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Théorèmes local et de renouvellement pour une convolution généralisée 
sur la demi droite 
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Presented by G.F.D. Duff, F.R.S.C. 

Résumé.Soit * la convolution sur A/(IR+) associée à un opérateur différentiel singulier L. Pour inn-
probabilité p sur ÎR+ avec des hypothèses de moments adéquates, on étudie ronmu'iil iioriiiali.-fr les 

oc 

mesures {/T"; n € K} (resp. tj • Y^ /i"1;z > 0) pour qu'elles convergent vaguement si » — + x 
nmO 

(resp. x —• +00). Les résultats dépendent de L et d'une étude fine de ses fonctions propn-s. 

Local and renewal theorems for a generalized convolution on the half line 

Abstract. Let • be the convolution on M(1R+) associated to a singular differentinl opiTiiini /.. 
If /1 is a probability measure on IR+ witb suitable moment conditions, we study lion- in nornitili»1 

oc 
the measures {ii'";n € K) (resp. («j • 52/ '"'} ) in order to get weak converRPiiir il 11 — *• x 

n-0 
(resp. 1 —» +00). The results depend on the type of L and on a précise study of its eiiteiifiiiK t ions 

1) Généralités. On considère sur ]0,-l-oc[ un operateur differemu'l L = 
dl + A'ix)/Aix)dz id" désigne la dérivée nième en 1). On suppose .4(.r) = 
x2a+1Bix),a > -1/2, B > 0 est une fonction C50 paire sur E avec fî(l)) = 1. 
De plus A est croissante, lim A = +00. A'/A est décroissante. \im+x A'/A = 2/i > (I 
et il existe 6 > 0, io > 0 tels que pour 1 > xo on ait 
(1) iB'/B)ix) = 2p- (2Q + l)x-x + e - ^ ^ i ) si p > 0 ou e^'Dix) si ,) = (1. 

où D est une fonction Cx sur [io,+oc[, bornée avec toutes ses derivéc-s. Les 
opérateurs de Bessel et de Jacobi sont des exemples types avec respect ivrineni 
Aix) = r t o + 1 (et p = 0) et Aix) = 22',(s/ii)2<'+1(c/ii)20+1(a > 3 > -1 /2 ei 
p = Q + P + l>Q)m. 
D'après [4] l'équation aux valeurs propres Lu = -(A2 + p2)u a pour loin A € C 
une unique solution ^A telle que fxiO) = 1 et_£i(0) = 0 et deux autres solutions 
linéairement indépendantes *±A telles que )/Aix)'b±iix) ~ c'l±x>zix — +-x) ((5]). 
La fonction c : C —» (C telle que ipxix) = C(A)*A(I) + c(-A)4>_A(jr) est la foiution 
d'Harish Chandra. Pour tout A € <D et x > 0, on a 

(2) <Pxix) - f Kix. u)cos (Au) du, 
Jo 
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où Kix,.) > 0 est de classe C* sur ] - x, x[, paire et à support dans ( -1 . x) ([8)). De 
plus pour tous I , î / € 11+, il existe une probabUité notée ex * cv (e pour mesure de 
Dirac) a8upportdans(|i-j/|,i+yl telle que V?A(*)VA(») = {ci*^'^*)- Lacouvolée 
de î et i/ G MCR^) est alors définie par in • i/,/) = (/t S f, u> si / est une fonction 
continue et à support compact dans ni+ et u(i,y) = (e, * £„,/>• Ou munit ainsi 
11+ d'une structure d'hypergroupe commutatif de mesure de Haar ni(dx) = .4(x)</.r 
et de mesure de Plancherel |c(A)|-2dA ([2], [4], (8)). Le comportement de |c(A)|-2 à 
l'infini a été établi en [5] ; pour le voisinage de zéro nous avons utilisé [9] (th. 3.72) 
et obtenu le résultat suivant : 

Proposition 1. Il existe des constantes positives k, fci. frj telles que 
1) si /> > 0 et a > -1 /2 ; VA eC, |A| > ifc => iki|A|2o+1 < |c(A)|-2 < fc2|A|to+l 

2) si p > 0 et a > -1/2;VA eC, |A| < k => fc,|A|2 < |c(A)|-2 < ^lA]2 

si p = 0 et Q >" 0; VA 6C, |A| < fc =» fc,|A|2û+l < lc(A)|-2 < ^lAl2-*1 

Sous les conditions précédentes, posant 7 = 1/2 si p > 0,7 = Q si p = (I 01 
c^A) = Xi+WciX)., on a lim c^A) = 0,(0) / 0. 

2) Propriétés asymptotiques de yA et ^A- Soit la fonction G = 4",(--17--l) + 
2-liA'/A)' - p*. On écrira G(x) = io2 - l/4)x-2 + xW- Daprès (1). il exisir 
« > 0,xo > 0 et des fonctions AC» = 1.2) de classe C00 sur |xo,+oc[ bornées avec 
leurs dérivées et teUes que G(x) = e-ixDiix) si p > 0 et xfc) = e-ilD2ix) si p = ». 

Théorème 1. Pour tout entier n > 0, tout A etC' et 1 > 0, on a 

(3) / 4 ^ ) * A ( X ) = e
iAl E a.(x)(iA)-' + iîn(A. x), 

t=0 
où les fonctions réelles a, s'obtiennent par les relations 

ao(i) = 1. 2a't+iix) = -a'^x) + G(x)aJ(x) (s > 0) 
et 
(4) |iUA. i)l < 2|A|-n (jf+00 \a'nit)\dt) exp (|A|-1 J*" \Git)\dt) . 

De plus, a,(i) = 0(e-éx) si p > 0 et a,(x) = Cax~' + ©(e-*1) si p = 0. où C, est 
une constante. 

Démonstration (idée) La fonction y/Â^x est solution de l'équation different ielle r" = 
((xA)2 + G)v ; on en déduit alors une équation intégrale pour le tenue d'erreur /?„ 
qu'on résout par la méthode de variation de la constante. 

Soit Waiu) = {;r/2)1/V<,+2o"r/V/2Hi1)(u) avec /#> la fonction de Hankel th-
première espèce d'indice o. 
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Théorème 2. Si p > 0. il existe une constante C > 0. telle que pour tous A 6 m ol 
x > 0 
(5) | / 4 ( i ) * A ( i ) - " 0 ( A i ) | < 

| C{^yn-a [expiC ir^mdl)-!] sia>l/2 

\ c [exp [Cfr ûkt\xit)\dt) - l) si o el - i. ll-

Ce) [y/ÂÛfxW < C x^°il + |A|x)—'^exp (/J r ;Lj7 |x(0|rf/) 
némonstration (idée) La fonction V^4*A est solution de l'équation «"(r) + 
((1/4 - Q 2 ) I " 2 + A2)u;(x) = xix)wix). Une résolution par approximations sum-s-
sives de donnée initiale iro(Ai) conduit à (5). Pour (G) on applique une métliodi" 
analogue à la fonction T/ÂïX qui satisfait la même équation mais avec une iloinié» 
initiale équivalente à x l / 2 + a si x —» 0. 

Corollaire 1 (formules de Mehler-Heine). Si p = 0 ou p > 0 et o = 1/2 on a pour 
A€ Dl 

(7) lim /i(ï)*A/,(i) = "«(A) 

(8) lim jBMvvAx) = v/5i:2,/2-Q|c1(0)|(r(a + l))-1j„(A), 
I—*+00 ' 

où jQ(A) = 2Qr(a + 1)A-0 J0(A) et Ja est la fonction dc Bessel de première vspnv. 

DiMiionsIration (idée) : (7) rrsultr dn Thiwiniif 2. Pour («) on iililiM- (7). 
l'expression <px en fonction de * ± A et une nicthotlc de calcul par inversion do Itiniifi' 
qui sera détaillée ailleurs. 

3) Le théorème local. La transformée de Fourier dune probabilité p 6 .W,(IR) 
est définie par /i(A) = ip,Vx) pour |/»nA| < p. Soit alors 6(x) = -Ol^xir)^.,,. On 
voit facilement à partir de (2) que 6 > 0 est bornée sur 111+ si p > « et que b{.r) < :r 
si p = 0. Ainsi bip) = ip,b) < +oo pour toute p 6 A/|(IR+) si p > 0 cl pour p 
ayant un moment d'ordre 2 si p = G. Dans ce cas on a immédiatement 

(9) A(A) = MO) - 6(/t)A2/2 + o(A2) si A - 0. 

Théorème 3. Soit p 6 A/,(IR+),/« ^ «o et bip) < +oo. On suppose p > (I ou 
p = 0 et Q > 0 et soit y la constante de la Proposition 1. Alors la suite des 
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mesures n•'+l(A(0))~,n+'1,+1V, converge vaguement vers C^oM^ CMyo(r).4(x)rfr) 
où CM = (2ir)-1|ci(0)|-2Z'r{7 + mp)-1*" > 0. 

Démonstration (esquissée) : pour / € I>.(R.) (espace des fonctions paires de classe 
C" sur R et à support compact) et pour tout »/ > 0, on a par inversion de Fourier 

n*+iim)-n fc" mwàx) = {£+l+0°) ^/(AK/iWMor'ndA)!-2-. 

On peut alors passer à la limite quand n —» +oo suivant la démarche classique grace 
à (9), à la Proposition 1 et aux lemmes suivants : 

Lemme 1. Soient m et (mOig/ (avec / = N ou R+) des mesures de Radon positives 
sur R+. Si pour tout / 6 D.(R),. lim (m,, / ) = (m, / ) alors mj converge vaguement 

i—.+00 
vers m quand t —» +oo. 

Lemme 2. Soit p € Mi(R+). S'il existe a > 0 tel que [O.Q] C suppp. alors pour 
tout JJ > 0, il existe a = a(»j) < 1 tel que |A(A)| < a/i(0) pour tout A > IJ. 

Lemme 3. Soit p € Afl(R+) et io € suppp avec Xo ^ 0. Alors (0,2io] C suppp'2. 

Remarque : On notera que piO) = l s i p = 0 e t 0 < /i(0) < 1 si p > II. Ou 
remarquera aussi que pour tout x € R+,v'o(x) > 0 et que jai1) = 1 si p = 0. 

4) Théorèmes de renouvellement. Pour n entier > 0. soit la fonction «/«(.r) = 
ôÂVA+IP(I)|A=O ix > 0). A l'aide de (2), on montre qu'on a toujours \du{j)\ < ./". 
Si p = 0 on a dn(x) = 0 si n est impair et jd^x)} < 1 + jd„(x)| pour tout / < n 
si n est pair. Pour p € A/i(R+), on pose alors dnip) = (/t,|d„|). Si p = 0. on 
notera que d2(/i) = bip) (cf. §3). Si p = 0 et jt admet un moment dordre n (i.**. 

J roo 
' x"pidx) < +oo), p est de classe Cn sur R. De plus 
o 

Proposition 2 : Si p = 0, si n est pair et si dnip) < + 0 0 . / i est de classe C" sur R. 

Théorème 4. Soit p € MI(R+),A« ^ fo- Si p > 0 ou si p = 0 et o > 0 et ^(p) < 
+00 

+00, ^ = 5Z M"* est u n e mesure de Radon et on a 
n=0 

a) si p > 0 et si ^(AO < +<x> . ^Aix)epziex * u) converge vaguement si x -< +oc 
vers la mesure (di(/x))_1m. 
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b) si p = 0 et Q > 0. on suppose d2ip) < +oo si 0 < o < 1/2 ct pour a > 1/2. n = 
n + r avec n € N* et -1 /2 < r < 1/2, on suppose soit que p a un moment d'ordre 
n + 2 soit que djt+2(p) < +oo si n = 2fc ou 2fc - 1. Si de plus c^A) = A"+,/V(A) 
est de classe C00 sur R+ avec des dérivées polynomialement bornées, il existe alors 
une constante a > 0 telle que I2 Q(€I • u) converge vaguement vers ani si x —» -l-oc. 

c) dans le cas de l'opérateur de Bessel, on suppose djÊ/t) < +oo si 0 < ti < 1/2 et 
pour a > 1/2,a = n + r.n 6 K* et - 1 /2 < r < 1/2, on suppose soit que p a nn 
moment d'ordre n+2. soit que (f2t+2(p) < +oosi ?» = 2fcoii 2fc-l. Alors .r2"^,.*»') 
converge vaguement vers (û:d2(/t))_im si x —• +oc. 
Démonstration (idées) a) Pour / 6 P.(R). on a (e, * v.f) = U fit) — 
(27r)- , /!t , /(A)(1 - A(A))-|*A(x)c(-A)-,dA. On utilise alors l'holomorphie de la 
fonction A —• *A(I )C(-A)" 1 dans le demi plan supérieur pour estimer cette intégrale 

/•+=c . 
sur un contour adéquat. Pour b) si Q > 1/2 on écrit I)fix) = (2jr) / /(A)( I -

Jo 
A ( A ) ) _ 1 ( * A ( I ) C ( - A ) ~ I +$_A(x)c(A)~1)dA, on utilise le théorème 1 en procédant à 
des intégrations par parties pour trouver un équivalent de chacun des termes ct on 
utilise le théorème 2 pour évaluer le reste. Pour 0 < o < 1/2 on utilise ic corollaire 
1. Pour c) le calcul direct est possible car ipxix) = jo(Ai). Dans tous les cas ou a 
besoin du lemme 1 pour conclure. 
Remarques. 1) Pour des analogues classiques des théorèmes étudiés ici on peut con-
sulter [1], [7], pour le cas de R" et [3] pour le cas des espaces symétriques. 
2) Les idées utilisées ici permettent aussi d'obtenir des théorèmes locnux cl de re-
nouvellement pour d'autres structures de convolution comme certains hypergroupes 
polynomiaux. On trouvera tous les détails dans une-prochaine publication. 
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SOME REMARKS ON COINCIDENCES AND FIXED POINTS 

S.L. Singh and S.N. Mishra 

Presented by E. Blerstone, F.R.S.C. >> 

Abstract. The purpose of this note is to provide a substantial improvement of recent • 
results of Pathak [5]. 

