) @ Eq (Wj(10,+))),

alors WI et W, sont en dualité pour le produit scalaire de L*(Betona:

J
o=V W,

Y/ 1=V W

T lj $Wj aV
iii) Si on pose :
V(- 00,00 = {f € L (1-2,0D / 3g € Vj(1- =, 0Df =g}
el
VED(1-0,0) = ff €L2(1-=,00/ ' € Vj(I- 20D et [(©) =0}

alors (Vfil )(] -0, 0D, V(j-l)(l -00,0])) est une analyse multirésolution biorthogonale de

L2( 'J-00, 0}). Il existe aussi une analyse multirésolution biorthogonale de LZ(IO. +0of)  notée
V0, +ep) . VP10, v .

iv) Si on définit V_(i” et Vg_” de la méme maniére que (i) en remplagant
Vj(l—°°. 0]) par Vgl)(] - 0] et V;(] —o0,0]) par V.(i- l)(l ~o0,0] (de méme pour les espaces
définis sur [0,+°°[) alors (Vgl).Vfi-”) est une analyse muliirésolution biorthogonale  de
L%(B). De plus, si P, (resp. Pgl) ) désigne le projecteur obligue de (B sur VI (resp. V(,”
parallélement @ (V})‘L (resp. (V(j- h )'L) ,alors ona:

d%—on = P}"o:—x.

Conclusion

Les opérateurs d'extension Ej et E’j sont fournis par construction et conservent la
régularité et la localisation des fonctions de base. Si on suppose que la fonction d'échelle ¢
est de classe CP*€ et on itére le processus décrit ci-dessus, alors I'analyse multirésolution
v{¥ -°°,0]),V§"”(]-°°,0]) ) est adaptée 2 Iétude des espaces de Sobolev H(J-=, O]) et
H;k(l— o0,0]) pour 0<k<p-d (ou H'"(l-°°,0l) et H5(|—°°.0|) pour 0<k<d). On a la méme
propriété pour l'analyse biorthogonale (ng)(|0,+°°| ), Vg"')( P,+=])) de L2(|0,+oo|).

Par suite, I'analyse multirésolution biorthogonale (V4" V™) de LA(R) est adapiée 2
I'étude des espaces de Sobolev H¥(RR) pour 0<k<p-d, et H¥(R) pour 0<k<d.

Nous signalons enfin qu'une dcuxiéme construction danalyse multirésolution
biorthogonale segmentée est explicitée dans Lz(l-l,l ]) en partant d'unc analyse
multirésolution symétrique de LXR) (5D

Nous avons montré dans ce travail qu'on peut construire des analyses multirésolutions
orthogonales (ou biorthogonales) de Lz(lo.l ]) engendrées par translation et dilatation 2 partir
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d'un nombre fini de fonctions de base. Le processus de "dérivation et intégration" permet
d'engendrer des nouvelles analyses mullirésolutions adaptées A I'étude des fonctlions régulieres
sur [0, 1).

Les analyses multrésolutions segmentées montrent qu'on peut analyser un signal ou
une fonction 2 l'aide d'une information dans le passé, d'une relaxation du passé dans un futur
proche, et d'une information dans le futur propre.
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STARLIKENESS OF CERTAIN INTEGRAL OPERATORS
Li Jian Lin and H.M. Srivastava

Presented by P.G. Rooney, F.R.S.C.

Abstract

The object of this paper is to investigate the starlikeness of a certain class
of integral operators which are defined for analytic functions. The result
obtained here extends and sharpens some recent results due to Kim et al.
(1], Owa et al. 6], and Miller and Mocanu [3].

1. Introduction

Let A denote the class of functions of the form:

(- -]
f(e)=z+ Z ap:2",
n=2
which are analytic in the open unit disk & = {z : z € Cand |z| < 1}. A function f(z)
belonging to the class A is said to be starlike of order a if it satisfies the inequality:
!
ﬁ{ﬂl}>a 0<ac<l; zelU). (1
e ( ze) )
We denote by S*(a) the subclass of A consisting of functions f(z) which satisfy the con-
dition (1). We note that §*(a) € §°(0) =5° (0 < a < 1), where S* is the familiar class
of starlike functions in U.
Miller and Mocanu [3] developed a general family of integral operators which map sub-
sets of A into S*, and which includes many of the previously considered integral operators.
Their results provide an extension and improvement of numerous earlier results (see also

Kim et al. [2]). By applying a result of Miller and Mocanu [3], Kim et al. [1] proved
Theorem 1 (Kim et al. [1]). Let f(z) € 5°(B) and g(z) € S*(B). Suppose also that

z 1/(a+1)
Fey= {22 [ (g st af (@>07>0. (2

Then F(z) € S°(B).

More recently, Owa et al. [6]) proved a generalization of Theorem 1, which is recalled

here as

Theorem 2 (Owa et al. [6]). Let f(z) € S*(m) and g(2) € S*(n2)- Then the function
F(z) defined by
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. 1/(a+1-n)
F(z):= {‘H'“—“'l / {f@®)) g(t)t7 2" dt} " 3

(@20; v>0; 0<n < am-l-m—nsl) 4)

S* (a'h + 2 — ")
at+l-n J°
Clearly, by setting »; = 7 and n = 0 in Theorem 2, we arrive at Theorem 1 of Kim et
al. [1}. In this note, we make use of a result of Mocanu et al. [5] in order to establish a
theorem which will weaken the hypothesis of Theorem 2 while sharpening the conclusion.

