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SUPERSINGULAR K3 SURFACES WITH ARTIN INVARIANT 10 

Yasuhiro Goto 

Presented by R. Murty, F.R.S.C. 

Abstract 
We compute the Artin invariant ofthe minimal resolutions of supersingular weighted 

Delsarte K3 surfaces. Consequently, we construct K3 surfaces with Artin invariant 10. 
It is one of the two values for the invariant that were not realized in [10]. 

Let A: be an algebraicaUy closed field of characteristic p (> 0). Let Xk be a K3 surface 
over k. It is known that NS(Afc), the Néron-Severi group of Xk, has rank at most 22. Put 
piXk) = rankzNS(Xfc). As in [10], we caU At a supersingular K3 surface if piXk) = 22. On 
a supersingular K3 surface, M. Artin [1] proved that 

detNS(Afc) = -pa' 0 

for some integer OQ = «ro(A)t) satisfying l<ao< 10, where det NSpf*) is the discriminant of 
the intersection matrix of NS(A)k). The integer «TQ may be called the Artin invariant of A*. 
Let W be the ring of Witt vectors over A;. Denote by H^iXk/W) the second crystalline 
cohomology of A .̂ There is a Chem class map: 

c, : NS(At) ® W — H^iXkfW). 

Write F for the endomorphism of / /^ (A t /W) induced from the FVobenius automorphism 
of Xk. The image of ci is the largest sub-F-crystal, M, such that FiM) C pM. By the 
Poincaré duaUty, the W-length of the cokernel of ci is equal to OQ (cf. [5], [7], [10]). 

In [9], Shioda showed that OQ takes all 10 possible values; further, in [10], he used 
Ekedahl's algorithm on Delsarte surfaces in Pj[ and gave examples of K3 surfaces for aU 
ob except for OQ = 7,10. In this paper ', we refine Shioda's method and apply it to weighted 
Delsarte surfaces to construct supersingular K3 surfaces witb Artin invariant 10. 

LetQ = (90, Çi> 92.93) be a quadruplet of positive integers such that p j/qt (0 < t < 3). Let 
Pjj (<3) := Proj k[xo, Xi, 12, X3] be the weighted projective 3-space over k oî type Q graded by 
the condition degij = ft for 0 < i < 3 (cf. [2], [4]). Choose m € Z+ such that p Ĵ rn. Let 
A = iaij) be a 4 x 4 matrix of integer entries satisfying 

(i) Oij > 0 and p Ĵ oy for every (i,j) 
(ii) p/deti4 
(iu) E'=o Qi^i = m for 0 < i < 3 
(iv) given j , ay = 0 for some t. 

'A more detailed account of this paper has been submitted fbr publication elsewhere. 
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We define the weighted Delsarte surface in FJiQ) of degree m with matrbc A (cf. [3], [10]) 
to be the surface: 

XA : Ê x ^ i M ' x S " = 0 c Pj(Q). (1) 
i -0 

Weighted Delsarte surfaces are, in general, singular surfaces; let XA denote the minimal 
resolution of XA- If [0,0,0,0] ia the only simultaneous solution to the system of 4 partial 
derivatives of (1), then XA is quasi-smooth. In this case, XA has only cycUc quotient 
singularities of type A^,; further, XA is K3 if and only if m = Co + 9i + 92 + 93 (cf- W)-

Every weighted Delsarte surface and hence its minimal resolution are birational to a 
quotient of a Fennat surface. In fact, let Yk be the Fermat surface in Pj of degree d := det A. 

Yk-. y$ + ifi + i4 + yi = o CPJ. 

Denote by pd the group of d-th roots of unity in k*. Put F = ©^/^/(diagonal elements). 
Let VA be a subgroup of F defined by 

r,={7=(n^r. n ^ . n^r. iC^r) e r^A.,^) e r}. 
Then F^ acts on V* coordinate-wise and Y^VA is birational to XA. 