In a well-written paper, Pathak [5] obtained some interesting results improving 

several coincidence and fixed point theorems. In the present note we provide a substantial 

improvement of his main re8ults((5,Theorems 2 and 4]) by removing the assumptions of 

continuity, and replacing the completeness of the space by a set of weaker conditions. We 

also drop the weak compatibility requirement from his Theorem 2. 

We generally follow the notations and definitions used in [5]. Let (X,d) be a 

metric space. Let (CB(X)IH) and (CL(X),H) denote respectively the hyperspaces (cf. 

Nadler [4]) of nonempty closed bounded subsets of X and nonempty closed subsets of 

X, where H is the Hausdorff metric induced by d. 

The following is the main result of Pathak(5,Theorem 2]. 

THEOREM 1. Let (X.d) be a complete metric space, f : X -• X, and T : X -» CB(X) 

be f-weak compatible continuous mappings such that T(X) ç f(X) and 

(1) HfTx.Ty) < h max{d(fx>fy),d(fx.Tx).d(fy,Ty),[d(£x,Ty)+d(fy,Tx)]/2} 

is satisfied for all x,y € X and 0 < h < 1. Then there exists a point t such that ft e Tt. 

Mathematics Subject Cla8sifications(1991): 47H10, S4H25. 54C60 

Key words: Coinddence point, fixed point, weak compatibiUty, multi-valued maps. 
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The following two results improve the above theorem substantially. 

THEOREM 2. Let Y (# 0) be an arbitrary set, (X,d) a metric space, f : Y -i X and 

J T : Y -• CL(X) such that T(Y)Ç f(Y) and (1) is satisfied for all x, y € Y, 0 < h < 1. If one of 

T(Y) or f(Y) is a complete subspace of X, then there exists a point t 6 Y such that fl e Tt. 

Proof. Let x0 6 Y be arbitrary, and choose x, e Y such that fx, € TXQ . Such a 

choice is permissible since Tx0 Ç f(Y). Since we may assume 0 < h < 1, we choose a point 

Xj E Y such that d(fx2,fx1) < k H(Tx1,Tx0), where k = 1/v/h In fact, following the 

constructive proof technique of Pathak [5, p. 72), we construct a sequence {xn} Ç Y such 

that fx n + 1 6 Txn and d(fxn+1,fxn) < k H(Txn,Txn_1), n = 1, 2, ... . Now setting x = 

x . , and y = x in (1), it can be easily verified that {fxn} is a Cauchy sequence. 

If f(Y) is a complete subspace of X, then {fxn} being contained in f(Y) has a limit in 

it. Call it u. Let t € f ' u . Then ft = u. By (1), 

d(fxn+1,Tt) < H(Txn,Tt) 

< hmax{d(fxn,ft),d(fxn,Txn).d(ft,Tt), [d(fxn,Tt)+d(ft,Txn)J/2} 

< h max{d(fxn,ft),d(fxii,fxn+1),d(ft.Tt),Id(fxn,Tt)+d(ft,fxn+1)l/2}. 

Making n -. m we have d(ft,Tt) < h d(ft,Tt)l i.e. ft C Tl. The other case, when T(Y) is a 

complete subspace of X, essentially pertains to the previous case as T(Y) ç f(Y). This 

completes the proof. 

Now we derive a hybrid fixed point theorem ftom Theorem 2. Recall that a point 

z € X is a hybrid fixed point of f : X -• X and T : X -H CL(X) if fz e Tfz. 

COROLLARY 1. Let (X.d) be a metric space, f : X - X and T : X - CL(X) such 

that T(X) C f(X) and (1) is satisfied for all x, y e X, 0 < h < 1. If T(X) or f(X) is a 
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complete subspace of X, then there exists a point t € X snch that ft € Tt. Further, if T 

is f-weakly compatible and f(ft) = ft, then f and T have a common fixed point, indeed, 

ft 6 Tft. 

Proot It comes from Theorem 2 (when Y = X) that there exists a point t E X such 

that ft E Tt. If T is f - weakly compatible, then by the lemma of Pathak [5, p. 74], fTt = 

Tft. Hence ft E Tt impUes f(ft) e f(Tt) = Tft. Consequently ft is a fixed point of T if f(ft) 

= ft. This completes the proof. 

Corley [1, Theorem 1] has shown that a hybrid fixed point is a maximal point in 

certain Pareto maximization problems (see [1, p. 529]). Therefore CoroUary 1 has a big 

potential for applications to Pareto type of maximization problems. 

The foUowing is an extension of the main result of Das and Naik [2]. 

THEOREM 3([5,Theorem 4]). Let (X,d) be a complete metric space, and let f, T : 

X -< X be two f - weak compatible maps such that T(X) ç f(X) and 

(2) d(Tx,Ty) < h max{d(fx1fy)1 d(fx,Tx), d(fy)Ty), d ^ T y ) , d(fy1Tx)} 

for aU x, y E X and 0 < h < 1. If one of f or T is continuous, then there exists a unique 

common fixed point of f and T. 

We improve the above theorem as foUows. 

THEOREM 4. Let (X,d) be a metric space, and let f, T : X -. X be such that T(X) ç 

f(X) and (2) is satisfied for all x, y e X and 0 < h < 1. If one of T(X) or f(X) is a complete 

subspace of X, then there exists a point t £ X such that ft = Tt. Further, 

(i) if there exist v ,w E X such that fv = Tv and fw = Tw, then f v = fw ; 

(u) if T is f- weak compatible, then f and T have a unique common fixed point. 

Proof. Pick x0 £ X. FoUowing [2] and [5], we find a Cauchy sequence {îxn] ç f(X), 

where Tx = fa , , n = 0,1,2 If f(X) is complete then, {fxn} has a limit in f(X), 

say u. Let t E f^u so that ft = u. We note that {Txn} also converges to ft. Setting x = xn 
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and y = t in (2) and passing over to the Umit, we find that d(ft,Tt) < h d(ft,Tt). So ft = 

Tt. Now let v, w E X be such that fv = Tv and fw = Tw, then by (2), d(fv,fw) = d(Tv,Tw) 

< k d(fv,fw). This proves (i). FinaUy, if T is f-weak compatible, then appealing to the 

lemma of Pathak (5|, fTt = Tft. Thus ft = Tt yields fft = fTt = Tft, and hence ft is a 

coincidence point of f and T. Therefore by (i), ft = f(ft), proving ft is a common fixed 

point of f and T. The uniqueness of the common fixed point can be easily verified. 

The following exmples provide an insight into our results, and estabUsh clear and 

applicable superiority over those of [5). The sequence {fxn} (respectively {Txn}) 

constructed in the proof of Theorem 4 may be called the orbit of f with respect to T 

(respectively the orbit of T with respect to f). 

EXAMPLE 1. Let X = { x : 0 < x < 2 and x is rational } be endowed with the usual 

metric. Let Tx = {0, 2}, fie = 2 - x, x E X. Then T(X) = {0, 2} c f(X) = X . It is easily 

seen that aU the hypotheses of Theorem 2 (with Y = X and T(X) complete) are satisfied, 

and ft E Tt, t = 0, 2. However, Theorem 1 can not be applied as X is not complete. 

The doubling function D (cf. below) finds signiGcance in chaotic dynamical theory 

(see, for instance, Devaney (3, p. 24]). We introduce an auxiUary function T so that our 

Theorem 4 may make the orbit of D with respect to T behave nicely. 

EXAMPLE 2. Let X = [0,1] be endowed with the usual metric. Let D, T : X -* X be 

such that Dx = 2x mod 1 and Tx = x/2, 0 < x < 1/2, Tx = x/2 - 1/4, 1/2 < x < 1. Then 

T(X) = [0,1/4] c D(X) = X, and |Tx - Tyj < (l/4)|Dx - Dy| for all x, y £ X. Theorem 3 

can not be appUed to T and f = D, since both the maps are discontinuous. However, 

Theorem 4 applies, and 0 is the unique common fixed point. More importantly, for any 

XJJ £ X, the sequence {Dxn: Dxn = T x ^ j , n = 1, 2,...} converges to 0. In particular, 

if 0 < x0 < 1/2, then Dxn = 2x0/ 4n , n = 1, 2 
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UN CRITERE GENERALISE DE LE PAGE 
ET COMMUTATIVITE 

A. EL KINANI, M. OUDADESS 

Presented by G.A. Elliott, F.R.S.C. 

Abstract: Considering a generaUzed criterion of Lc Page type, we give a theorem from which 
foUow, without further calculations, aU results originated by the condition ||xy| < a|ly«l of 
LePage. 

Résumé: Considérant un critère généraUsé de type Le Page, nous donnons un théorème duquel 
découle, sans autres calculs, tous les résultats de commutativité issus de la condition ||ry| ̂  ct|[yr| 
de Le Page. 

Dans toute la suite, A sera une algèbre de Banach complexe pour une norme ||.| et CiA) 
le centre de A. Pour x e .4, on désignera aussi par p(x) le rayon spectral de x. 

C. Le Page a considéré ([5]) la condition ||ry|| £ a[l>a:| dans une algèbre de Banach 
unitaire et a montré qu'elle entraine la commutativité. Divers auteurs ont examiné le même 
problème dans le cas non unitaire. D'autres ont introduit des fonctions dans l'inégalité soit 
à gauche soit à droite, et reprennent à chaque fois l'idée de Le Page qui consiste à utiliser la 
fonction exponentielle. Nous donnons ici un énoncé qui recouvre tous les cas. 

Théorème: Soit {A,\\f) une algèbre de Banach, iE,p) un espace norme; S:A -> E une 
application linéaire continue. Soit de plus F un espace vectoriel, g:F -> R+ei 
T.A -> Fdeux applications quelconques. S'il existe a > 0 tel que: 

/>{S(«v))<;ou7(rM) (D 

pour tous u,v ç.A\ alors on a: 
(I) ^[(xy)2] = S[z(xy)] pour tous x,y,z e ,4. Si de plus A admet une unité approchée à 

gauche ou à droite, alors Sixy) = Siyx) pour tous x,y e A. 
(il) Si (1) est vérifiée pourtout « e^ 1 = ^ ® C et tout v e X, alors S(xy) = Siyx) pour 

lous x,yç.A. 

Preuve: Si .4 est non unitaire, on considère Â = A®C. 
(i) Nous reprenons ici l'argument classique de Le Page. Pour x,y,z dans A, soit 

l'application / définie, sur C et à valeurs dans E, par 
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fiX)~ifxy<r*\ 
Elle est holomorphe. De plus elle est bornée car p(/(X)) £ aqijiyxf) pour tout X. Elle est 
donc constante. On obtient alors la première conclusion à partir de /'(O) = 0. La deuxième . 
résulte de la première en remplaçant x wx y (selon le cas) par e,, où (e,), est une unité « 
approchée à gauche ou à droite, 
(ii) Pour x,y dans.4, on considère la fonction g définie, sur C et à valeurs dans E par: < 

Elle est holomorphe. De plus elle est bornée car />(g(À,))<ag(7X>')). Elle est donc 
constante. On obtient alors la conclusion à partir de g'(0) = 0. 

Comme conséquence du théorème précédent, on retrouve des résultats classiques sur la 
commutativité. 

1°) Si on prend E = F=A, S=T= rdAei p=q= j.||, (1) devient: 

iMMMl- (2) 
La première conclusion de l'assertion (i) dit que A2 cC(A). C'est (i) du théorème II. 1 
de [8]. Si l'algèbre admet une unité approchée à gauche ou à droite, la deuxième 
conclusion de (i) implique la commutativité, d'où te résultat de Baker et Pym (où il s'agit 
d'une unité approchée bornée ([1])) et le résultat de C. Le Page ([S]) dans le cas unitaire. 

Remarque: On sait que la condition (2) n'implique pas la commutativité ([2]). Si on 
suppose qu'elle est vérifiée pour u dans Aletv dans A, alors A est commutative par 
(U). 

Remarque: Si on prend E = ^yRadA et S:A-*E la surjection canonique, F = 4̂ et 
T = fdA,(l) devient: 

[|SM|saHI- O) 
Alors, d'après (t), A est commutative modulo son radical dès qu'elle admet une unité 
approchée (à gauche ou à droite). Cette condition ne nous semble pas avoir été considérée 
auparavant 

2°) Si on prend E = F = A, S=T=IdA, p={\letg = p,(l) devient: 

H^opM (4) 

et on est ramené à (2) par p£[||. 
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3°) Si on prend E = F = A, S=T= IdA, p une norme quelconque d'espace vectoriel et 
9 = p, (1) devient: 

/j(Mv)<ap(vM). (5) 

Dans ([6]), Mocanu considère la condition: . 

pix) <, ap(x), Vr e/l. (6) 

Soient M = x+Xe dans^1 et v dans A. Leproduit Mv = (x+Xe)v = xv+Xv est dans A; et 
l'on a: 

piuv) < ap(Mv) = ap(vu) 
c'est à dire (5). Alors (U) assure que l'algèbre ,4 est commutative. Comme cas particulier 
nous avons la condition: 

v(x)<ap(x) (7) 

où v est l'image numérique ([9]) et la condition: 

M^ap(x) (8) 

considérée par C. Le Page dans le cas unitaire ([S]) et par R. A. Hirschfeld, W. Zelazko 
dans le cas non unitaire ([3]) 

4°) Si on considère F= A,T = fdA, iE, p) un espace norme quelconque et la condition: 

p{Siuv))<alvu\\, ueAl,veA. (9) 

La condition (9) est équivalente à la condition: 

p{Sixy+y))<alyx+y\\ (10) 

posée dans [7]. On retrouve ainsi le résultat principal de G.Niestegge. 