As an application of our main result (Theorem 3 below), we also sharpen some results of
Miller and Mocanu 3].

belongs to the class

2. A Preliminary Lemma
We shall need the following Lemma to prove our main result.

Lemma (Mocanu et al. [5]). Let B > 0 and B+ v > 0, and consider the integral
operator Ig (h)

s 1/8
i) = {252 ["poppe-ial (e (3)

zh'(z)
w{ 5 2o
G(z) = Ipo(B)()

is analytic in U and satisfies the inequality:

pr € [—7/ﬂl 1)! h(z) € 'A, and

then the function

zG'(2) . %
2{2FE > Wieip,m) = iut, (A, ®)
where (1= )-8 ,
H(z):= : - ﬁ

B [ tB+7=1(1 — zt)2e-1B dt
0
This result is sharp and W(p; B,7) 2> p. The eziremal function is given by

Go(2) i=Ipa(k)z)  (K(z):=2(1 22D},

Remark 1. More general forms of the Lemma may be found in the work of Miller and
Mocanu [4].
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3. The Main Result and Its Consequences
By appealing to the Lemma, we shall prove our main result contained in
Theorem 3. Let a, B, 4, §, and o be real numbers satisfying
a20,8>0,020 and f+7v=a+6§>0.
Suppose that the function &(z) is analytic in U and satisfies the conditions:
®0)=1 and &(2)#£0 (z€lU).

If f(2) € 8°(m) and g(z) € S*(n2), then the function F(z) defined by

s /8
Fe) = 1o = { 23 [Uenttore=al .
with '
§+am +(n2—1)0 20, (8)
satisfies the snequality:

z F'(2) 1 z9'(z)
”{ o) 5 %)

where p= (6 +am + ony — 0 —4)/8 and W(p; B,7) is given by (6). This result is sharp,

} 2W(pB,7) (z€lU), (9)

the extremal function being given by
Fo(z) := J(ky, k2)(2)
(-2 = 21 = YD, k) o 51— D).

Proof. In terms of the functions f(z) € §*(n;) and ¢(z) € 5°(12), we define the function

h(z) by
o { ﬁ:_) }(7—6)Iﬁ { o(z) }a/p 0

z
Then h(z) € A and
zh'(z)}__ {ﬂ+7—6.zf'(z) o zg'(z) , §-v—0
db U RLIE S I iy
b+amtom—-0 7
2 ] 3 (z €lU).
Setting p = (6 + any + onz — 0 — 7)/B, we see from (8) that p € [-7/B,1). Hence the

function h(z) satisfies all the conditions of the Lemma. A simple calculation shows that
F(z), as given by (7), can be written as

(1)
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_ Ik G

where Ij,y is given by (5). Consequently, applying the Lemma, we conclude that

R 2] e e e

For the functions
ki(2) = 2(1 - 2)2m=D € §*(my)

and
ky(2) = 2(1 - z)’('n-l) € 8*(m),
we see that
(v-8)/8
ki(z) {kl(z)} 34 {k (Z)} =k(z) = z(1— z)z(p—l)
and
J(ky, ka)(2) = %}, (13)

Hence the sharpness of the assertion of Theorem 3 follows from the Lemma. This evidently
completes the proof of Theorem 3.

Remark 2. In Theorem 3, p and W(p; 8,7) may both be negative. If p > 0, then we
see from the Lemma that W(p; 8,v) 2 0. In the case when

max{g--z—';‘-—l.-%}=po5p<l,

the value of W(p; B,v) given by (6) can be replaced by

) e —l _ (ﬁ+7)2-2ﬂ(1—p) _
wiip =20 =5 mpmm e g mrrrEE 7 09

where 2 F; denotes the Gauss hypergeometric function.

Remark 3. Integral operators of the type (7), involved in Theorem 3, are becoming
increasingly useful in the study of such subclasses of analytic and univalent functions as
the class S*(a) (¢f, ¢.g., [3] and [6]). Indeed, by assigning appropriate special values to the
various parameters involved in Theorem 3, we can derive several consequences of Theorem
3. Only one corollary and three examples will be listed here.

KEweset §(z)=1,0=1,f=a+1-17, and § =7+ 1 -9 in Theorem 3, we obtain
the following

Corollary. Let f(z) € S*(m) and g(z) € §°(n2). Then the fu.uctt'on F(z) defined by
(3), with
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a20, vy20, and n < am + n, (15)

belongs to the class

S*(W(pil+a—n,7)) (P = ﬂll&"%‘;!) .

where W(p; 1+ a — 1,7) is given by (6) with = 1+ a — 1. This result is sharp.

This Corollary extends and improves both Theorem 1 and Theorem 2. The following
three examples would improve the corresponding results of Miller and Mocanu {3]. In
Example 3, in particular, we have chosen &(z) # 1.

If we let $(z) =1 and f +v =6 + a =1 in Theorem 3, we obtain
Example 1. Let0<a<1,/21,and0< o <2(1—a). If f€ S°* and g € $°(3),

then . . s 8
{mr [{LOY OV ™ e 5 w01 - 20 (16)

For 8 = 1, we find from (16) that

[{E {2} wesovimnon an

where p=1-a— }0 and

2p-1 1
W(p;1,0) = { 2-2;:‘-05 (P # :) (18)
Tta (=13

If the parameter o is constrained further by 0 < o < 3, then

/.,' {@}a {g—(:l}, dte 8* (W(1 -30/2;1,0)).

If we let $(z)=1,8 =1, and § = 1 + v — a in Theorem 3, we obtain

Example 2. Let a > 0,72 0,20d 0< 0 <2—a. If f,g €5°(}), then

5 [{L(t—)}n{g(t—tl}c t7dt€ S* (W(p:1,7)) (19)

27 t

=1 1o:—lar
pi=1i=3273%)"

For a = 7 =1, we find from (19) that
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[ f(ti{!%‘l}’ aes (w(3Z11))  ©<osn,

W(}—_l; 1, 1) = W1—-in2) 1 (U=0) (20)

2
ﬂ%’_—:‘!—ﬁ—l (0 #£1; o #0).

If we set ¥(z) =e*,a=1,f=2,7=-1,and § = ¢ =0 in Theorem 3, we obtain

where

Example 3. If f € S*(m), then

s L
{ze [ s} €5 Gwomnon, (1)
where W(n,; 1,0) is given by (18) with, of course, p = m.
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MULTINOMIALS IN MODIFIED CLIFFORD ANALYSIS
Thomas Hempfling

Presented by J. Aczel, F.R.S.C.