For 7 € F, let 7* be the endomorphism of H^^Yk/W) induced from 7. Define 

«(Yt) = { a = (ao,al.Q2,a3) joi S Z/dZ, t* ^ 0(0 < i < 3), E?=o«i = û} 
Via) = {u e H^^Yk/W) ( 7,(«) = fS0^1!^1 • « for aU 7 = (70.71.72.73) 6 H 

where Hj^^Yk/W) denotes the primitive part of H^iYk/W) and rankn/V(a) = 1 for 
a 6 a(l'fc) U {0}. Then we have 

« ^ ( Y t / ^ ) S K ( 0 ) © 0 Via) 

(cf. [6], [8]). The F/i-invariaut submodule is given as foUows. 

Proposition. Let XA be the weighted Delsarte surface in PliQ) of degree m with matnx A. 
Let Yk be the Fermat surface in Pj of degree d = det A. Put 

«(A*) = {a = (ao, a,,a2. a3) 6 «(Yt) j Ef-o oyOi = 0 (mod d) /or 0 < j < 3} 

TAen 
HluiYk/Wf^ViO)® 0 Via). 

aea(x„) 
Note that H^^XA/W) and H^CYk/W)1"* differ only by classes of exceptional cycles. 

Assume that the minimul resolution XA oi XA is K3. Then there exist unique ao and 
a„ 6 ^XA) such that V(oo) and V^o,,) are of type (0,2) and (2,0), respectively. Here 
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Viiao,Qi,a2,a3)) is of type (2 - q,q) if ao + ai + a2 + 013 = diq + 1) (cf. [8]). Given 
"s» = (oo.cn.a^.Qs), we define 

e^ = gcd(aol 01,02,03)' 

Lemma. Let Ay, 6e o weighted Delsarte surface with matrix A. Assume that XA is KS. 
Then XA is supersingular if and only ifp? = - I (mod e^) for some integer p>l. 

Let r be the smaUest positive integer such that FriVia0)) - V(a„). Put /„ = {p*ao j 
1 < t < r}. Then the image of the map c, : NS(ÂÛ) ®W —• H^iX^W) is 

C i ( N S ( Â ^ ) ® ^ ) S K ( O ) © 0 p K ( a ) e 0 Via)®E 
«6/0 aeAft 

where E denotes the classes of exceptional cycles arising from the desingularization It/F^ 
(cf. [5], [10]). Hence the W-length of the image of ci (and so o o ^ ) ) is equal to r. 

Theorem. Let XA be a quasi-smooth weighted Delsarte surface in PÎUqo, 91,92,93)) of degree 
m with matrix A. Write XA for the minimal resolution of XA. Assume that there exists a 
positive integer p such that p" = - 1 (mod e,»); fet po be the smaUest positive integer among 
such p 's. Assume also that m = 90 + 9i + 92 + 93- TAen XA is a supersingular KS surface 
and the Artin invariant of XA is equal to po. 

Example 1. Let XA be a weighted Delsarte surface in ̂ ( ( l , 1,1,3)) defined by the equation: 

xgzi+zfxa+ 3:1+^ = 0 

(here p / 2,3,5). XA is quasi-smooth; in fact, A,* is smooth (A* = XA) since !P2((1,1,1,3)) 
has singularity only at [0,0,0,1] and this point is not on A*. As m = 90 + 9i + 92 + 93. XA 
is K3. We have d = 22 • 3 • 52 and a „ = (90,48,42,150). Hence e,, = 2 • 52. Therefore 

piXA)=i 2 « f P 2 1 ' 1 1 ' 2 1 ' 3 1 ' 4 1 

I 22 otherwise. 
(mod 50) 

When XA is supersingular, we obtain 

10 ifp = ±3,±27, ±33,±37 (mod 50) 
^ 5 ifp = ±9,±29 (mod 50) 
CT0 2 ifp = ± 4 3 (mod 50) 

1 i f p = - l (mod 50) 

Example 2. Let XA be a weighted Delsarte surface in PJ((1,1,1,3)) defined by the equation: 

XQXI + x\x2 + ijia + if = 0 
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(here p ^ 2,3,5). This XA is also smooth (A4 = XA) and K3. We find d = 2 • 3 • S2 and 
a . . = (30,24,42,54). Hence e^ = 52. Therefore 

^ f 2 ifp s 1,6,11,16, 
1 22 otherwise. 

21 (mod 25) 

When XA is supersingular, we obtain 

00 = 

10 if p s ±2, ±3 , ±8, ±12 (mod 25) 
5 ifp = 4,9,14,19 (mod 25) 
2 ifp = ± 7 (mod 25) 
1 ifp = - l (mod 25) 

Remark. We must modify our method to realize the Artin invariant 7 since there is no 
integer d such that the maximal order of the units in (Z/dZ)x is equal to 14. 