5°) Si on prend E = A,S = IdA, (1) devient: 
\\xy\\^aq{Tiyx)) (11) 

C'est la condition considérée dans [4] dont on reU'ouve les résultats. Par la première 
conclusion de (i). A2 c C{A) et par la deuxième, A est commutative dès qu'elle est à 
unité approchée ( à gauche ou à droite). 
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Remarque: Par (11), on sait maintenant que l'algèbre est commutative si on a (11) avec x 
dans yl'et y dans A. 
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ASYMPTOTIC BEHAVIOUR OF THE HALF DISC 
POLYNOMIALS AND RANDOM WALKS 

ON A DISCRETE CONE 

Maher MILI 

Presented by P.C. Greiner, F.R.S.C. 

Abstract 
In (his worlr we give a Mehler-Heine formula for tbe half disc polynomials 

and we sludy the random walk on the hypergroup iT,*) defined by the set 
T — |(P>9) € ^ , 2 |p - 9 € ZEs"! and the convolution * generated by these 
poly nomials.{See (1} page 145). 

The half disc polynomials [Q^ ;p , î Ê lN,p - g 6 2IN} are defined on 
T>+ = ((x,y) 6 IR2| i 2 + y2 < 1 and y > 0} by 
Q<?)(x,y) = *<*'* '(x(x' + y2)-4)(x2 + y 2 ) ^ - 3 - ' + , > ( 2 ( x 2 + y2) - l ) , 

where Tim is the Jacobi polynomial normalized by Tim' '(1) = 1. 
Introducing polar coordinates, the polynomials Qp", can bn written as 

Ql"iiK0) = 'R$'i)icosê)icosX)*'R!£;3'9+1)icos2X) = -R^'^icosOW^icosX), 

where U^icosX) = (co5A)»7l(^l-3l'+,)(coa2A) 

with A 6 (0, ^j and 6 G [O.TT]. These polynomials are orthogonal with respect to 
the measure dmn(A, 0) = {smA)4n-scos3Asm2<WA<fl? and we have 

f7 rOA.*)Qp"V(MK«"A)«"-WASm2éWAd0 = ih^y'S^Ô,,,., 
Jo Jo 

where 
(2n - l)(2n - 2 ) r ( ^ + l ) r ( ^ + 2) (r(2n - 2))' 

(9 + l ) 2 ( £ i 1 + 2n - 2)2(p + 2n - l ) r ^ + 2n - 2)T(*±* + 2n - l ) 

We denote by T = Up,q) G IN2 | p - ç G 21N}. We have for all (p,9) G T, 

SUP k ^ ^ d < I-
(A.9)6l0.i)x{0,ir)l l ''•" " 

1. Mehler-Heine Formula 
For (p,q) G T, let / £ , = (p + 2n - I)2 - (9 + I)2. 
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Theorem 1-1: Let C > 0 be an arbitraiy constant. Then there exist real numbers 
JVc > 0, d > 0 and C2 > 0 such that for eveiy (p.q) € T satisfying Pp, > Nc, 

and for every real number AGO, - j— , we have 

{™±yn-\cosX)iVfl(cosX) = 2^-3\2n - 3 ) 1 ^ ^ + R(p,, . A), 

where J2H-3 is the Bessel function of first land and order 2n-3 and the function R 
satisfies the foUowing inequality 

| r(p,ç,A)|<C,A2 +02(9 + 1 ) ^ . 
Corollary l-l .(Mehier- Heine Formula); We have 

lim Q(»)(co»^-)= (2n - 3 ) ! ( | ) - ( 2 , , - 3 ) J2„-3(x). 
(p.rier F« 

This limit holds uniformly in eveiy bounded interval. 
2. Law of Large Numbers . 

It is proved by T.H.Koomwinder in [5] that the polynomials QJ,", satisfy the 
following linearization formula 

^ ( M W & C M H E Cip,q,p',q',p",qn)Qy.AX'V' 
{p".«")eT 

where there are finitely nonzero terms and the coefficients Cip,q,p',q',p",q") are 
nonnegative. Then we can define a convolution structure on A/(T), the space of 
bounded measures on T, by taking 

fi(p.«)**(p'.»')= ]C ciP'9,p',q',p",qn)kp\<i") 
(P".«")6T 

for two Dirac measures and, more generally, for all p and 1/ in Af (T) we have 
P*'/= Yl E M(».iM*iO*(W) **(*.')• 

(i,j)er(*.i)eT 

Proposition 2-1: With the convolution *, the invoiution ip,q)~ = ip,q) and the 
unit element (0,0), (T,*) is a commutative hypergroup with the Haar measure 

E *P«*(PI«) an^ ^ " ^ ^ + w , t ^ ^ a n c ^ e r e ' measure dmn(A, fl). 
(p.«)eT 
Remark 2-1: This hypergroup has been cited in [1] page 145. 
Deflnition 2-1: i) By a random walk of law p on iT, *) we mean every Markov 
chain on T with markovian kernel 

P ( ( U M ) = ( ^ . » • / O W , A C T, ( i . j ) G T. 
The iterated kernels of P are given by 

Pin){ii,J),A)~iS(iii)*p*)iA), 

wbere pn = p * p * • • • * p, the ntk power of convolution of p. 
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ii) We say tbat the probability ponT is adapted if the hypergroup generated 
by mean of the convolution structure * by the support ofp is equal to T.(See [4]). 

Taking r = cosA, the polynomial Q),", can be written as 

O M ) := Q i # M ) = r ^ I / , ( c 0 s f l ) r ^ - 3 ' ' + I ) ( 2 r 2 - 1), 

where Ug is the Tchebycheff polynomial of the second kind of degree q. 
We denote by MiiT) the set of probability measures on T. The Fourier 

transform of a probability p in Mi iT) is the function given by 
pix,e)= Y, PiP^Q^iKe). 

(p.«)eT 
For a random vector iX, Y) of law p on T, we have 

A(A,<?) = IE(Q(;iV(A.fl)) 
and for p and v in M|(T) , we have the relation 

p7uiX,e) = piX,9)ùiX,0). 

Deflnition 2-2: For a probability // on T, we define the numbers Vj(/i) and ^ ( / i ) , 
if (hey exist, by 

*(/0 = |:/iM)l .= E M P ^ I T O ^ U ' 
•°0 (P,«)€r 

V2ip)=^-2pir,0)\^=- E P(P'l)^QlP>'6)Ur 
W •D0 (P.»)eT ^ 

Proposi t ion 2-2: For (p, g) G T, wc have 

Vii6lp,9)) = ^zT)ip7 ~q7 + (4n " 2 ) p + (4r, " 6 ) 9 ) 

!

1 

i ( 9
2 + g - 2 ) , / o r a / / ( p , 9 ) G r a n d 9 > I 

1 , / o r a / / ( p , l ) G T 
0 , / O r a / / ( p , 0 ) G T . 

Propos i t ion 2-3: For every p and v in Mi (T), we have 
Viip * u) = Viip) + Viiu), i = 1,2. 

Notat ions 
i) In the following, we denote Vi(6(piÇ)) = Vj(p,g), i = 1,2. Then V^p) 

can be considered as the integral < Vi,p > of the function Vj- with respect (o the 
measure p. 

ii) We mean by Sk = iXk,Yk), the position at the instant k of a random 
walk of law p in iT,*) starting from (0,0). 
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Lemma 2-1: The processes 
8(n - l)ViiSk) = X2

k- K*2 + (4n - 2 ) ^ + (4r. - 6 ) n , 
fyà

2 + n - 2 , i /n^{o, i ) 
3v2(st)={ i , t / n = i 

[ o , t 7n = o 
arc two positive submnrtingales. 
Lemma 2-2: Let ViSk) = T* be a positive submartingale. Then thr sfqnrncr nf 
random variables k'^T^ converges to zero almost surely. 
Corollary 2-i: The sequences of random variables ik^Xk)^^!^ and(l'~2l/jb)tfi4 
convrrgr to zero almost surely. 
Corollary 2-2.(Law of Large Numbers) : We suppose lhat p has a moment of 

order 2. Then lim f 4 i . ^ r ) = (0.0) , a.s. *—+oo\ k k / 
3. The Limit Central Theorem . 
Proposition 3-1: For every fl G III and A G ni+, wc haw 

Un. J E J / ^ ^ U ^ y ( c o s A ) ) = e-.ïc-"\ 
i_-+0o V( r t 4 - l ) s in -^ X>-YkK y/k'' 

where a and b arc two positive constants depending only on p. 

Corollary 3-1: For fixed A,fl, wc have 

Remark 3-1: Letp G Af|(IR+xlR+), these* of probability measures on 111+ xITL,. 
The HankeJ-mixcd (ransform of p is defined by 

«i.2n-3(/i)(A,fl)=:^y "J 00Ai(flx)A2n_,(Ay)/i(dxdy). 

If we consider the density of probability /i1(i,y) with respect to the Lebesgue 
measure on 111+ x IR+ given by 

piix,y) = 2 j | a - ? ( 4 6 ) - ( 2 n - 2 , x V n " 5 e " ^ e ~ ^ , 

then : nl2n_3ipt)iX,0) = e-'^e^. 
The Paul Levy continuity theorem is available for the transform Tii 2n_3, 

(see [3]), so we have 
Thorem 3-l.(Limit Central Theorem): Let p e Mi(T) be such that 

- p is adapted, 
- the random walk of law p onT has a moment of order 2. 
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Then (he sequence of random vectors ik^Xk^^Yk) converges in law when k 
tends to infinity to the random vector whose probability density is given by 

2 J | a - f ( 4 6 ) - ( 2 n - 2 ) x y 2 ( x 2 - y 2 ) 2 - ^ - 1 ^ 1 ^ - ^ x > 0,y > 0,x > y. 
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INVFRSION OF T11R WF.VI. INTPHRAI. TRANSFORM ANI1 THF. RAUON 
TRANSFORM ON Kn IffilMfi OKNERALIZED WAVELETS 

M.AMOUROU-K.TRIMECnE 

Presented by J. Arthur, F.R.S.C. 

Ahstracl: We use Ihe generalized cominuous wavelet transfonn associated wilh Ihe Bessel operator on 
|0.+"»I, lo derive inversion formulas for Ihe Weyl integral liansfonn and Ibe Radon Iransform on E , n 2 2. 

I. The Wevl Integral transform. 

Rotations : We denote by 
- UXx^'dx) , p € [1, + ««I, a > - 1/2, the space of measurable functions f on [O,*00! such 

that r^x^x2 0*1 dx<+~. 
- t'dO,*00!, dx) Ihe space of integrable functions on 10,+«>l with respect to the Lebesgue 

measure 
- L'TCtO,**"!, dx) the space of essentially bounded functions on IO,*»»! wilh respect to ihe 

Lebesgue measure. 

1) Fourier-Bessel transform—Generalized convolution product. 
The Fourier-Bessel transform 5*(f) of a function f in L^x20* 'dx) is defined by 

V X e B , ff(0(X) = J 7 f(x) ja(Xx)x2a+1dx, 

where ja(s) = 2ar(a+l) s"0 Ja(s), with Ja the Bessel function of the first kind and order a. 

Remark: For each X £ Œ, the funclion x —> ja(Xx) is the unique solution ofthe equalion. 

Lau = - X 2 u , u ( 0 ) = 1, 1/(0) = 0, 

where L„ = - ^ + •2^14- « the Bessel operator on lo,+«»[. 

The generalized translation operators T , x ^ 0, are defined for smooth functions on (O,*00! by 
Txf(y> = W^TUrSo fcVxW^xycoseKsine^de. 

The generalized convolution product of two smooth functicms f and g is defined by 

V x i 0, f» gix) = J ^ Txf(y)g(y) y2"*'dy. 

For the properties ofthe Fburier-Bessel transfonn and the generalized convolution product, we 
can see [3] and [4). 

2) The Wevl integral transform. 
The Weyl integral transform Wa is defined in f4] fbr suitable functions on (0,+»I by 

v > ^ . wa(f)(y) = ^ ^ f e j ; ( x V ) - " ^ ) x dx. 
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For f in L'(x2 a + 'dx) the function Wa(f) belongs to L'dO.-H»!. dx). and we have the relation: 
&(!) = & oW (f), where S*,, isthe Fourier-cosine transform defined on L'U©,*00!, dx) by 

V X € E , y o (0(X) = J7 f(x)cos(Xx)dx. 

The Riemann-liouville integral transfonn B a ls defined on Loo(l0.+«»|, dx) by 

RemarksifDForalIX e R and x^Owehave: ja(Xx) = Ba(cos(X.))(x). 