Abstract

A g lized multi ial theorem and geometric series expansion for paravector variables in Clifford
algebras is p ted as a q of a modified approach to Clifford analysis.

AMS subject classification: 30G3S5, Keywords: Clifford Analysis, multinomial expansion

1. Clifford Algebras. Let (V,g) be a quadratic space over the field K (characteristic # 2) with dimension

d < oo, that V is a d-dimensional vector space over K cndowed with a quadratic form ¢: V = K ([9)).

Further let ¢),. .., ¢4 be an orthogonal basis for V' (with respect to g). Then the (universal) Clifford algebra Cy4
over (V,q) is the associative algebra of vector space dimension 24 generated by the productse,, -...-€e,,, 1<
i1 <...<ir <d,r€{l,...,d},and | € K with the relationse,e, = —e,e, fori # jand ¢? = —g(e,)1 =: —¢(e,).

d
Every element z of Cq can be written as z =29+ Y. zo¢p + 3 Zup€€, + ...+ Ty aey - ... - €q with unique
v=I v<p

z, € K. Special cases for K = IR and the quadratic form ¢(z) = Zd: 22 are C, = € and C; = H, the skew field
of the quaternions. =

In the following we identify so-called paravectors [8] £ = zo + i z,e, with elements of K4t!. We remark
that for such z the n-th power of z, z", is again a paravector [ETI Of course paravectors with vanishing first
coordinate (xg = 0) can be identified with vectors, the elements of V resp. K% if the last coordinate vanishes

(24 = 0) the piravectors will be called shortened.

2. Modified Clifford Analysis. Now we specialize to A := R and, to get simpler formulas, ¢(r) = Z“: £,

=-=lforj=1..... n. - Clifford analvsis extends complex analvsis to Clifford algebias using a ;;vn::;—;':liz:uiun
of the CAavcny-RIEMANN equations: solutions of this new system of partial differential equations are called
Clifford analytic [1] ur regular (3] or monogeme (1] depending what generalization is meant. In classical Clifford
analysis simple functions such as polynomials (and even the identity map) are not Clifford analytic. However,
LEUTWILER (6] used a "hyperbolic modification” making f(£) = 2", £ =z + Z": rye,, and the derivatives l;g:

vl

(v =0,...,d — 1) solutions of his modifiedd system of differential cquations, namely

ral e - 2. By 4 (= D) -
e _ M u_ =3 (pg= o).

r.r drg = T hr, VBT R

Thereby fis a C' vector valued function f = fy + Z Sty detined on an open subset of R as proposed by
=1

CNops [2],we call solutions of this system Ilyp('rbolu monogemc. “Hyperbolic” means thereby that Leutwilers
modification is based on the hyperbolic metric in the upper half space B¢ instead of the euclidean one. As a

consequence, power series in £ € R with real coellicients. become hyperbolic monogenic.
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It is natural to have a closer look at the derivatives of the n-th power z" when interested in homogeneous
polynomials which represent hyperbolic monogenic functions. To get polynomials of degree n we study two
classes-of derivatives:

3. Polynomials I — and a generalized mulhnolmal theorem. For z € R?*' and any multiindex
k=(ky,..., ka-1) € NG7!, K] := 2 ky,, K := I'] k,!, we define the polynomials

k.o 1 ikl &
LA(z) = =k 8——87‘_: ZnHkl

of degree n. Obviously L¥(z) is hyperbolic monogenic. For example LY(z) = z", L}(z) € {z, e,z +ze,, e, 2, —
2z, }(euze, + eyze,),...} for k € {(0,...,0), (0,...,1,...,0), (0,...,2,...,0), (0,...,1,...,1,...,0),...},
respectively. The multiindex k counts the appearance of e, in the products e,, ze,,ze, z. ..

An easy consequence of this definition together with the chain rule is the following recursion formula:
d-1
Li(z) =zLi_(2)+ L e Ly (2), k-1, :=(kiyooike = Lo kam),
v=1

provided L%(z) = 0 if any component of k is negative. This recursion could also be used as a definition for our

polynomials. Another useful observation are formulas for the derivatives:
P Li(z) = (n+ KLY (2), F=Li(z) = (k + 1)Lit) (z) (v #4d).
These look even more pretty when we introduce a "normalized” version of the LX:

L¥(z) := iy L), where (M) = ettt - (nglolY

in this case the above reads simply as

scLi(z) = nlt_,(2), ZLi@) =nitt\(2) (v#d).

This is just what could be expected from regarding the complex case where % = nz""", 7;— = niz""! for

z=z+iyeC.

The following leinma is the key for the proof of the multinomial theorem:

Lemma 3.1: For all z € R?*' and a € IR the expansions
n 5
Li(z +a)= Y ("*;"')n’[.:_,,(z) and L%(z +ae,) = 2 (k'ﬂ)a’L“’;'“(z)
p=0 p=0
with k + pl, := (ky,....k +p,...,ka-1) are valid for k = (ky,... kg-y) € lNg‘I and n € Np.

The proofs can be done by induction using the recursion formula.

n
For given n € INg, k € IN§~' denote by ¥ the iterated sum
p=0

n-po PP n=po=...~pPa=~3
L X

0 p1=0 p2=0 Pd-1=

n—

™=
]
i

°
It
o
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Combining the two expansions from | 3.1 we obtain

d-1
Theorem 3.2: Letn € Ng, k € NS~ Then for all z € R*' and all shortened paravectors y = yo+ 3 yves €
' v=l

IR? the ezpansion
Li(z +y) = ("*“")y (“'*"')y.,' Lyt (=)

'n~|p|

holds, where k + p:= (ky + p1,.... kda-1 +p,.-|).

Switching now to the normalized polynomials L* introduced above and evaluating 3.2 at z := zgeq and

d-1
y:= 7o + ¥ 7,¢, yields — notation as in 3.2 — L&(z) = Z ;) ﬂ z"zd'""L“f,l("d) A more sym-
v=l
metric reformulation of this expansion is possible by setting g := (p, n- |p|) =:(qo, .- -+ qd):

Theorem 3.3 (Generalized Multinomial Theorem).