References 
[1] Artin, M.: Supersingular K% surfaces, Ann. Scient. E. N. S., 7 (1974), pp. 543-568. 

[2] Delorme, C: Espaces projectifs anisotropes, BulL Soc. Malh. Prance 103 (1975), pp. 203-223. 

[3] Delsarte, J.: Nombres de solutions des équations polynomiales sur un corps fini. Séminaire 
Bourbaki, 39 (1951), pp. 1-9. 

[4] Dolgachev, I.: Weighted projective varieties, tn LNM 956 (1982), Springer, pp. 34-71. 

[5] Ekedahl, T.: Varieties of CM-type, 1994, preprint. 

[6] Kate, N.: On the intersection matrix of a hypersurface, Ann. scient. Éc. Norm. Sup., 4e série, 
t. 2 (1969), p. 583-598. 

[7] Nygaard, N.: A p-adic proof of tbe non-existence of vector fields on K3 surfaces, Ann. of Math. 
110 (1979), pp. 515-528. 

[8] Shioda, T.: The Hodge Conjecture for Fermat Varieties, Math. Ann. 245 (1979), pp. 175-184. 

[9] Shioda, T.: Supersingular K3 surfaces, m LNM 732 (1979), pp. 564-591. 

[10] Shioda, T.: Supersingular K3 surfaces with big Artin invariant, J. reine angew. Math. 381 
(1987), pp. 205-210. 

Address: Institute of Mathematics, Academia Sinica, Nankang, Taipei, Taiwan 11529 
E-maik goto@math.smica.edu.tw 

Received May 30, 1995 

mailto:goto@math.smica.edu.tw


C.R. Math. Rep. Acad. Scl. Canada - Vol. XVII, No. 5, October 1995 octobre 181 

ADAPTED NUMERICAL SCHEME FOR 
VANISHING-LAG DELAY DIFFERENTIAL EQUATIONS 

ABDERRAZEK KAROUI and RéMI VAILLANCOURT 

Presented by G.F.D. Duff, F .R .S .C . 

ABSTRACT. This note presents a numerical method for solving vanishing-lag delay differential 
equations. For asymptotically vanishing-lag as t -» oo, once the lag is sufficiently small, the 
solution can be continued by solving an ordinary differential equation which approximates 
the original delay equation. Numerical tests, by means of a Fortran program called SYSDEL, 
which is available from the authors, show that the theoretical results are valid in practice. 

RÉSUMÉ. On présente une méthode numérique pour résoudre des équations différentielles 
avec un retard qui peut s'annuler. Si le retard s'annule asymptotiquement, dès qu'il est 
suffisamment petit, on continue la solution en résolvant une équation différentielle approchée. 
Les résultats numériques obtenus au moyen du programme SYSDEL en Fortran, disponible 
sur demande, montrent que les résultats théoriques sont valides dans la pratique. 

Subject-classification: AMS(MOS): 65L06, 6SL05 
Keywords: Delay differential equations, vanishing-lag 

1. Introduction. Delay differential equations (DDEs) play a central role in the mathe-
matical modeling of important real-life problems. Thus there is continued interest in the 
numerical treatment of DDEs. A large class of DDEs can formulated as foUows: 

y,(t) = / ( t , y ( t ) , y (a ( t , y (0 ) ) ) , t6[o,6], and y(t)=d»(t), fe [a ,a ] , (1.1) 

where the vector functions y, / , d> and a have domains and ranges given by 

y : [ 5 , 6 ] - . R n , / : [a,6] x Rn x Rn - Rn, ^ : [ 5 , a ] - R n , a : [a,6] x Rn ^ Rn, 

respectively, and the number à = min {«< (t, y(t))} denotes the minimum of the delays. 
t=T,... ,n 

The functions <f> and a are assumed to be sufficiently smooth. To simpUfy vector notation 
for systems, here and below, we have set 

y(o(f,y)) := [yi(ai( t ,y)) , . . . ,yn(a„(t .y))]T . (12) 

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada 
under grant A 7691 and the Centre de recherches mathématiques of tho Université de Montréal. 