(ii) For ail f € L^x2 0*' dx) and g C L">(10,+«»1, dx) we have 

J ^ Wei{0(y) g(y) dy = J^ f(x) Ba(g)(x) x ^ ^ d x . 

II. The Radon transform on R n . 

Notation : We denote by Lp(Rn), p € 11, + «J. the space of mesurables functions on B n such that 

for p e [1. + ~ l , HfJL = ( L B |f(x)|P dx)"P < + ~.and ||flU= "* s-PVM < + 00-

Let f be a function on Rn, integrable on each hyperplane in R". We define the Radon 
transfonn Rf of f by 

Rf(e,s) = R^s ) = j < x Q > = s fix) dm(x), 

where <,> denotes the usual inner product in Rn, 6 in the unit sphere S n ' of R", s € R n and dm 
is the Lebesgue measure on the hyperplane {x € R 0 : <x,6> = s}( see [11 ). 

Forf € L'(Rn) and 66 S""1 the function R^f) belongs to L'(R), and we have the identity : 

/ ( s 6 ) = (Re0A(s).where A denotes the usual Fourier transform defined on L'(Rn) by 

h(X)=JKn h(x)e-i<x'x>dx. 
Remark : Let f(x) = ^(||x(|) be a radial ftinction in L'(H0).Then Rf is independent of 0 € Sn' 

and we have the relation 
_n/2 

(n.i) V = ifew<"-2"2(fo) 

Notation: We denote by L^S"'1 x R) the space of essentially bounded functions on 

S"'1 x R, with respect to ihe measure d8dl,where d8 is the surface measure on S n ' . 

The dual Radon transfonn 'R is defined on L^S""' x R) by 

'RgW-J^, g(e.<x,e>)de. 
S£mark;(i) For all f € L^R") and g £ L"(Sn' x R) we have 

Jsn-Jk Rf(e.S)g(9.S)dsde=JKn f(x)tRg(x)dx. 

(ii) If g e ifOR) then 'Rg is radial and we have the relation 
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III. Generalized wavelets associated with the Bessel operator. 

1) Classical continuous wavelet transfonn on Rn. 
The classical continuous wavelet transfonn on Rn,is defined for regular functions by 

4"J(f)(a,b)=JEn f(x)g°b(x)dx, a>o.b € Rn, 
where gj^lx) = a"" ^ g((x-b)/a) and g ia a classical wavelet on Rn, i.e.a function in L2(Bn) 
satisfying the admissibility condition: There exists a constant 0 < Cg<+ », such that 

0° - TlKaX)!2—, for almost every X € R". 

This transform is studied in [2]. In particular we have the following inversion formula. 
(ULl) f(x) = ^ J^ (JRn ^(0(a,b)gib(x)dx) - ^ , a.e. 

where both f and f areinL'(Rn). 

We prove also another inversion formula. 
Theorem 111.1: Let g € L2(Rn) be a classical wavelet such that g c L°°(Rn).Then for 
f 6 L2(Rn) and 0 < e < ô < ", the function 

fe,8(x)e,^JÎjB" ^W^KbMto)^ 
belongs to L2(Rn) and satisfies: ] > m iif6,6 " flb - 0. 

2) Generalized wavelets. 
A generalized wavelet is an even ftinction g in L2(x2a* 'ik) satisfying the admissibility condition 

(IIL2) 0 < Cg = J^ l^teXA)!2 7 < »• 
Proposition ULl: Let 0 f g € L2(x2a+Idx) such that O^g) is righl continuous in 0 and 
satislying: 3 Y > 0 such that ^g^X)-3:'(g)(0) = O(XY), as X—> 0*.Then the condition (111.2) 
is equivalent to S ĝKO) = 0. 
Remark: Let g(x)=gQdbcll) be a radial ftinction on Rn. Then g is a classical wavelet on B" if and 
only if g,, is a generalized wavelet assodated with the Bessel operator L(a_2)/2 • 

Let g e L(x2a+'dx) be a generalized wavelet We define for smooth functions on (O,*00!, the 
generaUzed continuous wavelet transform by 

*g(0(a,b) = J^ f ( x ) i ^ ô x 2 a + l d x . a > 0. b ̂  0, 

where g^b(x) = -2â7rTaga(x)' w i t h SaW = ^ S^2)' a n d Tb' b i 0, are the generalized 
translation operators associated wilh Bessel operator L . 

Theorem 111.2: (Plancherel formula) Let g C L2(x2a+1dx)bea generaUzed wavelet Then for all 
f inL2(x2a+,dx)wehave 

p f ( x ) l
2 x ^ d x - ^ j 7 j ; l 4 > 8 ( 0 ( a . b ) ^ 2 - ' d b ^ . 
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Theorem 111.3: (Inversion formula) Let g€ L2(x2a+'dx) be a generaUzed wavelet For f in 
L'fx^'dx) such that ff(f) belongs to L^x^'dx) wehave 

f(x) = ^ J 7 (J7 *g(0(a,b)g.>b(x)b2o+,db)i. a.e 

Another inversion formula is as follows. 
Theorem 111.4: Let g£ L^x^'dx) be a generalized wavelet such that D:'(g)£L"(|o.*«»[ A)Then 
for f in L2 (x20* 'dx) and o < c < 6 < «», the function 

f ̂  5(x) = ̂  J^ JJ *g(0(a,b)ga>b(x)b2-1db 4 

belongs to L2 (x20* 'dx) and we have: lim Ilf6'6 - fj^a •" 0 -" e—0,6—•» 
i v I ^pvprsinn of the Wevl integral t r i f o r m and the Radon transfonn on Rn, using, 
gyperalized wavelets. 

1) Inversion of the Wevl integral transform. 
Proposition IV.l: Let g € (L1 n L2)(R) be an even classical wavelet such that | € L'(R) and 

satisfying 
(IV.l) 3 y > 2a + 1 such that gfX) = 0(Xr), as X —> 0+. 
Then 

(i) The function Bag is a generalized wavelet in L2 ( x 2 0 * ^ ) such that D'(Bag) belongs lo 
L-([0,+«t.dx). 

(ii) For all f in L^x 2 0 *^) we have the relation 
*^(0 (a ,b )= ^ 7 B a l S ; ( W a 0 ( a . . ) l ( b ) . 

From this proposition and Theorems 111.3, 01.4. we deduce the following inversion formulas 
for the Weyl integral transform. 
Theorem IV.l: Let g € (L1 fl L2)(R) be an even classical wavelet such that « € Ll(R) and 

satisfying (IV.l). Then 
(i)For aU f e LVX2"* 'dx) such that ^(O ^ L^x^'dx) we have 

f ( x ) = ^ F - J T C Ba[5/(Wa0(a,.)l(b) (Bag)aib(x) b^'db) - ^ j . a-e. 

iii) ForaU f in (L1 D L2)(x2a+'dx) and 0< e< 6 < «», the function 
da f C , 8 ( x ) = ^ - j ! JT BoISi<Wa0(».)l0»)(Bog)1,b(x)b2a+,db-s^7 

satisfies: lim Ijf^0 - f|l2.a = 0. 

2) Inversion of the Radon transform on Rn. 

proposition 1V.2: Let gc (L1 n L2)(R) be an even classical wavelet such that J c L (R) and 
satisfying 
(rv.2) 3 y > n - I such that i(X) = 0(XV) , as X -> 0+. 
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Then 
(i) The function 'Rg is a radial classical wavelet on Rn such that ('Rg) A € L^R0). 
(ii) For all f in L'(Rn) we have 

^ ( 0 ( a , b ) = aC-»^ Jgn-i ^(RgOCa, < b,e>)de. 

To inverte Rf for radial fiinctions f on Rn, we use Relation (II.l) and Theorem IV.l. For 
general functions f on Rn we deduce from Proposition IV.2, Relation (III.l) and Theorem 111.1, the 
following inversion formulas for the iransform R. 

Theorem IV.2: Let g€ (L1 fl L2)(R) be an even classical wavelet such lhat # e L'CE) and 
satisfying (IV.2). 

(i) ForaU f in L^R") such that / belongs to L^R"), we have 
f(x) = F5-j7[IlR- ^s-1 isi'^^m^b^m^i^dh]-^^,^. 

^-'RS a 

(ii) For all in (L1 fl L2)(Rn) and 0 < e < S < «, the function 

f £ " 6 ( x ) = ^ - J ^ JE 0 (Jsn-i 5f(Re0(a.<b.e>)d9)( lRg);4 ) (x)db^0 7 T 
•Rg 

satisfies: Iim flf^-ffc-o. 
e—0,8—+~ 
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A note on rings with projective socle 

John Clark 
Presented by I. Halperin, F.R.S.C. 

Abstract 

We present an example of a right hereditary ring for which the lefl socle is not projective, 

in response lo a remark of Xue Weimin. 

1 Introduction 

Tliroiiglioiit this note all rings have an identity. In [5) Nicholson and Watters call a ring R 

a left PS-ring if its left socle Socfo/Z) is projective as a left .R-module. Right PS-rings are 

defined similarly and in (5) an example is given of a left PS-ring which is not a right PS-ring. 

A further instance of this asymmetry is given by Xue Weimin in (7] with an example of a left 

semihereditary ring that is not right PS. Xue notes that his example is not left hereditary 

and raises the question of whether a one-sided hereditary ring must be PS on both sides. We 

respond here with an example of a right hereditary ring R which is not a left PS-ring. 

2 The example 

Let S be the ring of aU eventually constant rational sequences. Thus 5 is obtained by adjoining 

a unit to Q'^', the direct sum of countably infinitely many copies of the field of rationals Q. 

Then S is a commutative countable von Neumann regular ring and so, by (3, Theorem 1], is 

hereditary. 
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If {oi.aj, . . . ,an.a,a,a,. . .) is an element of 5 which is eventually constant at a and if 

6 € Q then the multiplication 

(ai, 02,. . . , On, a, o, a,.. .)6 = afc 

ensures Q as a left 5-module. With the obvious right Q-modulc multiplication, Q is then an 

5-Q-bimodule. Thus we may form the generalized triangular matrix ring 

R = 
S Q 

0 Q 

Since Q is a field and 5 is a von Neumann regular hereditary ring, it follows from the upper 

triangular analogue of [2, Theorem 4.7] (a special case of [6, Theorem 5|) that R is right 

hereditary. 

We now show that R is not a left PS-ring. To do this we employ a part of (5, Theorem 2.41 

which shows that R is left PS if and only if for each maximal left ideal L of R cither L = Re 

for some idempotent e in fi or the right annihilator r(L) of L is 0. 

It is easy to see that 

L = 
Q(N) Q 

0 Q 

is a maximal left ideal of fi which is not generated by an idempotent. On the other hand, 

Q(N) Q 

Q 

0 1 

0 0 
= 0 

so that r(L) ^ 0. It now follows from above that fi is not left PS, as claimed. (As an alternative 

argument, it is straightforward to see that, for the minimal left ideal K generated by 

x = 
0 1 

0 0 
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if we define / : fi -» K' to be right multipUcation by x then / is an epimorphism which does 

not split and so Tï" is not projective.) 
A, 

FinaUy we note that the ring fi has featured elsewhere. In particular, it appears iu [4] 

« as an example, attributed to L. W. SmaU, of a right hereditary ring of left global dimension 2 

which is finitely generated over its centre. Its opposite ring also appears as Example 2.3 of [1] 

(as an example ofa left hereditary ring module-finite over its centre in which there are principal 

right ideals tha t are not projective). 
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QNDELFTTES SUR I'INTERVALLE ET 
OPER ATK11RS D'EXTENSION 

A IOIIIN1 .ICTRIMECHE 

Presented by P.G. Rooney, F.R.S.C. 

Résumé 
L'objelde ce navail esl deconsmiiro des opéreleuistrexlension sur ks espaces de Sobolev 11 (l-^.Oj) 

et HQ (IO,*»»!), k i 0, Ufa à des analyses multirfsolulioiia sur cbaque demi-droite. Ces extensions permeltenl 

d'obtenir des bases d'ondelettes biorthogonales à support compact de L (S) adaptées i l'étude de l'espace de 

Sobolev H^R). Nous décrivons aupaiavant les analyses multirésolutions orthogonales et biorthogonales sur 

l'inlervaUe. 

L'idée générale consiste à diviser un intervalle I en deux intervalles I, et I2 

(décomposition du domaine [1]), de construire deux analyses mulliiésolutions 
biorthogonales respectivement dans L^I,) et L2^) (espaces des fonctions de carré intégrables 
sur I. et L par rapport à la mesure de Lebesque), el ensuite, d'appliquer certains opérateurs 
d'extension "naturels" pour obtenir une analyse multirésolution biorthogonale de L (I). Plus 
précisément, ces opérateurs d'extension conservent la compacité des supports des fonctions de 
base, leur régularité ainsi que la localisation en temps-fréquence. 