LX) = j IZ 2l n 79 with coefficients ¥y ¢ := I,""""'+ Hed-rlacr( ) = "_M(,,,,)
gl=n

The coofficients Lt I(l':l) can be determined explicitlv; in the special case k = 0 we get

Loz) = 2" = (0 + }: e )= ¥ % |'1 2% L (eq)

la=n ¥ v=0

which is the paravector equivalent of the well-known multinomial theorem

(zo + z:m- o n x

lal=n * v=0

4. Polynomials II — and a generalized geometric series expansion. Another way to gain homogeneous

hyperbolic monogenic polynomials of degree n is to differentiate not with respect to x but with respect to a new
d-1

shortened variable y € RY. y # 0: for n.k, 7 as above with the limitation [k] < » + 1. and y = yo + Y ween
v=l

define
k _ ' a‘.‘
Ek(r) := Ama—y aygt' Mg

= [(yr)"y].
Yaoa

d=1
Then again chain rule gives a recursion formula: EXz) = rEX_ (1) + T r.,.zE::}"(J). but derivative formulas
"l

are not so easy to see: for instance

Are

A FX(x) = (n+ |k)EL_ ,(:)—(n-|A-|+2)"§: EX-21e(n).

Some examples are EN(s) = £, Ef(x) € {z, epz + 5oy, €0 FCy, Lty + CLEC, .. . A
We note that the generating polynomial (yz)"y can be reproduced by summing up the EX for fixed nin the

following way:

Lemma 4.1: Z Tl l] yE-EX(z) = (y=)"y.
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n+l

(Here 3 has to be understood as in 3.2.) The proof is again by induction using the recursion formula. Applying
k=0

now geometric series expansion to this result gives

+1 d-1
Theorem 4.2: 3° 3 yo*' ™ Tyt EA(z) = (= - 2)™" for all z € R*! with |z] < 4.
=0 k=0 v=l

In the case y = 1 this remains the standard geometric series expansion provided we have set 0° = 1.

5. Connection. The two definitions given in 3 and 4 are not independent. Another inductive argument using

all the recursion and derivative formulas above shows for example that

Ek(z) = (f;' [§| ("H)LE%(2)
P 0

1=0  pa-1=

and there is a similar formula for producing L%(z) out of the E%(z). One consequence of this linear dependency
is that the E* are hyperbolic monogenic, which could also be proved directly.

6. Remark. The results in the case d = 2 (quaternionic paravectors) have been proved already in 7
moreover in this case for fixed n the polynomials EX resp. L%, |k| < n + 1 form a basis for the vector space
of all homogeneous polynomials of degree n representing hyperbolic monogenic functions. This is wrong in the
case d = 3 and all higher dimensions ([5), [6]).
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MONGE-AMPERE EQUATIONS ON CERTAIN
MANIFOLDS WITH POSITIVE FIRST CHERN
CLASS

Adnene BEN ABDESSELEM

Presented by T. Bloom, F.R.S.C.

I-Introduction,

Let P, be the complex projective space of complex dimension m endowed with the

Fubini-Study Kihler metric. In a local chart its componcnts arc given by
yA

(m+l)€)M_l Log(l + |zl |2+...+|zm|2). where 7, = T:‘ (1<ism and(Z.Z,...Z,)
are the homogeneous coordinates of P_. This metric is Einstein.

Let X be the blow-up of P, at the point [0,1.0....,0]. It is the submanifold of
P %P _, defined by the family of equations Zin = ZjYi forij=0, 2, ..., m, where
(Y. Ys.....Y,] are the homogeneous coordinates of P _,.

Let us denote 1, (resp. mt;) the projection of X on P, (resp. P, ). and by @, the
Fubini-Study metric of P, (p22), then g = 2n5 o, + (m-1) t} @, _, is a Kahler metric
which bclongs to the first Chern class of X.

There exists an open dense set U of X isomorphic to €™ on which the components of g are
given by
g_ =23 _ Log(l+lz, |2+...+|zm|2)+(m-|) d _ l.og(l+|z2 | 2+...<|»lzm|2) .

Ap A A

In this paper we prove (sec corollary 1 below) that for every A < % the Monge-
m

Ampgere equation
Log M(@) =-Ap +f

has a solution, where @ is C* g-admissible on X (i.e. g;‘_l = gMl + 8}4_‘ ¢ >0),

M(9) = det((g'g")) = dey((8*,+ V', 0))

and f is the C™ function on X given by the geometric data: R);',l = gM_l + am f, Rkﬁ being

the components of the Ricci tensor relative to the metric g.



104 A. Ben Abdesselem

To prove the existence of solutions , we use the continuity method and we have only to

prove that solutions of
Log M(9) = - At+f O<e<t<])

are uniformly bounded, since higher estimates are given by Aubin [3] and Yau [10]. To
establish the uniform bound of these solutions, we estimate the Tian’s constant o (M) (see
{81, [9] and [2]) and use Aubin's method{4].

Anlogous results are proved for the manifold Y which is the blow-up of P, at points
(0,1,0] and [0,0,1] .

We know that X and Y have positive first Chern class, that their automorphisms groups
are not reductive and that their Futaki invariants does not vanish. So, the Monge-Ampére
equation defined with A = 1, which is relative to the existence of Einstein-Kahler metrics, has

no solution (see [6], [7] ).

Il-Theorem 1.
Let e C=(X) be g-admissible. Then, for all a <

1
, we have
2(m+1)

exp(-ag) dv < C5'¢ ex ij dv
[y, exotaw PGy o)
where dv is the volume element on X given by dv = det(( gm))dzI AdZ | A...AdZ, Adz -

and V =J. dv.
™ Jx
Basic lemma [4). Let S, be the two-dimensional sphere, carrying a metric g with volume V.

Let y be a real function defined on S,, g -admissible. Let us set
~ 1
| - — d .
Y=y an Js, ydvg
where dv is the canonical area element of S,.