Typeset by - 4 M S - 1 E X 
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The above DDEs can be divided into two families, those with nonvanishing-lag and 
those with vanishing- or asymptotically vanishing-lag. A lag is said to be nonvanishing if 
the delay functions satisfy inequaUties of the form 

oti (t, y(t)) < t - e, for some e > 0 and all t > a. 

A lag is said to be vanishing at to if a<(to. y(to)) = to and there exists 77 > 0 such that 

ai(t.y(0) <t-e, for aU t satisfying \t-to\>i}. 

FinaUy, a lag is said to be asymptotically vanishing if 

û!<(t,y(t))-»t, a8 t -»+oo. 

In this note, we present two methods based on an adapted ODE scheme to solve 
vanishing-lag and asymptoticaUy vanishing-lag DDEs. Both methods are implemented 
in a Fortran program called SYSDEL, available from the authors. 

2. Method 1 for solving vanishing-lag problems. The numerical scheme proposed 
in [3] for solving nonvanishing-lag state-dependent DDEs, can be turned into a vanishing-
lag problem solver by using an extrapolation polynomial of the appropriate degree lo 
approximate the solution when the delay time falls beyond the history queue. 

2.1. Localization of the derivative jump discontinuities. For notational simplicity, we 
shall consider only single-lag scalar DDEs. It is known (5) that any high-order numerical 
scheme for solving DDEs needs to locate the derivative jump discontinuities to a specific 
accuracy in order to include them in the set of mesh points. These discontinuities iire 
characterized as the set of zeros of the nonUnear switching function git) = a(t,yit)) - Z 
where Z is a previous jump point. These zeros are efficiently located by the method 
embodied in the foUowing theorem which is proved in [3J. 

Theorem 1. Consider the DDE 

y/(0 = /(t,y(0.î/(a(t,y(t)))), t e (o,6j, and yit) = vit), te[à,a\. (2.1) 

Consider also the continuous and discrete switching functions, 

git) = ait, yit)) - Y, g^) = a(t*, ^ - Yh, 

where y, is a numerical approximation to the solution y(tj) of the DDE, and Y and Yh are 
the exact and the approximate derivative jump discontinuities of yit) andyi, respectively. 
Assume that Uie function û(t,y) is Lipschitzlan with respect to y ivith Lipschitz constant 
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Ma and Z isa zero of git) in (t>,tJ.M). 7%en, by extrapolating Newton's backward inter-
polation polynomial P9h(t) for ghit,), one am approximate Z by Vie zero Zp of Pghit) to 
order 0(hmin<P/r'P/J») provided 

(1) the degree of the interpolation polynomial is at least (p -1 ) , 
i2) \Y-Yh\=OihP), 
(3) the global integration method is of order at least p, 
(4) the zeros, Z'p and Zp, nearest to Z, of Pg and PgK ore of multiplicity r and s, 

respectively, where Pg is Newton's backward interpolation polynomid interpolating 
g at the points {t.,_p+,,. . . , tj}, 

(5) the divided difference g[tj,...,t^.p+i,Z] is bounded. 

2.2. Adapted Runge-Kutta methods for vanishing-lag problems. When using an explicit 
Runge-Kutta formula to solve an n-dimensional vanishing- or asymptotically vanishing-
lag problem of the form (1.1), we approximate the solution at the delay time a(t,y(t)) 
by a vector-valued polynomial. Qj(a(ti,y(ti))), of appropriate degree as done in [7j. The 
components of Qj are taken to be a g-point Hermite polynomial interpolating or extrap-
olating the solution as the delay time falls in, or beyond, the history queue, respectively. 

An adapted r-stage Runge-Kutta method for solving vanishing- and asymptotically 
vanishing-lag problems can be formulated as follows: 

yn+1 =yn +/i*(t„,y„,Qj(a(tn .yn)) , / i ) , (2.2) 

where the increment vector function is 
. r 

*(tn,yn,Qj(a(t„,yn)), / i) =^CiJfei, 
« = 1 

and, for Z = 1, . . . , n, the Zth component of fcj is 

ku = fi(tn + XAyn + hf^Pijk^Q^fa^tn + Ai/i.y,, + h f ^ A ; f c 7 ) ) ) . (2.3) 
3=1 ^ J = l ' ' 

In [3], a set of conditions has been given which ensure the convergence of the present 
scheme. If the degree of Q* is at least p and q>p, then the local truncation error is of 
order p + 1 , and hence, by using Theorem 2 proved in [3], one easUy concludes that the 
global truncation error of our method is stiU of order p. 