Pour réaliser une telle construction, il faut savoir auparavant définir la notion d'analyse 
multiiésolution sur un intervalle [6). Pour cela nous partons de l'analyse orthogonale Vj(IR) de 
I. Daubeehies [2] à fonctions d'échelle 9 et ondelette associée tp, et on note : 

VjdO,!])-Vectfcpjj^,, , <pj>k CVjdR)} 

et 
V.a0.1]) = Vect{(pjJl, supp ̂ €[0,11} 

Définition I : Une suite {VJjyde sous-espaces firmes de L2(f0,lf) est dite une analyse 
multirésolution surL2(fO,If) associée à V.(Il) si elle vérifie : 

i)V*f0 . VflOJl) CVj CVflOAf) 
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La proposition suivante décrit une base du supplémentaire (non orthogonal) de V. dans 

Proposition I : Soirj0 le plus petit entier vérifiant 2 > 4N-4. Pour j >J on note : 
Xj = VecthJJl.0<kï2>-2N+l;vJ&l2k,2>-2N*2ïkï2'-N ; Vj^^j^kïNJ}. 
Alors 

i)dimXj = 2 
ii) il existe J telque VjïJ. VJtl = V. ÛX. 
Pour obtenir des bases orthonomiées d'ondeielles sur l'intervalle |0,1|, il suffit 

d'orthonormaliser par Gram-Schmidt ([3], [4]). La différence entre ces bases est dans la 
constniction de Vja. Nous allons introduire maintenant la notion d'analyse multirésolution 
biorthogonale sur l'intervalle. 

Définition 2 : Une analyse multirésolution biorthogonale sur I?(/0.1f) associée à une 
analyse multirésolution biorthogonale (V/Jl) .V*.(&)) de L2(fi) est une suite de couples 
(V.. V*j) de sous-espaces fermés de I?(IO.If) telle que : 

i) VjdO. If) CV.CVjffOJf) et Vj(|aiDc V* c: \]<\0,\\). 

Hi) L2(10.I1)=V.&&])*-

Soit (Vj(R), Vj (R)) une analyse multirésolution biorthogonale dc L2(IR) à fonctions 
d'échelle conjuguées (g, g*). On suppose que supp g = INp N2' et on note : 

Pf(x)= ^ k ^ x - k ) ; l f(x)- J^k^x-k) 
k i -N, - ! It2-Nj*l 

Notre construction est décrite par le théorème suviant : 

Théorème I : Soit (V.(JS) , vJ(]R)) une analyse multirésolution bionhogonale de I?(JS) à 
fonctions d'échelle conjuguées (g . g*) à support compact, et (V., \j) celle de L2(/0,I1) 
associée à (Vïfl), v j ( ^ . On suppose que : 

(i) g est derivable de dérivée g'(x) = g(x) - g(x -1) 
(il) V. contient les demi-constaïues : 

P^j - P?(2jx)^0j] et P^ - pP(2jx - 2 V 1 I -



90 A. Jouini and K. Trimeche 

SI on pose: 
Vj= {fleL2(/0.W/3geV../= g'} et Vj= {ftÛ(IO.IJ)/ft V.etfïO) =/(/) = 0}. 

alors (Vj.vJ) est une analyse multirésolution biorthogonale de L2({0.1f). De plus, si Pj (resp 

Pj) désigne le projecteur oblique de L2(f0.II) sur V. (resp Vj) parallètemem à (v j ) x (resp 

(Vj)1 ) alors on a la formule de commutation suivante : 
à n * à 

Un exemple fondamental est obtenu par d dérivations et intégrations à partir de 
l'analyse de 1. Daubeehies. En plus l'analyse multirésolution biorthogonale obtenue est adaptée 
à l'étude des fonctions régulières des espaces de Sobolev Hka0.1]l et H~k(|0.ID (keZ). 

Nous décrivons maintenant les analyses multirésolutions biorthogonales segmentées 
(sur chaque demi-droite) et les opérateurs d'extension associés. Pour cela, on divise IR (l'axe 
des temps) en 1-», 0] (le passé) et [O,-*»! (le futur). Le temps l = 0 correspond au présent. 

Soit V (E) l'analyse multirésolution de I. Daubeehies. On définit les opérateurs 
d'extension "basse fréquence* E. et E'- par : 

Ej : V^J^.O]) > VjflR) ; EV : ^((O,-^!) > ^(R) 

'PjM-.Ol ^ j i VjMO.-̂ l >cpjJc 
et également les deux opérateurs E0 et Eu d'extension par 0: 

E^ : L2(]^, OJ) > L2(]R) ; E^ :L2([0,+«»l) >L2(IR) 

f ~ > f : ' / |—,01"^* /(B)1/J0.~I=0 f—>^ :^ / j o , ^ ^ ' * /\]R\|0.+~| = 0-
On a alors le résultat fondamental suivant : 

Théorèmel 
m 

i) Il existe une analyse multirésolution biorthogonale. ( V. (f-°o, 0j).V. (f-00, Of) ) de 

L (fM. Of) et une analyse multirésolution bionhogonale ( V. (/O, +~/) , V. (fO, +~/; ) de 

L2(fO, *«>[) telles que si on pose Vj = Ej (Vj (/-«, Of) ) GEj (Vj (/O. +<*>/) ) et 

V* = Eo(vJ(J-«>,OJ))eEo(Vj(lO,+»0) oiors ( */.VJ) est une analyse multirésolution 

bionhogonale deL2 (M. 

ii) On considère les espaces W. (f-*>, 0] ) = V^t (f-*°, Of) n ( Vj /-«>, 0) ) J 

et W j (;-~. 07) = V* 1 (/-~. Of) n (Vj (y-». Of))2. On définit de même les espaces 

WjUO.^Det^dO.^f). 
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Si on pose : 
W.= E.fW.a-oo,Of)) GEJOVJOO. *°°l)) et w j = E^(wJ(l-<x..O|))©E*'(W*(|0.+<»l)>). 

alors W. et \N .sont en dualité pour le produit scalaire del? (JSlet on a: 

V . ^ K t f W ^ V ^ - V ^ W , . 

HI j Si on pose : 
V^CI—.OI) = {f € L2(1-~,0D /3g € Vjd-oo.OIXf = g'} 

et 
v5"I)(|-«t0D = {f eL2(l-«»,01)/ f e V*(|- «»,0|) et f(0) =0} 

alors (V(-,)(l-o<>,0D,V^~,)(|-«»t0J» est une analyse multirésolution bionhogonale de 

L2(f-<*>, OJ). Il existe aussi une analyse multirésolurion bionhogonale de L2(fO,+0°l), notée 

(\f (/O, *<*>l) .\{~l)/0,^f). 
iv) Si on définit V^5 et V^ de la même manière que (i) en remplaçant 

VY/-00. OJ) par \{Pi\ - ~,01) et V*(| - «>.0j) par V j" ^(l - «-.OD (de même pour ks espaces 

définis sur fO,*™/) alors (V^.vj- 1 ') est une analyse multirésolution bionhogonale de 

L2(Sl). Dc plus, si P (resp.pV) désigne le projecteur oblique dc l}(JS) sur V. (resp. \ i 

parallèlement à ( v j ) 1 (hr5;pi(V^"I))J'),atori ona: 

-loPj = PV)of. 
dx J ' dx 

Conclusion 
Les opérateurs d'extension E. et E". sont fournis par construction et conservent la 

régularité et la localisation des fonctions de base. Si on suppose que la fonction d'échelle (p 
est de classe Cp+E et on itère le processus décrit ci-dessus, alors l'analyse multirésolution 
(V(.d)(J-«>,01XV("d)(J-oo.0])) est adaptée à l'étude des espaces de Sobolev H^J-00, 0]) et 
H^d-ooOl) pour G^kip-d (ou H-k(H»,0|) et H^(|-<».0|) pour 0<k<d). On a la même 
propriété pour l'analyse biorthogonale (Vf ^O,+«1 ), ^ A \ P, * «•))) de L2(|0.+«»|). 

Par suite, l'analyse multirésolution biorthogonale (V^.V^' 0 ) de L2(IR) est adaptée à 

l'étude des espaces de Sobolev Hk(IR) pour 0<k<p-d, et H"k(E) pour 0<k<d. 
Nous signalons enfin qu'une deuxième construction d'analyse multirésolution 

biorthogonale segmentée est explicitée dans L2(|-l.l |) en partant d'une analyse 
multirésolution symétrique dc L (E) ([S]). 

Nous avons montré dans ce travail qu'on peut construire des analyses multirésolutions 
orthogonales (ou biorthogonales) de L2(I0.I j) engendrées par translation et dilatation à partir 
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d'un nombre fini de fonctions de base. Le processus de "dérivation et intégration" permet 
d'engendrer des nouvelles analyses mulliiésolutions adaptées à l'étude des fonctions régulières 
sur [0,1]. 

Les analyses multrésolulions segmentées inontrenl qu'on peut analyser un signal ou 
une fonction à l'aide d'une information dans le passé, d'une relaxation du passé dans un futur 
proche, et d'une information dans le futur propre. 
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STARXIKENESS OF CERTAIN INTEGRAL OPERATORS 

Li Jian Lin and H.M. Srivastava 
Presented by P.G. Rooney, F.R.S.C. 

Abstract 
The object of this paper is to investigate the starllkeness of a certain class 
of integral operators which are defined for analytic functions. The result 
obtamed here extends and sharpens some recent results due to Kim et al. 
[I], Owa et at. (6], and Miller and Mocanu (3). 

1. Introduction 

Let A denote the class of functions of the form: 
oo 

/(r) = z + X]0"*n. 

which are analytic in the open unit disk ll = {z : z e C and \z\ < 1). A function /(z) 
belonging to the class A is said to be starlike of order a if it satisfies the inequality: 

s J i £ i f > | > a ( 0 < a < l ; * e U). (1) 

We denote by 5*(o) the subclass of A consisting of functions fiz) which satisfy the con-
dition (1). We note tbat 5*(a) Ç 5'(0) = 5* (0 < a < 1), wbere 5* is the famiUar class 
of starlike functions in ll. 

Miller and Mocanu [3] developed a general family of integral operators which map sub-
sets of A into 5 ' , and which includes many of the previously considered integral operators. 
Their results provide an exlension and improvement of numerous earlier results (see also 
Kim et al [2]). By applying a result of Miller and Mocanu [3], Kim et ol. [1] proved 

Theorem 1 (Kim et al. [I]). Let fiz) 6 S'tf) and giz) e 5*(/3). Suppose also that 

£ i {/(0}Og(0«T-'«fe} ( a > 0 ; 7 > 0 ) . (2) 

Then Fiz) € S'i0). 

More recently, Owa et al. [6] proved a generalization of Theorem 1, which is recalled 
here as 

Theorem 2 (Owa et al. [6]). Let fiz) 6 S'im) and giz) 6 5-(t?2). Then the function 

Fiz) defined by 



94 L. Lin and H. Srivastava 

H') == { 7 + a*1",? £ {/(«))"ff(<)«1'-l-,, A}* 0+1'̂  (3) 
(o r>0 ; 7 > 0 ; 0 < ! / < » ? , ; o i / i + f » - 1 7 < 1 ) (4) 

belongs io the class 

Clearly, by setting 171=% and 17 = 0 in Theorem 2, we arrive at Theorem 1 of Kim et 
a i [lj. In this note, we make use of a result of Mocanu et al. [5] in order to estabUsh a 
theorem which wiU weaken the hypothesis of Theorem 2 while sharpening the conclusion. 
As an appUcation of our main result (Theorem 3 below), we also sharpen some results of 
Miller and Mocanu [3]. 

2. A Preliminary Lemma 

We shaU need tbe following Lemma to prove our main result. 

Lemma (Mocanu et a i [5]). Let fi > 0 and j9 + 7 > 0, and consider the integral 
operator /^|7(A) 

h.iWiz) = { ̂ 2 j f [h{t))0 r-> dt} ihiz) 6 A). (5) 

Ifpe[-y/0,l),hiz)eA,and 

then the function 

is analytic in ll and satisfies the inequality. 

xfijffizWinW.-M^iHiz)}, (6) 

tuAere 

*(*)•= 1 ( -1 1 
0 J tH+i-iil - zt)*P-W dt P 

0 

This result is sharp and Wip;P,f) > p. The extremal function is given by 

Goiz) := / , . , (*) (*) (kiz) := z(l - *)«<"-») . 

R e m a r k 1. More general forms of the Lenuna may be found in the work of MiUer and 
Mocanu [4]. 
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3 . T h e Main Result and I t s Consequences 

By appealing to the Lemma, we shaU prove our main result contained in 

Theorem 3 . Lei a, 0, 7, 6, and a be real numbers satisfying 

« > 0, 0>O, <r > 0, and fi + y = a + S > 0. 

Suppose that the function $ (z ) is analytic in U and satisfies the conditions: 

*(0) = 1 and Qiz)?0 (z € W). 

Vfi*) € S'irfi) and giz) g 5*(jfc), tAen tAe function Fiz) defined by 

F{z) := J(/,,)(z)= {^±Iy ^ { / ( O r W O ) ' * ' - ' - 1 * } 1 , (7) 

imtA 

S + arn+ith-l)<r>0, (8) 

satisfies the inequality: 

* { i $N f a 2 }^M <"«>• (9) 

u/Aere p = [S + arji + ai/j — tr — f)/0 and W(p; 0,7) is given by (6). This result is sharp, 
the extremal function being given by 

Foiz).= Jikuk,)iz) 

(ktiz) := zii - z ) ^ " - 1 ) ; ktiz) := z(l - z)2*" ' -1 ' ) . 