Then , for B <2V1-t- , we have js eBv dv, < C"t¢ (depending only on B and V).
2
Proof of Theorem 1.
Let ¢(z,) be the restriction of @ to the set S} obtained by fixing z,,....Z, in X. We have
g. =20 _Log(i+|z|2)+a _f,
[} _ 11 11

where
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2 2
f,=2Log {M)

l+|z,|1

@(z,) is admissible for the metric ng .Since the volume of S for the metric g _ is equal to
]

v=4_—1j dzadZ | = 4m,
c &7 M

using the basic lemma, for o0 <.2v1t_ = -;- , we have

. -0
) IS; e ap(zy) d"s < Cste exp(—ajsi @(z,)dvg )

Now let us set, for 2<SApsSm

(T)(zz....,zm) = E.J ) Oz reniZy) dZ,Adf.
2r JS; (l+|z|l )i

and
- V-1 dz,adZ
B @yizy) = | By (ZyeeniZy) Tty
R T (l+|z.|2)z

An explicit computation of gx_ (ZgsiZgy) BiVeS
m

2Py A = (m+l a Log (1+}z |2+...+IZ |2 +a vy,
8 _ ( 2 m) ( ) - g( l 2 m ) =
where

_ Log(1+l2, 124412, 1%

lzz |24...+] Z, |2

+1
o, _onP,, . In[4]

m

Since § is g -admissible, @ + y is admissible for the metric -1

R 1
this yields, for f < i

Aubin proves that a(P,)) = m_LT :

o (=P < Cste .__Bﬂ__j 7
ij_l LxP(n1+l(‘P+w)) Wy =€ c’(p((m+l)Vm-u Pm_l((P’r‘l')dV,,,_,)
with dv,, | the volume element of the metric w,,, on P, ; and V| the corresponding

1
v . . e
olume. Hence, for & < —, we get
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-aUP +y) -0 -
IP e dv,, | SC*exp (—I ©@+y)ydv_ )

m-1 m-1 m-1

and, since y is positive and bounded,

-0
) .[P e ¥ dv,,  SCs° exp(
m-1

_[P lq, av ).

m—l m—

Considering ¢ as function of z, and using (1), since ot e 3 T ; ., we have

R td)) dv, < C™e exp(ij oz, )dvs) and consequently
S3 i 4r S3

- e oo dv < C*exp{-ad }.
2

Integrating both sides of this inequality over P, ; and using (2), we obtain

(always fora < =——r m-li-l )
3) '[Pm—l J‘S°2 exp(-0p(z, .z )) dvs(2))dv, _\(2;,....2,,)

gCste exp(vij.p ) dvm_l).

=1 " m-1
Then, comparing the measures dv(z,,2,,...,2,) and dvy(z;)dv, (2,,...,Zp,), and using

Holder's inequality, one shows that for any B and any € > 0, we have

@) .[X e-B® dv < C'¢(e) Max (l'IPm—I xSi exp(-(2+e)Bo)dvydv _ _, )
Finally one shows that
®) - fo #dva,) sce
m-1
Choosing B < ! o and € sufficiently small in (4) the theorem follows from (4), (3) and

(5). This lower bound of a(X) allows us to prove the following corollaries:
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Corollary 1.
For all A <ﬁ the Monge-Ampere equation Log M(9) =- A@ + f , admits at least one
solution ¢ C™g-admissible on X.

Corollary 2.

Forall A <2L , there exists a Kihler metric g on X satisfying Ricci(g) 2 Ag.
m

III-  Following an analogous pattern we obtain results concemning the manifold (Y, g%,

where the metric g? belongs to the first Chern class of Y and its components are given in
some dense open subset by

2 - 2 2 2 2
g:. =0 _ Log(l+|z (242,12 +0 _ Log(l+|z 19+3 _ Lo, (+lz,12).
N A 1 L A ] A 8 2

Theorem 2.
Let ge C=(Y) be g2-admissible. Then for o < 41 , we have

_a
-aQ ste —
.[Y e P dv <Cs'exp ( v, JY cpdv)

where dv is the volume element of Y for the metric g2 and V, = .[Y dv.

As in Theorem 1, we have the following two corollaries:

Corollary 3.

Forall A < % , the Monge-Ampére equation Log M(¢) =- A¢ + f admits at least one solution
C=g-admissible on Y.

Corollary 4.

Forall A <% there exists a Kahler metric g on Y satisfying Ricci(g) 2 A g.
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On the Hamiltonian formalism defined in the
framework of the Poisson calculus

Roman G. Smirnov

Presented by J.E. Marsden, F.R.S.C.

Abstract

We introduce a new approach to the Hamiltonian formalism by making use of some basic
concepts of the Poisson calculus. Certain interrelations between the contravariant exterior
operator ¢ and the usual exterior differential operator d connected by a Hamiltonian system are
presented. The idea also is shown to be applicable in the bi-Hamiltonian case.

1 Introduction

On a Poisson manifold (M, P), equipped with a Poisson bivector P, one can define the Poisson
calculus — a natural generalization of the differential calculus of forms. It is based solely on the
possibility to extend the Poisson bracket of functions to 1-forms as it was shown for the first time
in [1] (see also [2]).

Denote by A*(M) and V¥(M) the spaces of differential k-forms and k-vectors (contravariant
skew-symmetric tensors) respectively. Then P has an associated homomorphism (isomorphism if
P is not-degenerate) # : A'(M) — V*(Af), defined by

B(a*) = P(a,B), a,d € AYAI).
This map can be generalized ae # : AX(M) — V¥(M), such that
w¥(ap,...,ax) = (-1)*w(a?,...,af). w € A¥(M).