3. Method 2 for solving asymptotically vanishing-lag problems. For notational 
simplicity, we restrict ourselves to the scalar case with a state-independent delay fimction 
ait) satisfying a(t) — t as t—, +oo. However, the results of this section are stiU valid for 
a system of equations with asymptoticaUy vanishing state-dependent delays. 
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Since a(t) —» t as t -» +00, then for aU e > 0, there exists tt sucb that, for all t > tc 

we have (a(t) -1( < c. 
Hence, if we assume that the solution y(t) is twice differentiable for t > a, and 

|y"(t)( (a(t) — tC < M for some 1} € [0,2) and a positive constant M, then it is reasonable 
that, for t > t,, one can approximate y(a(t)) to a required accuracy by its first degree 
Taylor polynomial. Consequently, the problem is no longer to solve a delay problem. 

If y(t) is not twice continuously differentiable, it is not advised to use Method 2; however 
Method 1 wdl give a good approximate solution. 

The modified problem has the foUowing form: find a solution, yit), of 

5'(0 = /(«.wW.y(0 + (û ( t ) -W)) , t>tt, and yitl)=yite), (3.1) 
where y(t) is the numerical solution of the delay problem found by Method 1. 

For t> tt, the solution of the modified problem can be efficiently and simply obtained 
by means of a non-delay ODE solver. In the foUowing theorem, proved in [4], it is shown 
that under some specific conditions, the solution of the modified problem can approximate 
the true solution to any order of accuracy. 

Theorem 2. Consider the delay differential equation: 
y'it)=fit,yit),yiait))), t>a, and y(t) = 0(0, t€[ù,u|. (3.2) 

Assume that 
(1) 3fo 6 R and a positive constant CQ such that Vt > to. i/ and z in R, fZtit,y,z) is 

continuous and (/«(t,!/, s)| < co; 
(2) \fyit,y,y)\+\fzit,y,y)\ < r^t) for some ait) e Ll(R) «'"'V!/ « « ttn^ fzit,y,y) -

0 as t —• +00; 
(3) the solution yit) o/(3.2) is of class C2; 
(4) 3 a positive constant A/ and TJ € [0,2) such that |Q(t) - t|2-'' 6 L^R) ond 

|y"(t)| (a(t) - t]" < M Vt > to-
Then, Ve> 0, 3 << > to such that the solution yit) of the differential equation 

y'it)=f{t,yit),m + [<*it)-tWit)), t>tt, and yiU) = yiU) + 6, (3.3) 
satisfies \yit) — i/(t)( < Kie + 6), where K depends only on ||c||i. 

Remark I. In general, it is not practically possible to find the exact solution y{t) to 
problem (1.1); nevertheless an approximation of order 0{hp) is possible. Hence, the 6 in 
(3.3) is generaUy of order O (/JP), where h is the step size used by the numerical integration 
and p is the order of the global integration method. If e in the above theorem is also of 
order O ih''), it is easily seen that the global truncation error of the new numerical scheme 
is stiU of order p. 

'The need of this assumption, which is missing in [4], was pointed out to the authors by the Editor of 
the Math. Rep. 
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4. Numerical results. The following abbreviations and notation wiU be used: 
TOL: tolerance for the maximum norm of the error estimate, 
NFE: number of function evaluations, 
t(: transition time from Method 1 to Method 2, 
tf. final integration point, 
MRE: maximum relative error in the components of the solution at time tf. 

4.1. Solution of vanishing-lag problems by Method 1. A Runge-Kutta formula pair of 
orders (5,6) is used as the global integration method. The solution at the delay time is 
approximated by a 3-point Hermite polynomial used as an interpolant when the delay 
time falls in the history queue, and otherwise as an extrapolant in a neighbourhood of a 
vanishing-lag point. The derivative jump discontinuities are located by using the algorithm 
given in [3]. 