Proof. In terms of the functions / ( z ) € ^•(iji ) and y(z) e S'irft), we define the function 

Then A(z) € A and 

f z A ^ z ) ! f^+T-f zfiz) ^ zg'iz) S-y-a] 
I &(*) / I P ' fi') +0' 9i*) + fi J (11) 

>S + œlt+am-o_y ^ ^ 
P P 

Setting p = (tf + a»;, + {tr\2 -a - y)IP, we see from (8) that p 6 [-yIP, 1)- Hence the 
function A(z) satisfies aU the conditions of the Lemma. A simple calculation shows that 
Fiz), as given by (7), can be written as 
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- , v _ W*>)(») _ Gjx) 
F ( ) " WOP?? {•ÔÔP^* { ' 

where Ĵ ,-, is given by (5). Consequently, applying the Lemma, we conclude that 

For the functions 

and 

we see tbat 

fc1(z) = z( l -z ) J ( , "- , >6 5'(i„) 

fc2(z) = z ( l - z ) J ( '" - , )6 5*(i?2), 

fcl(2){^pW{Mf)p = fc(2) = .(1_^-o 
and 

Hence the sharpness of the assertion of Theorem 3 foUows from the Lemma. This evidently 
completes the proof of Theorem 3. 

Remark 2. In Theorem 3, p and W(p;^,7) may both be negative. If p > 0, then we 
see from the Lemma that Wip;0,y) > 0. In the case when 

max{t:W1'-}} = f'0^(,<1' 
the value of W(p; ft, y) given by (6) can be replaced by 

1 ( (B + t'SZ-W1-'') "I 
ff^'-g'-1' = ?U|WV/i+7;/.*^;-irT}- <14) 

where jFi denotes the Gauss hypergeometric function. 
Remark 3. Integral operators of the type (7), involved in Theorem 3, are becoming 

increasingly useful in the study of such subclasses of analytic and univalent fimctions as 
the class S'io) (c/., e.g., [3] and [6]). Indeed, by assigning appropriate special values to the 
various parameters involved in Theorem 3, we can derive several consequences of Theorem 
3. Only one corollary and three examples wiU be listed here. 

If we set *(z) = 1, «r = l , )9 = O + 1 - I J , Bndtf = 7 + l - i ; m Theorem 3, we obtain 
the following 

Corollary, tet fix) G 5*(iji) ond gix) € 5*(»ja). Then the function Fiz) defined by 
(3), witA 
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« > 0 , 7 > 0, and i; < otiji+ijj, (15) 

belongs to the class 

S-iWip;l+a-n,y)) ( , : = £ 2 > ± ^ ) , 

tuAere W(p; 1 + a - 17,7) M given by (6) witA ^ = 1 + a - 17. This result is sharp. 

This CoroUary extends and improves both Theorem 1 and Theorem 2. The foUowing 
three examples would improve the coiresponding results of MiUer and Mocanu (3). In 
Example 3, in particular, we have chosen 4(z) / 1. 

If we let *(z) = 1 and 0 + y = £ + a = \'m Theorem 3, we obtain 

Example 1. Let 0 < « < 1, y? > 1, and 0 < cr < 2(1 - or). If / € 5* and s G 5 , ( i ) , 

then 

{**-* £ {My {42.}' dt}* '' eS-iWir,fi,i-0)) (16) 

For 0 = 1, we find from (16) that 

l'{my{myétçs-mr,i,o)) (n) 

where p = 1 — ot — jir and 

*• Ttni \P— l)-

If the parameter a is constrained further by 0 < <T < 5, then 

j - ^my ^ y dtes'iwii-ia/2-,i,o)). 

If we let *(z) =1,0 = 1, and tf = l + 7 - a i n Theorem 3, we obtain 

Example 2. Let o > 0, 7 > 0, and 0 < IT < 2 - a. If /,flr G 5* ( i ) , then 

i±ijo'{my{myfdtes'iwip;i,y)) m 

( p : = l - i a - ^ ) . 

For a = 7 = 1, we find from (19) that 
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ij-^my^s-iwi^i.!)) (.<.s.), 
where 

* 
3(34n3-l) 

W 
( ^ - ) = 

i 1 (ir = l) 

5 ï î ^ 3 y - i ( ' = 0 ) (20) 

If we set *(z) = e*, a = 1, ^ = 2 ,7 = —1, and tf = «r = 0 in Tbeorem 3, we obtain 

Example 3. If / G <S*(»7i), then 

|ze-'jf'rl/(i)dt} €5*(iW(7i;l,0)). (21) 

where W(i7i; 1,0) is given by (18) with, of course, p = «71. 
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MULTINOMIALS IN MODIFIED CLIFFORD ANALYSIS 
Thomas Hempfling 

Presenced by J. Aczel, F.R.S.C. 

Abstract 
A generalized multiuomial tbeorem aud geometric scries expansion for paravi-ctur variables in Cliflbrd 

algebras is presented as a consequence of a modified approach to Clifford analysis. 
AMS subject dassification: 30G3S, Keywords: Clifford Analysis, inultiRoiiiial expansion 

1. Clifford Algebras. Let {V,q) be a quadratic space over the field K (characleristic ^ 2) with dimension 

J < oo, that means V is a «/-dimensional vector space over K endowed with a quadratic form y: V -, K ([Dj). 

Further let « i , . . . , f,i be an orthogonal basis for V (with respect to q). Then tlie (universal) Clifford algebra Cj 

over {V,q) is the associalive algebra of vector space dimension 2'' generated by the products e,, • . . . • e,,, 1 < 

ll < . . . < lr < rf, r € {I,. ..,<(), and I € A'with the relations e.Cj = -tjC, fori j ^ j a n d r j = ~q(c,)l =: -q{e,). 
d 

Every element x of Cj can he written as i = io + 51 z^e* + 5Z z^erev + ... + xi. .,irl •... • ej with unique 
ll 

zv 6 K. Special cases for A' = Dl and the quadratic form q(x) = £] xj are (7, 2 C and Cj 2: H, lho skew field 
vol 

of the quaternions. 
d 

In the following wc identify so-called paravec.lors [8] x — io + JT zueK wilh clciiicnts uf A'1' * ' . We remark 
•>=-i 

that fur such x the n-ih power of x. x", is again a paxavector (G|. Of course paravvctors with viinishing first 
coordinate (XQ = U) can bu iduntifiud wilh vectors, the elements of V tesp. A'''; if Ihc last courdinaic viuiishes 

(Xrf = ()) the piuavivlors will lie i ailed s/iorlciicrf. 

2. Modified Clifford Analysis. Now we spiK;ializc to A' := Dt and, tu gel simpler formulas, q(i) - Yi £i' ' *' 
i j = - I fur > = I n. ('lilfuid analvsis cNii-nils rumplrx analvsis tu Cliirunl aiguillas using a gciu-ialbaiiiiii 

of thu CAUCIIV-KIKMANN ixiiialiuns: SOIIIIMIIIS uf this now .system uf paitial iliffcionnal niuations aro calloil 

Clifford analytic [1] ur in/ular |3 | ur monogenic | l | dupunding what gunuralizatiun is muant. In classical Cliifuiil 

analysis simple fuiiclluns such as polvnumials (and even thu idunlilv map) arc nut Cliffutd analvtic. Ilowovur, 
'' in 

LKUTWILKK [li] usud a "hyporbolic mudificatiun" making f(x) - x", x = xo + J^ x^cv, and lho duiivalivos ^ 
i/=i 

(l/ = 0 , . . . ,rf - I) sulutiuns of his niudifiud systutn uf dilfurunlial i-qtiations, namulv 

'nifâ-H'^ + V-W-'-"' 

Thereby / is a C'1 vurtor valuod funclion / ~ /u + Yl Iv** dofinud un an upun snlisul uf III* * . as ptupusud l>v 

CNOPS \'i\,viv call sulutiuns uf this system hyiwrbottc muiiuyr.nic "llypurlnilii'' moans ihnuby that Lulltwilers 

niodllicalioii is based un thu liyporbolir munir in lho upper half spacu Ui'I' ' insluail uf lho euclidean uuo. As a 

cuiisuqiiuncu, ptnvur series in x 6 Dl'" ' with mil i'ix>fiiciuiils. Iiuitumu livpeiliulio niunugenic. 
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It is natural to have a closer look at the derivatives of tbe n-th power xn when interested in homogeneous 

polynomials which represent hyperbolic monogenic functions. To get polynomials of degree n we study two 

classes-of derivatives: 

3. Polynomials I — and a generalized multinomial theorem. For z € nid+l and any multiindex 
. . <i-i i-i 

* = (Ai,...,«:,,_!) € No , |*| := ]£ *„, Jt! := f] *,!, we define the polynomials 
p s l p a l 

LkU) •= - • al*' I"-H*l 
n l ' *! /fe*'. ../fe*.'-.' 

of degree n. Obviously L*{i) is hyperbolic monogenic. For example L°{x) = x", L}(x) € (z, e„z + i e „ e,,ze„-

2i, l{erxe„ + e„xev),..,] (or k 6 {(0 0). (0 1 0), (0 2 0), (0 1,...,1 0) . . . . } , 

respectively. The multiindex k counts the appearance of e» In the products ev,xe^xe^z... 

An easy consequence of this definition together with the chain rule is the following recursion formula: 

t,»(z)=iLf1.1(i)+£e..L!r1-(z). k-K-ik, *„-!,...,«:,,_,), 
•>sl 

provided L* (z) = 0 if any component of Jb is negative. This recursion could also be used as a definition for our 
polynomials. Another useful observation are formulas for the derivatives: 

5 | ; L*(z) = (n + |fc|)L»_I{z). ^ : t * ( i ) = (fc, + l)L;t ,r(z) (^ / d). 

These look even more pretty when we introduce a "normalized'' version of the Lj; 

in this case the above reads simply as 

g2jLS(i) = ..L*.I(x). gf :L*(x)=nL»t ,
l ' (r) {* * ,1). 

This is just what could be expected from regarding the complex case where 2^- = nz"-', ^ = niz""1 for 
z=x + iyeC. 

The following lemma is the key for the proof of the multinomial theorem: 

Lemma 3.1: For all x € Dld+> and a € Dl (Ae expansions 

Lk
n{r. + a) = f in*k,)a'L*_p{x) and L^x + oe.) = f ( V ) » ^ » ^ ' ^ 1 ) 

P=O p=a " 

with fc + p l , := (fci,..., lv + p , . . . ,fcrf-i) are valid for k = {kt,..., fcd-i) € INjI-1 arid n e No-

The proofs can be clone by induction using the recursion formula. 

For given n 6 INo, fc 6 INj;" ' denote by £ Ihe iterated sum 
p=0 

n n n -po i» -po -p i n-po- . . . -prf-a 

E== E E E •• E 
p=0 posOpi^O pj=0 PJ- l=0 
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Combining the two expansions from lemma 3.1 we obtain 

d - l 
Tbeorem 3.2: Lelne No, fc € N » - 1 • Then for oil x € DV**1 ond all shortened paravectors y = Ito + E V"8" € 

i ^=1 
Dld (Ae expansion 

Wx+v) = t i"T)y? n' ff-M'^-MM 
holds, where k + p:= (fci + pi fcrf-i +Pd-i)-

Switching now to the normalized polynomials LJ introduced above and evaluating 3.2 at x := idC^ and 

» := io + E' JVC,, yields - notation as in 3.2 - : Z£(x) = Ê (") ft 'i''é'MLitP
MM- A m o r e sym" 

p=I p=i> "=0 
inutric reformulation of this expansion is possible by setting q := (p.ri - |;i|) =: (ijo,... ,qd); 

Theorem 3.3 (Generalized Multinomial Theorem). 
ikJr) = E $lt „., H xi- with coofficienLs /,,„_, := L^'^ + " - " ' - ' M = l^ir.,). 

| , | = M P S O 

The oueiririents l^,*.1! Ar*) ran be iloterniiiicd expliritlv; in the special case fc = I) we gel 

Z,»(x) = x" = (x0 + £ x ^ ) " = E ? H - ^ ' - i p i M 
p = l |9|=»» v~0 

which is the paravector equivalent of the well-known multinomial thoorem 

(xo+èx.)^ E =f nn-
p = l lvl--n P = 0 

4. Polynomials II — and a generalized geometric series expansion. Another way to gain homogeneous 

hyperbolic monogenic polynomials of degree n is to cliffcrentiatc not with respect to x but wilh respect to a new 

shortemil variable y e IIId. M / 0; for n.fc.x as above with the limilaliun |1| < » + 1. and y = yn + E H'** 
p=i 

define 

Then again chain rule gives a iccursmn formula: Ek
n{z) = TEk_, (x) + E rvxEk

nZ\'{r). but derivative formulas 

an» not so nasy to MV: for instance 

£/?*(*) = (n + IfcDE*.,̂ ) - (" - 1*1 + 2) E £»:? ''(') 

Same examples are E%(x) = x", £f(x) 6 (x, r„x + xe„, c.vxc., ij.xe,, + (..xr,,,.. .)-
We note that the generating polynomial (yi)"y ran be reproducocl by smiiming up the Ek for fixed n in the 

following way: 

Lemma 4.1: E* »" ' '"" H VÎ'^ÏW = (»*)"!/ 
t = o P = 1 



102 T H . HEMPFLING 

(Here E bas to be understood as in 3.2.) Tbe proofis again by induction using tbe recursion formula. Applying 
k=0 

now geometric series expansion to this result gives 

Theorem 4.2: Ê Tl vS*1'™^ VÏ ftix) = (y - 1 - x ) - 1 for all z € 1R',+' with |z| < fo. 
,1=01=0 P=l 

in the case y = 1 this remains the standard geometric series expansion provided we have set 0° = 1. 