Now one can define a unique R-bilinear operation { , } : \'(M)® AW (M) — A'(M) given by the
formula
{avp} = La.ﬂ - Lﬂ'a - dﬂ(a#)' (l)

This operation provides A'(M) with a Lie algebra structure such that # is a Lie algebra homo-
morphism (isomorphism if P is non-degenerate),

{avﬁ}# = [a#sﬂ#]'

Furthermore, we can define now the contravariant exterior differential operator o : VEM) -
V(M) for Q € V¥ (M) by

(0Q)(ag,y ... ax) =

k
E(—l)-'af(Q(ao,...,&.-,....a,,))+ @
i=0

k
3 (-1)"*+Q({ai,aj}, a0, . . -, &iy . . -, Gjy - . -0R),
i<y=0

109
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where a; € A'(M), and the hat denotes missing arguments. The formula (2) for the operator o
coincides with the analogous expression for the exterior differential of forms d and so has the same
algebraic properties (for more details see [4]).

Definition 1.1 Given a Poisson manifold (M, P). Then a q-vector Q € V9(M) is a-clg-seg if
0Q = 0 and o-ezact if there erists an ¢ — 1-vector R € V9~ (M) such that Q = oR.

Moreover, the action of ¢ on any Q € V*(M) can be expressed as follows [3]:
UQ = _[P'Q]1 (3)

where the bracket is that of Schouten [5). This remarkable relation leads to a new formalism for
the Hamiltonian theory. This is the subject of the considerations that follow.

2 The Hamiltonian formalism

Starting from Lichnerowicz’s work [6] generalizing symplectic manifolds to Poisson ones, the Hamil-
tonian formalism has also been modified. Thus the most common representation for a Hamiltonian

system is now
Xy = PdH, (4)

where Xy is a Hamiltonian vector field with H as the corresponding Hamiltonian. While P denotes
a Poisson bivector, i.e. a skew-symmetric 2-contravariant tensor field satisfving the condition

(P.P]=0, (5)

here the bracket is again the Schouten one. The representation (1) for a Hamiltonian system has
the obvious advantage over the classical one:

ix,w=—dH. (6)

for the former one (4) can be defined in terms of a degenerate Poisson bivector, while the rep-
resentation (6) — only in terms of a non-degenerate symplectic form w. Clearly, we always can
derive (4) from (6) by using the substitution P := w™!. However, inverse is not always true due to

possible degeneracy of P.
If we apply (3) for k = 0, i.e. to a function f € VO(M), we shall obtain the following expression

aof = -{P, f). ()
Then the right hand side of (7) in the index notations (on a local coordinate chart) is given by
P‘G af

9z’

[P ST =

(we use the Einstein summation convention) which is exactly the expression for a Hamiltonian
vector field (see (4)). This observation leads to the following

Definition 2.1 Let (M, P) be a Poisson manifold and H € VO(M) (VO(M) = C®(M)) a given
Junction. Then the a-ezact vector field X defined by H :

Xy=0oH (8)

is called the Hamiltonian vector field with the energy function H — the Hamiltonian. We call the
triple (M, P, Xy) a Hamiltonian system.
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Proposition 2.1 Given a Hamiltonian system (M, P, Xy), then for any Q € V*(M) the relation
holds

Lx,0Q =0lLx,Q, 9)
where o denotes the contravariant operator associated with the Poisson bivector P.
Proposition 2.2 For an arbitrary I-form a defined on a Poisson manifold (M. P) the following
statements are equivalent:

1) a I-form a € A} (M) is ezact: a = df for some f € A°%(M),
2) the vector field a* € V'(M) is o-ezact (i.e., is Hamiltonian): a* = o f for the same f € V(M)

Definition 2.2 Let (M, P) be a Poisson manifold, then two functions f.g € V'°( M) are said to be
in involution with respect to P iff

<of,dg >= - < df,09 >=0. (10)

Here the bracket < , > denotes the usual contraction between vectors and 1-forms.

Definition 2.3 A vector field X on a Poisson manifold (M, P) is called locally Hamiltonian if it
is o-closed:
oX =0. (11)

In view of Definition 2.1 and the condition (3) a Poisson bivector is o-closed:
oP =0, (12)

and one can immediately notice a striking resemblance between the condition (12) and the closure

of a symplectic form:
dw=0 (13)

In fact, they are equivalent in the framework of the Hamiltonian formalism, i.e. for a given non-
degenerate Poisson bivector we have

oP=0&dw=0, (14)

where w™! = P and the o-operator is defined hy P.

3 The bi-Hamiltonian case

Consider a double Poisson manifold (A, Py, P;) defined by two Poisson bivectors Py and P, (we
assume P; is not-degenerate) in the general position, which means the operator A := PPy has
distinct eigenvalues. Accordingly, there are two o-operators: o) and o associated with P} and P
respectively.

Definition 3.1 A vector field Xy, 1, on a double Poisson manifold (Al. Py. P,) is called bi-Hamil-
tonian iff it is simultaneously o, and g;-ezact, i.c.

Xuy i, = orlly = a2y, (15)

here H, and H, are the corresponding Hamiltonians. We call the quadruple (M. Py, P, Xy, 11,) @
bi-Hamiltonian system.

Definition 3.2 Two Poisson bivectors I and P, are called compatible iff
P; is 0j - closed, 1,7 =1,2. (16)
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The compatibility condition (16) leads to integrability in Arnol’d-Liouville’s sense of the associated
bi-Hamiltonian vector field. This problem has been thoroughly surfaced in works by Magri (7],
Magri and Morosi [8], Gel'fand and Dorfman {9, 10] and many others. We call the bi-Hamiltonian
vector fields defined by pairs of compatible Poisson bivectors the bi-Hamiltonian in the Magri-
Morosi-Gel’fand-Dorfman (MMGD) sense vector fields.

Proposition 3.1 Given a bi-Hamiltonian in the MMGD sense system (M, Py, Py, Xy, 1,), then
Jor any Q € V*(M) the relation holds

ale"I.y, 020 = ﬂzan,_,,, UIQ-_ (17)
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References

(1) Abraham, R. and Marsden, J. E., Foundations of Mechanics, 2nd. ed., Benjamin Cumming
Reading, Massachusets, 1978.

(2] Marsden, J. E. and Ratiu, T. S., Introduction to Mechanics sad Symmetry. A Basic Exposition
of Classical Mechanical Systems, Springer-Verlag, New York, 1994.