5. Connection. The two definitions given in 3 and 4 are not independent. Another inductive argument using 

all the recursion and derivative formulas above shows for example that 

IVi 1 ^ 1 

fiS(«)= E - E r j w w 
pi=0 p < - i - 0 

and there is a similar formula for producing Lj^z) out of the Ek[x). One consequence of this linear dependency 

is that the Ek aie hyperbolic monogenic, which could also be proved directly. 

6. Remark. The results in the case d = 2 (quaternionic paravectors) have been proved already in (7); 

moreover in this case for fixed n the polynomials Ek resp. L*, |fc| < n + 1 form a basis for the vector space 

of all homogeneous polynomials of degree n representing hyperbolic monogenic functions. This is wrong in the 

case rf = 3 and all higher dimensions (|5|, [6|). 
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MONGE-AMPERE EQUATIONS ON CERTAIN 

MANIFOLDS WTTH POSITIVE FIRST CHERN 

CLASS 

Adncne BEN ABDESSELEM 

Presented by T. Bloom, F.R.S.C. 

I-Introduction. 

Ixl Pnl be the complex projective space of complex dimension m endowed with the 
Fubini-Slmly Kiihlcr metric. In a local chart its components are given by 

2. 
(m+I ) 3 _ Log( I + I z, 12+...+1 z m 12). where Zj = y!- ( I < i < m) and [Z^Z, ZJ 

Xji o 
are Ihe homogeneous coordinates of Pro. This metric is Einstein. 

Let X be the blow-up of Pm at the point (0.1,0 0] . It is the submanifold of 
P m x Pm_l defined by the family of equations ZjYj = ZjYj for i.j = 0, 2 m, where 
(Y0,Y2 Y m ] are Ihe homogeneous coordinates of P ^ . 

Let us denote ii0 (resp. ;i |) the projection of X on Pm (resp. P m . | ) . and by Mp the 
Fubini-Study metric of P (p>2). then g = 2it' 0)m + (m-1) Jt, (!)„,_, is a Kâhler metric 

which belongs to Ihe first Chem class of X. 

There exists an open dense set U of X isomoiphic to C"' on which Ihe components of g are 
given by 
g _ = 2 3 , Log(l+|zl|2+...+ |zml2H(m-l)a_ Log(l-i-|z2|2+...-i-lzJ2). 

Xp Ajt X|i 

In this paper we prove (see corollary I below) that for every \ < —, the Monge-
2m 

Ampère equalion 
Log M(<p) = -X<p + f 

has a solution, where tp is C"* g-admissible on X ( i.e. g" = g + \ - * > ^ • 

M(<p) = del((gg ')) = dcl((6\+V^tp)) 

and f is the C " function on X given by the geometric data: R = g + 3 f. R being 

the components ofthe Ricci tensor relative to the metric g. 
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To prove the existence ofsoiutions, we use the continuity method and we have only to 

prove that solutions of 

Log M(<p) = - Xt(p+f ( 0 < e < t < l ) 

are uniformly bounded, since higher estimates are given by Aubin [3] and Yau [10]. To 

establish the uniform bound of these solutions, we estimate the Tian's constant a(M) (see 

[8], [9] and [2]) and use Aubin's method[4]. 

Anlogous results are proved for the manifold Y which is the blow-up of Pj at points 

[0.1.0) and [0,0.1] . 

We know that X and Y have positive first Chern class, that their automorphisms groups 
are not reductive and that their Futaki invariants does not vanish. So, the Monge-Ampère 
equation defined with X= 1, which is relative to the existence of Einstein-Kâhler metrics, has 
no solution (see [6], [7] ). 

II-Theoreml. 
Let tpeCïX) be g-admissible. Then, for all a < , we have 

^ 6 2(m + l) 
J exp(-a<p)dv < C s , e e x p ( ^ - J (pdv ) 

where dv is the volume element on X given by dvsdetCCgj^-Wdz, Adz | A...AdzmAdzm 

and V = I dv. 
m Jx 

Basic lemma [4]. Let S2 be the two-dimensional sphere, carrying a metric g with volume V. 
Let v be a real function defined on S2, g -admissible. Let us set 

^ • ^ J s , v d V s -•"j where dvs is Ihe canonical area element of S2. 

Then , for ji <-Y* . we have ePv dvs ^ C s , e (dependingonly on P and V). 
JSj 

Proof of Theorem I. 
Let (p(Z|) be the restriction of cp to the set S | obtained by fixing Z2,...,zin in X. We have 

g _ = 2 a _ L o g ( l + | z | | 2 ) + 3 . f, 
II ll ' i t 

where 
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(p(z j) is admissible for the metric g _ .Since the volume of Sj for the meuic g _ is equal to 

V = -*PÏ f g dz.Adz . = 4JI, 
JC iT 

271 1 
using the basic lemma, for ot <-y- = ̂  , we have 

(I) Js. c ^ ^ d v ^ C ' e x p C ^ J ^ q X z ^ d v J . 

Now let us set. for 2<X,\l<.m 

<P(Z2 z m ) 
V- ï f dz.Adz, 

= -^r L ^ i zm) 2JI JS Kât 
and 

•<I-Î f . x dz.Adz, 

V 2 2 2™)S5irJs3 ^(Z' Z m ) H Ï f 

An explicit computation of g _ (z2 zm) gives 
Xp 

g _(z2,...,zm) = (m+l)a _ Log(l+|z2 |2+. . .+ |zm | 2 ) - i -a v, 
Xji Xp Xp 

where 

Log(l+|z2|2+...+ | z m l 2 ) 
V = 2- lzJ2

+...+ U J 2 

Since <p is g -admissible, ip + y is admissible for tlie metric a)m_1 on P,,,., . In [4] 

Aubin proves that a(Pm) = J J ^ - ; this yields, for p < — , 

with dv,,,., the volume element of the metric (ûm, on ?„,., and V|n. | Uie corresponding 

volume. Hence, for a < JJJ^J- , we get 
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f e ' ^ ^ d v , . , S C ^ e x p C ^ - f («p+v) dvm_1) 

and, since y is positive and bounded. 

(2) 
•^m-l 
JP e ^ d v ^ ^ C - e x p C ^ L j V*^). 

Considering cp as funclion of ẑ  and using ( I ), since a < -rrr < j »wc have 

J c-CKp('|) ^ < (̂ ste e X p^— | ^(z^dVj) and consequently 

f e ^ ^ ^ d v ^ C ^ e x p l - a ç } . 
JSj 

Integrating both sides of this inequality over Pm., and using (2), we obtain 

(always fora < -^j ) 

(3) Jp J exp(-a(p{zi zm))dvs(zl)dvm_|(zJ z,,) 
m—1 2 

«SC^expC^-f ç d v , ) . V Jp m - l ' 

Then, comparing the measures dv(zI,Z2,...,zm) and dv$(Z|)dvm.1(Z2,...,znl), and using 

Holder's inequality, one shows (hat for any p and any e > 0, we have 

(4) J x e-PVdvSC^MaxflJp x S , e x p ^ + Op^dVsdv^A 

Finally one shows that 

(5) (-Jp Vdv,) <:€"«. 
m-l 

Choosing P < and e sufficiently small in (4) the theorem follows from (4), (3) and 
2(m + l) 

(5). This lower bound of a(X) allows us to prove the following corollaries: 
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Corollary 1. 

For all X. < — the Monge-Ampère equation Log M(<p) =- tap + f , admits at least one 
2m 

solution cp Cg-admiss ible on X. 

Corollary 2. 

For all X < — , there exists a Kâhler metric g on X satisfying Ricci(g) â Xg. 
2m 

III- Following an analogous pattern we obtain results concerning the manifold (Y, g2). 
where the metric g2 belongs to the first Chem class of Y and its components are given in 
some dense open subset by 

g2. =a . Logd+UJ^IzjlVa . Logo+lzjlVa. Log(i+lz2|2). 
Xp Xp Xp Xp 

Theorem 2. 

Let (pe C~( Y) be g-admissible. Then for a < x , we have 

j Y e - ^ d v ^ C ^ e x p ^ j y «pdv) 

where dv is the volume element of Y for Ihe metric g2 and V2 = I dv . 

As in Theorem I, we have the following two corollaries: 

CQrollaty.a. 
3 

For all A. < TT- , the Monge-Ampère equation Log M(<p) =- X<p + f admits al least one solution 

C°°g-adinissible on Y. 

Corollary 4. 

3 
For all X < g- there exists a Kâhler metric g on Y satisfying Ricci(g) > X g. 
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On the Hamiltonian formalism defined in the 
framework of the Poisson calculus 

Roman 0 . Smirnov 

Presented by J.E. Marsden, F.R.S.C. 

Abstract 
We introduce a new approach lo the Hamiltonian formalism by making use of some basic 

concepts of the Poisson calculus. Certain interrelations between the contravariant exterior 
operator <r and the usual exterior diiferential operator d connected by a Hamiltonian system are 
presented. The idea also is shown to be applicable in the bi-Hamiltonian case. 

1 Introduction 
On a Poisson manifold iM,P), equipped with a Poisson bivector P, one can define the Poisson 
calculus — a natural generalization of the diiferential calculus of forms. It is based solely on the 
possibility to extend the Poisson bracket of functions to l-forms as it was shown for the first time 
in [1] (see also [2]). 

Denote by \k{M) and Vk{M) the spaces of differential Jt-forms and t-vectors (contravariant 
skew-symmetric tensors) respectively. Then P has an associated homomorphism (isomorphism if 
P is not-degenerate) # : Al{M) — V'{M), defined by 

0(a*) = P{a,0], a, J e A'OU). 

This map can be generalized as # : AkiM) — Vk(M), such that 

L>*io0 Qk) = i-l)ku{af of). u;6A*(Af). 

Now one can define a unique R-bilinear operation { , } : .\l(A/)(8lA,(J/) — At(M) given by the 
formula 

{or,/?} = i0#/3 - L0,a - d0(a*). (1) 
This operation provides A^A/) with a Lie algebra structure such that # is a Lie algebra homo-
morphism (isomorphism if P is non-degenerate), 

{a,0)* = [a*,0*]. 

Furthermore, we can define now the contravariant exterior differential operator a : V*(A/) -» 
7*+ 1(Af)for(JeK*+ 1(M)by 

iaQ)iao,...,Qk) = 

Yji-^fiQi0"» â' a*))+ (2) 

•=o 
k 

53 (-l),+iO({«.-.«i).«o."-d""-âi'-••«*)• 
i<j=0 
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where a,- € A^Af), and the hat denotes missing arguments. The formula (2) for the operator a 
coincides with the analogous expression for the exterior differential of forms d and so has the same 
dgebraic properties (for more details see [4]). 

Deflnition 1.1 Given a Poisson manifold (A/,/*). Then a q-vector Q 6 l''(.V/) is o-closed if 
aQ = 0 and a-exact if there exists an q - l-vector R 6 ^«"'(Af ) such that Q = aR. 

Moreover, the action of <r on any Q 6 V*(M) can be expressed as follows [3]: 

cQ = -(P.Q), (3) 

where the bracket is that of Schouten [3]. This remarkable relation leads lo a new formalism for 
the Hamiltonian theory. This is the subject of the considerations that follow. 

2 The Hamiltonian formalism 
Starting from Lichnerowicz's work [6] generalizing symplectic manifolds to Poisson ones, the Hamil-
tonian formalism has also been modified. Thus the most common representation for a Hamiltonian 
system is now 

XH = PdH, (4) 
where XH is a Hamiltonian vector field with H as the corresponding Hamiltonian. While P denotes 
a Poisson bivector, i.e. a skew-symmetric 2-contravariant tensor field satisfying the condition 

[P,P] = 0, (5) 

here the bracket is again the Schouten one. The representation (-1) for a Hamiltonian system has 
the obvious advantage over the classical one: 

iXHu, = -dH. (6) 

for the former one (4) can be defined in terms of a degenerate Poisson bivector, while the rep-
resentation (6) — only in terms of a non-degenerate symplectic form u;. Clearly, we always can 
derive (4) from (6) by using the substitution P := ut'1. However, inverse is not always true due to 
possible degeneracy of P. 

It we apply (3) for Jb = 0, i.e. to a function / 6 V,0(M), we shall obtain the foUowing expression 

of=-[P,f]. (7) 

Then the right hand side of (7) in the index notations (on a local coordinate chart) is given by 

-(P./l'W-l^. 
(we use the Einstein summation convention) which is exactly the expression for a Hamiltonian 
vector field (see (4)). This observation leads to the following 

Definition 2.1 Ut (Af.P) be a Poisson manifold and H € V0(A/) (K0(.W) = C~(A/)) a given 
funclion. Then the a-exact vecior field XH defined by H: 

XH = <rH (8) 

is called the Hamiltonian vector field vnth the energy funclion H — the Hamiltonian. We call the 
triple iM,P,XH) a Hamiltonian system. 
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Proposition 2.1 Given a Hamiltonian system {M,P,XH), then for any Q g r*(A/) the relation 
holds 

LXHOQ = aLxHQ, (9) 

where a denotes the contravariant operator associated with the Poisson bivector P. 

Proposition 2.2 For an arbitrary l-form a defined on a Poisson manifold {M.P) Ihe following 
statements are equivalent: 
t) a l-form a 6 A^Af ) is eroc<; a = df for some f g A0(Af ), 
2) the vector field a* g VliM) iso-exacl (i.e., is Hamiltonian): a* = af for Ihe same f g l̂ 0(Af ) 

Definition 2.2 Let (A/, P) be a Poisson manifold, then two functions f.g £ \ '0( M) are said to be 
in involution urith respect to P iff 

<af,dg>= - < df,ag >= 0. ( 10) 

Here the bracket < , > denotes the usual contraction between vectors and 1-forms. 

Deflnition 2.3 A vector field X on a Poisson manifold {M, P) is called locally Hamiltonian if it 
is a-closed: 

aX = 0. (11) 

In view of Definition 2.1 and the condition (3) a Poisson bivector is a-closed: 

<TP = 0, (12) 

and one can immediately notice a striking resemblance between the condition (12) and the closure 
of a symplectic form: 

du> = 0 (13) 
In fact, they are equivalent in the framework of the Hamiltonian formalism, i.e. for a given non-
degenerate Poisson bivector we have 

ffP = 0 o d w = 0, (14) 

where u;"1 = P and the a-operator is defined by P. 

3 The bi-Hamiltonian case 
Consider a double Poisson manifold (A/,Pi,P2) defined by two Poisson bivectors P, and Pj (we 
assume Pj is not-degenerate) in the general position, which means the operator A := P2

_ Pj has 
distinct eigenvalues. Accordingly, there are two a-operators: ai and aj associated with l\ and Pj 
respectively. 

Definition 3.1 .4 vector field A'w,,//, on a double Poisson manifold {HI, Pi. Pi) is called bi-Hamil-
tonian iff it is simultaneously ai and a^-ezacl, i.e. 

X,h.n,=ailli=a1lli, (15) 

Aere i/i and II? are the corresponding Hamiltonians. We call the quadruple {.M.Pi, Pi,Xii,.H]) a 
bi-Hamiltonian system. 

Definition 3.2 Ttco Poisson bivectors I\ and Pj are called compatible iff 

Pi is Oj - closed, i,j - 1,2. (16) 
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The compatibility condition (16) leads to integrability in Arnol'd-Liouville's sense of the associated 
bi-Hamiltonian vector field. This problem has been thoroughly surfaced in works by Magri [7], 
Magri and Morosi (8), Gel'fand and Dorfman (9,10] and many others. We call the bi-Hamiltonian 
vector fields defined by pairs of compatible Poisson bivectors the bi-Hamiltonian in the Magri-
Morosi-Gel'fand-Dorfman (MMGD) sense vector fields. 

Propoaition 3.1 Given a bi-Hamiltonian in the MMGD sense system (Af,Pi,P2,JfW|iH,), wen 
for any Q g V*(Af ) the relation holds 

oiLxHl.H,atQ = otLx^^oiQ. (17) 

Acknowlegements. The author is grateful to Oleg Bogoyavlenskij for introducing to the mono-
graph [4], as well as for many useful discussions pertaining to this paper. 
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ENHANCED EDDY CURRENT MATHEMATICAL MODELS USING THE 
PHASE-SHIFTED FIELDS OF TWO COILS 

E. N. DERUN, A. A. KOLYSHKIN AND RÉMI VAILLANCOURT 

Presented by K.B. Ranger, F.R.S.C. 

ABSTRACT. Analytical solutions are obtained for the problem of the Interaction of a pair 
of phase-shifted electromagnetic fields generated by two coaxial single-turn coils carrying 
currents Iie'ut and /jeJ('Jt+"M, respectively, where 0 ^ 0 . Five geometrically different 
media are considered. Numerical results show that V is the most important parameter. If 
the values of xp and of the other parameters are chosen properly, then the curve representing 
the change in impedance can lie in any of the four quadrants of the complex plane. These 
results can be used for developing more sensitive and more selective eddy current testing 
methods. 
RÉSUMÉ. On obtient une expression analytique pour l'interaction des champs électro-
magnétiques produits par deux bobines à un seul tour sous courants It e'"11 et /2e>(w,+,<',, 
ou I/I / 0. Les bobines sont situées dans l'espace libre relatif à cinq media de formes 
géométriques différentes. Les résultats numériques montrent que V est le paramètre le plus 
important. Pour un choix judicieux des valeurs de V et des autres paramètres, la courbe 
représentant le changement d'impédance peut se trouver dans n'importe quel des quadrants 
du plan complexe. Ces résultats peuvent servir au développement de méthodes de détection 
au moyen des courants de Foucault plus sensibles et plus sélectives. 

1. Introduction. In this Note, we present analytical solutions to the problem of the in-
teraction of the phase-shifted fields of a pair of coaxial single-turn coils (Coil 1 and Coil 
2 of radius iî , and R^) carrying currents he'"1 and he?^^^, respectively. The coils are 
situated in free space, MQ, (a) above a conducting half-space, M,, (b) above a two-layer 
medium, M, and A/j, (c) coaxially inside a conducting nonmagnetic tube, Af,, (d) outside 
a uniformly conducting nonmagnetic ball, M,, the coil axes passing through the centre of 
the ball. Lastly in case (e), parallel rectangular coils are approximated by two pairs of in-
finitely long parallel wires (Lj .Lj and L3, U) in Mo and parallel to a uniform nonmagnetic 
conducting half-space, Af,. Tliese five cases are shown in the left parts of Figs. 1-5. The 
case of non-shifted fields is treated in (lj and [2]. 

We present formulae for the induced change in impedance, Zinà, in each of the five cases. 
The formula of case (c) is derived. Cases (a) and (b) are treated in greater detail in (3). 

The following standard notation is used. The magnetic constant is /i0. For i = 1,2, /x, 
and ffi are the relative magnetic permeability and conductivity of Mx, respectively. In the 
cases (c), (d) and (e), the formulae have been obtained with /<, = !. 

Key UM>«1S and phiuscs. Eddy current iiondcstriictive cvnlwiUun; pliiise sliifled lirlds; llmikcl transform, 
Fourier cosine trunsform, Fourier-Legendre transform. 

This work was partially supported through NSERC of Canada, Grant No. A7916 and tbe Centre de 
recherches mathématiques of tbe Université de Montréal. 
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F I G U R E 1. In case (a), (left) coils above uniform conducting half-space, M\, 
and (right) plot of Z0iP,ip) for a = 0.1, in = 1, H = 0.9, p = 1 and 7 = 2. 

The values of the phase difierence, rj>, and the other parameters of the problem have been 
chosen such that the curve representing the change in impedance can be situated in any 
quadrant of the complex plane as shown in the right parts of the five figures. 

2. Case (a) . Using the dimensionless variables 
hi 0 = Riy/uaiiiopi, 

we have the following expression, 

a = fli' H~h'l' 
Ri 

P=Ri' 

Z""1 = utftoirRiZo, (1) 

for the induced change in impedance of Coil 1, where 

/•"o s/t, - y/s2 + j z0 = iP[ 
Jo 0 Sfii + y/S2 + j 

0 0 S^| - y/S2 + j 

J*ips)e-3a0sds 

+ j01pei* j Sfi' l 7 + J JiiPs)JiiPps)e-^^'ds. 
JO Sfli + \/S* + J 

(2) 

3. Case (b) . Using the following dimensionless variables 

hi a n i ^« t a'1 11^2 r h „ R* a = -5-, P = RijuainoHi, 7 = 0 - . * = —. " = I - ' ' = T' ^ = n " • i t . Ri ai hi Ii Hi 
where d, is the thickness of layer A/,, we obtain the change in impedance of Coil 1 in the 
form 

Zimi = umtioRiZQ, (3) 

wbere, for /x, = ^2 = 1, 

Z0 = jP rDis)J*iPs)erWds+jpIpc>* rDis)JiiP.i),IiiPPs)c-ali{x+")'ds, 
Jo Jo 

A+B. +A.(s + y/ZTjt) e-^y^i 
Dis) = — ^ -J-7== - , 

A+B+ + A.B.e-2l>-'J**i 
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FIGURE 2. In case (b), (left) coils above conducting two-layer medium M, 
and M2, and (right) ZoiP,*) for Q = 0.1, p, = pj = 1, /f = 0.9, p = 1, 
7 = 0.1, 6 = 0.8 and 7 = 2. 
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FIGURE 3. In case (c), (left) coils coaxially inside a conducting tube, and 
(right) plot of ZoiP,-d>) for ro = 0.9, p , = 1, / / = 0.2, fi = 1, p = 1.2 and 
7 = 2. 

with the abbreviations .4± = \fs2 + j ± \Jsl + jb and B ± = s ± yfs2+j. 

4. Case (c) . Suppose that Coil 1, of radius Tîi, is coaxially located inside a conducting 
nonmagnetic tube, M,, of inner and outer radii p, and pj, respectively. The conductivity, 
a,, of the tube is constant. Coil 2, of radius R2, is coaxially located with respect to Coil 1 
at distance h from the latter, as shown in Fig. 3 (left). 

If Coil 2 is absent, the induced vector potential in MQ is given by 

Al(rtZ) = ^ i ^ » j T C(A)7I(Aro)7,(Ar)coSA2dA. (4) 

in terms of the cyUndrical coordinates (r, tp, z) with the origin at the centre of Coil 1. Here 
r and z are dimensionless coordinates such that the inner radius, p,, of the tube is chosen 
as the unit of length. The function 

dX) = AiX)/BiX), (5) 
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is given by 

Ai\) = [qKoiqp^iXp) - XKoiXp^iqp)] [qK^Ioiq) + A7fo(A)7l(9)) 
+ [qloiqpWtiXp) + XK0iXp)Iiiqp)] [XKoiX^iq) - qK^Koiq)], 

BiX) = [qKoiqp^iXp) - XKoiXp^iqp)] (A7o(A)71{9) - 971{A)7o(g)l 
+ [qfoiqptfdXp) + XKoiXpMqp)] [XI0iX)Kiiq) + ?/, (A)tfo(«)l, 

and 
ro = —, P=—, q = J*2 + JP2, P = Piy/uaipo. 

Pi Pi 
The functions 7„(s) and Kvis), foi v = 0,1, are the modified Bessel functions of the first 
and second kinds, respectively. 

If Coil 1 is absent and Coil 2 is the only source of primary field, a similar formula can be 
obtained for ./^(r, z) by replacing 7,, ro and z in (4) by 7je,,>, r, and z — it, respectively, 
where r, = Ri/pi-

By the superposition principle, the total induced vector potential in region MQ is the sum 
J4 = J4I + A2, that is, 

Air,z) = PshEtl f CiX)IiiXro)IiiXr)coBXzdX 
Tr Jo 

+ foli^fri /•« c^j^rjj^ c o s A ( z _ k) dx ( 6 ) 

ir Jo 

where C(A) is given by (5). 
Using formula (6) and computing the impedance change of Coil 1, we obtain 

Zind = 2p0p?a;r2Zo, 

where 

Zo = j /00C(A)7i(Aro)[7,(Aro) + 77îeJ*7,(Ar1)cosA77)dA) (7) 
Jo 

H = fe/p,, 7 = 72/7, is the ratio of the current amplitudes in the coils and 7Î = R2/R1 is 
the ratio of the radii. 

5. Case (d). In this case, we obtain an expression for the change in impedance of Coil 1 
in the form 

Z1"1 = 2irojplR]fioBia9iZo, 
where 
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ReZn 

FIGURE 4. In case (d), (left) coils outside ball Mi with coaxis going through 
centre of Mt, and (right) plot of Z0iP,il>) for p, = 1, p, = 1.2, P2 = 1.3, 
pc = 0.9, iî = 7î2/iî, = 1 and 7 = 2. 

k = py/^], P = Riy/ÛJâpà and J^z) is the Bessel function of the first kind of order i/ 
and P^iO is the associated Legendre function of order 1. All the parameters in (8) are 
dimensionless and 7Î, is chosen as length scale. 

6. Case (e). By determining the induced impedance change per unit length, wc obtain the 
formula 

z -~2rZo' 
where 

1° ?o= / Jo 
I - y/s2 + j e -3a0» 

[2-2 cosPs + 16"" e-'"ia,-a) [cosPsiyi - yj) 
S + y/S2 + j 

-cosPsiy1 -yJ-cosPsfa -j/3)+<:os^s(y2 - ï t ) ] } ^ -

the distance, c = 1/2 - y,, between wires L, and 7,2 is chosen as the unit of length, 

(9) 

ft 
£* = - , 

C 
Q, = —, I = T< P = Cy/uapa, c' Ii 

and the variables y,, yj, ys and y4 are measured in units of c. Without loss of generality, 
one can assume that y, = —0.5 and y2 = 0.5. 
7. Numerical results and discussion. The change in impedance, Zo, was computed for 
different values of the parameters. In the figures, the ten dots on each curve cluster in the 
direction of increasing 0 as indicated by an arrow. 

It was found that the most important parameter is the phase shift, ijt. This facl can be 
explained as follows. On the one hand, the accumulation of energy in Coil 1 depends on 
the phase difference, rp, between the two currents, and affects the real part of Z0. On the 
other hand, the demagnetizing action of the medium on both coils also depends on V but 
it affects the imaginary part of Zo. The curve representing the change in impedance can be 
located in any quadrant of the complex plane (in contrast with the case V = 0) provided the 
parameters of the problem (especially V) are suitably chosen. 
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FIGURE 5. In case (e), (left) two of double Unes, la, L2 and L3, Lt, and con-
ducting half-space, M,, and (right) plot of ZoiP,il>) foi a = 0.1, p, = 1, 
77 = 0.9, p = 1 and 7 = 2. 

The parameter 7 is also important since the accumulated energy and the medium demag-
netizing action also depend on its value. 

These pecuUarities of Zo can be used for developmg eddy current testing methods with 
higher testing sensitivity and finer selectivity. 
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