[3) Bhaskara, K.H. and Viswanath, K., Calculus on Poisson manifolds, Bull. London Math. Soc.
20 (1988), 68-72. :

[4] Vaisman, 1., Lectures on the Geometry of Poisson Manifolds, Birkhiuser Verlag, Berlin, 1994.

[5] Schouten, J.A., Uber Differentalkomitanten zweier kontravarianter Grossen, Proc. Kon. Ned.
Akad. Amsterdam 43 (1940), 449-452.

(6] Lichnerowicz, A., Les Variétiés de Poisson et leurs algébres de Lie associés, J. Differential
Geometry 12 (1977), 253-300.

(7) Magri, F., A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978),
1156-1162.

(8] Magri, F. and Morosi, C., A geometrical characterization of integrable Hamiltonian systems
through the theory of Poisson-Nijenhuis manifolds, Quaderno, 19, University of Milan, 1984.

(9] Gel'fand, I. M. and Dorfman, I. Ya., Hamiltonian operators and algebraic structures related
to them, Functional. Anal. Appl. 13 (1979), 248-262.

[10} Gel’fand, I. M. and Dorfman, 1. Ya., The Schouten bracket and Hamiltonian operators, Func-
tional. Anal. Appl. 14 (1980), 223-226.

Department of Mathematics and Statistics,
Queen’s University, Kingston. Ontario, Canada K7L 3N6.
e-mail address: smirnovr@qucdn.queensu.ca

Received May 10, 1996


mailto:srairnovr@qucdn.queensu.ca

C.R. Math. Rep. Acad. Sci. Camada - Vol. XVIII, Nos. 2,3, April-Jume 1996 avril-juin
113

ENHANCED EDDY CURRENT MATHEMATICAL MODELS USING THE
PHASE-SHIFTED FIELDS OF TWO COILS

E. N. DERUN, A. A. KOLYSHKIN AND REM! VAILLANCOURT

Presented by K.B. Ranger, F.R.S.C.

ABSTRACT. Analytical solutions are obtained for the problem of the interaction of a pair
of phase-shifted electromaguetic fields generated by two coaxial single-turn coils carrying
currents I, e/ and I e/(“*+¥), respectively, where ¥ # 0. Five geometrically different
media are considered. Numerical results show that ¥ is the most important parameter. If
the values of ¥ and of the other parameters are chosen properly, then the curve representing
the change in impedance can lie in any of the four quadrants of the complex plane. These
results can be used for developing more sensitive and more selective eddy current testing
methods.

RESUME. On obtient une expression analytique pour V'interaction des champs electro-
magnétiques produits par deux bobines & un seul tour sous courants I et gt Ip edWit¥)
ot ¥ # 0. Les bobines sont situées dans I'espace libre relatif & cing media de formes
géometriques différentes. Les résultats numériques montrent que ¥ est le paramétre le plus
important. Pour un choix judicieux des valeurs de v et des autres paramétres, la courbe
représentant le changement d'impédance peut se trouver dans n'importe quel des quadrants
du plan complexe. Ces résultats peuvent servir au développement de méthodes de détection
au moyen des courants de Foucault plus sensibles et plus sélectives.

1. Introduction. In this Note, we present analytical solutions to the problem of the in-
teraction of the phase-shifted fields of a pair of coaxial single-turn coils (Coil 1 and Coil
2 of radius R, and R,) carrying currents I, e’ and I ellwt+¥)  respectively. The coils are
situated in free space, My, (2) above a conducting half-space, M,, (b) above a two-layer
medium, M, and M,, (c) coaxially inside a conducting nonmagnetic tube, M,, (d) outside
a uniformly conducting nonmagnetic ball, M, the coil axes passing through the centre of
the ball. Lastly in case (e), parallel rectangular coils are approximated by two pairs of in-
finitely long parallel wires (L, L2 and L3, L4) in M, and parallel to a uniform nonmagnetic
conducting half-space, M,. These five cases are shown in the left parts of Figs. 1-5. The
case of non-shifted fields is treated in (1] and [2].

We present formulae for the induced change in impedance, 2™, in cach of the five cases.
The formula of case (c) is derived. Cases (a) and (b) are treated in greater detail in [3)-

The following standard notation is used. The magnetic constant is p. For i = 1,2, p,
and o; are the relative magnetic permeability and conductivity of M;, respectively. In the
cases (c), (d) and (e), the formulae have been obtained with j = 1.

Key wonds and phruses. Eddy current nondestructive evaluation; phuse shifted fields; Hankel transfonn,

Fourier cosine transform, Fourier-Legendre transform.
This work was partially supported through NSERC of Canada, Grant No. A7916 and the Centre de

recherches mathématiques of the Université de Montréal.



114 E. N. DERUN, A. A. KOLYSHKIN AND R. VAILLANCOURT
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FIGURE 1. In case (a), (left) coils above uniform conducting half-space, M,
and (right) plot of Zo(8,¢) fora =01, 4, =1, H=09,p=1and I =2.

The values of the phase difference, ¥, and the other parameters of the problem have been
chosen such that the curve representing the change in impedance can be situated in any
quadrant of the complex plane as shown in the right parts of the five figures.

2. Case (a). Using the dimensionless variables

— _h _hy _R _
B = R\\Jwo\popty, a= R, H= h P=q I= T

we have the following expression,
Z™ = wugr Ry Zo, (1)

for the induced change in impedance of Coil 1, where

_ g [T St — Vs 2 +] 2 -2afs
Zo=3p b B +‘/;,-_T_—J(ﬁs)e ds

+jBIper® /o j:j'+ f,__"H Ji1(Bs)Ji(Bps) =PI+ s 4. )

3. Case (b). Using the following dimensionless variables

hl d1 g2 hz 12 R2
==t f= L y==L, ==, H=22 I=32, p=3232,
el B = RyJwopmopr, 7 X o h I A P=T,

where d,; is the thickness of layer M,, we obtain the change in impedance of Coil 1 in the
form

Zind = W“ORI zOl - (3)
where, for gy = 2 =1,
00 ) 00
Zo=3jp /0 D(s)J3(Bs) e~ ds + jfl pe / D(s)Jy(Bs)Jy (Bps) = BO+s g,

AyB_+ A_(s+/FTFJB) e /74

D(s) =
A B, + A_B_e V54

1
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FIGURE 2. In case (b), (left) coils above conducting two-layer medium M,
and M,, and (right) Zo(B,¢) fora = 0.1, yy = p2 =1, H =09, p = 1,
4=01,6=08and [ =2.
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FIGURE 3. In case (c), (left) coils coaxially inside a conducting tube, and
(right) plot of Zo(8, %) for 7o = 0.9, uy = 1, H = 0.2, R=1,p=12and

with the abbreviations Ay = /sZ+j+ Vs’ +j0and By =s=* NCETH

4. Case (c). Suppose that Coil 1, of radius Ry, is coaxially located inside a conducting
nonmagnetic tube, M), of inner and outer radii py and p,, respectively. The conductivity,
a1, of the tube is constant. Coil 2, of radius Rj, is coaxially located with respect to Coil 1
at distance h from the latter, as shown in Fig. 3 (left).

If Coil 2 is absent, the induced vector potential in Mp is given by

A(r,2) = &%I’—?E/:C(I\)Il(/\ro)ll(,\r) cos Azd), (4)

in terms of the cylindrical coordinates (r,, z) with the origin at the centre of Coil 1. Here
r and z are dimensionless coordinates such that the inner radius, pi, of the tube is chosen
as the unit of length. The function

C(A) = A(X)/B(A), 6]
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is given by

A()) = [gKo(gp) K1 (M) — AKo(Ap) K1(ap)] [aK1 (M) ]o(g) + AKo(A)]1(q))
+ [a1o(gp) K1(Ap) + AKo(M) 11 (gp)] [MKo(M) K1 (q) — ¢K1(A) Ko(q)],
B()) = [gKo(gp) K1(Ap) — AKo(Mp) K1(gp)] [Mo(M)1(9) — g11(M)]o(g))
+ [aZo(g0) K1(Ap) + AKo(Mp) I1(gp)] INo(N) Ki(q) + 11 (N) Ko(q)],
and )
To = —, p=§, q= \/m B = py\/worpig.

The functions I,(s) and K,(s), for v = 0,1, are the modified Bessel functions of the first
and second kinds, respectively.

If Coil 1 is absent and Coil 2 is the only source of primary field, a similar formula can be
obtained for A,(r, z) by replacing I;, ro and z in (4) by I;¢%, r; and z — h, respectively,
where r, = Ry/p).

By the superposition principle, the total induced vector potential in region Mp is the sum
A = A + Ay, that is,

Alr,2) = ‘i"I‘w—”?"l [ COML R cos rzdr

4 kol e:’p?rn /o * C(MN (A1) (Ar) cos A(z — h) dA, (6)

where C()) is given by (5).
Using formula (6) and computing the impedance change of Coil 1, we obtain

2" = 2uqp}urd Z,,
where
=i /o * C(AV L (Aro)[T1(Aro) + TR e I(Ary) cos AH) d, 0

H = hfp,, I = I /I, is the ratio of the current amplitudes in the coils and R = Ry/R, is
the ratio of the radii.

5. Case (d). In this case, we obtain an expression for the change in impedance of Coil 1
in the form

2™ = 2nwp? R o 8in 6, Zp,
where

— = 1 Pc b (1) . (1)
Zy=j z:m (Pl) P (cos8,) |sin6,P;"(cos 6,)

n=1

n-1
+1e* (g) sinazP.E“(cma’)] [(2';: }’.J.;}fﬁ” - 1]' oy
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FIGURE 4. In case (d), (left) coils outside ball M; with coaxis going through
centre of M;, and (right) plot of Zo(ﬂ,w) for yy = 1, p1 = 1.2, p2 = 1.3,
pe=09, R=Ry/Ry=1and [ =

= ﬁ\/— , B = Ry/wop; and J,(2) is the Bessel function of the first kind of order v
and P{V(€) is the associated Legendre function of order 1. All the parameters in (8) are
dimensionless and R, is chosen as length scale.

6. Case (e). By determining the induced impedance change per unit length, we obtain the
formula .
z = L0 7,
2r

where

_ [Ps=VEE e ) ¥ g-Asla1—a)
Zo—/o PRy~ o A {2—2cosﬂs+1e’ e 172 [cos As(y1 — y3)

— cos Bs(y1 - ya) — cos fs(vz —ys) + cos Bs(yz — ya)l} ds, (9)

the distance, ¢ = y, — ¥1, between wires L; and L, is chosen as the unit of length,

P . N N L
c c I,

and the variables v, y2, y3 and y; are measured in units of c. Without loss of generality,

=

one can assume that y; = —0.5 and y, = 0.5.

7. Numerical results and discussion. The change in impedance, Zy, was computed for
different values of the parameters. In the figures, the ten dots on each curve cluster in the
direction of increasing 8 as indicated by an arrow.

It was found that the most important parameter is the phase shift, . This fact can be
explained as follows. On the one hand, the accumulation of energy in Coil 1 depends on
the phase difference, ¥, between the two currents, and affects the real part of Zy. On the
other hand, the demagnetizing action of the medium on both coils also depends on ¥ but
it affects the imaginary part of Zo. The curve representing the change in impedance can be
located in any quadrant of the complex plane (in contrast with the case ¥ = 0) provided the
parameters of the problem (especially ) are suitably chosen.
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FIGURE 5. In case (e), (left) two of double lines, Ly, L2 and Lj, Lg, and con-
ducting half-space, M,, and (right) plot of Zo(B,¥) for a = 0.1, gy = 1,
H=09,p=1land [ =2

The parameter I is also important since the accumulated energy and the medium demag-
netizing action also depend on its value.

These peculiarities of Zo can be used for developing eddy current testing methods with
higher testing sensitivity and finer selectivity. '
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