The step size control policy bounds the local truncation error per unit step of the 
Runge-Kutta formula pair. At each integration step, an estimate of the local tnmcation 
error is given by EST = \\yi - ytW/h, where y, and yt are the numerical solutions given 
by the 6th- and 5th-order formulas, respectively, and h is the previous step size. If 
EST > Tolerance, the step is reduced, otherwise it may be increased, as described in [3]. 

The accuracy and cost of Method 1 is iUustrated by the foUowing example. 

Example 1. Consider the state dependent delay system [2], with vanishing lag at 1=1, 

2yi(0 = y2it), yiW = -y2 (exp(l - y2(t)) [y2(t))2 (exp(l - y2(t)), t 6 [0.5.5], 

yi(t) = lnt, îfe(t) = | , «6(0,0.1]. 

The exact solution is yi(t) = Int. y2(t) = 1/t. The numerical results at t/ = 5 for different 
values of the error tolerance are listed in Table 1. 

TABLE 1. Numerical results for Example 1 at tf = 5. 

TOL 
IO"0 

io-8 

io-l0 

IO"12 

NFE 
553 
959 

1946 
4214 

MRE 
1.85E-06 
5.05E-09 
2.85E-11 
1.11E-13 

4.2. Comparison of Methods 1 and 2 for asymptotically vanishing-lag problems. The 
numerical solution of an asymptoticaUy vanishing-lag problem is started by Method 1. 
Then from a point f, on, to be fixed by the user, Method 2 solves an ODE which approx-
imates the given delay equation. 

The results of the two methods are compared in the foUowing example. 
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Example 2. Consider the asymptoticaUy vanishing-lag DDE, as t —» oo, 

V ( 0 = ( 1 + t 2 ^ J n 2 _ , -2) ' *€ [1.5,50], and y(t) = arctan(0, t e [0,1.5], 

whose exact solution, y(t) = arctan(t), is infinitely differentiable. The residts obtained by 
Method 1 and Method 2 with tt = 15, are listed in Table 2 at t / = 50. 

TABLE 2. Numerical results for Example 2 at t/ = 50. 

TOL 
10-° 
io-8 

IO"10 

io - 1 2 

Method 1 
NFE 

770 
833 

1680 
3528 

MRE 
1.08E-09 
7.36E-10 
8.51E-12 
4.50E-14 

Method 2, tt = 15 
NFE 

525 
553 
805 

1344 

MRE 
1.14E-09 
7.75E-10 
2.87E-11 
2.05E-11 

5. Conclusion. Numerical results indicate that vanishing-lag problems can be solved 
accurately by Method 1. In the case of an asymptotically vanishing-lag, under appropriate 
smoothness conditions, the solution can be started by Method 1 up to a time tt, to be 
fixed by the user, and then continued by Method 2 applied to an approximate ODE 
whose solution is an accurate approximation to the exact solution and is obtained with a 
relatively small number of function evaluations. It is seen from the numerical results that 
Method 2 is comparable with other known methods [2,6]. 

REFERENCES 

1. A. Feldstein and K.W. Neves, High order methods for state-dependent delay differential equations 
with nonsmooth solutions, SIAM J. Numer. Anal. 21 (1984), no. 5, 844-863. 

2. H. Hayashi, Numerical solutions for delay differential equations, (A thesis proposal). Department of 
Computer Science, University of Toronto, Ontario, Canada M5S IA4, 1994. 

3. A. Karoui and R. VaiUancourt, Computer solution of state-dependent delay differential equations. 
Computers Math. Applic. 27 (1994), no. 4, 37-51. 

4. A. Karoui and R. VaiUancourt, A numerical mehod for vanishing-lag delay differential equations. 
Applied Numerical Math, (to appear). 

5. K.W. Neves and A. Feldstein, Characterization of jump discontinuities for state dependent delay 
differential equations, J. Math. Anal. Applic. 56 (1976), 689-707. 

6. K.W. Neves and S. Thompson, Software for the numerical solution of systems of functional differential 
equations uiith state-dependent delays, Appl. Numer. Math. 9 (1992), no. 3-5, 385-401. 

7. H.J. Oberle and H.J. Pesch, Numerical treatment of delay differential equations by Hermite interpo-
lation, Numer. Math. 37 (1981), 23S-2S5. 

DEPARTMENT OP MATHEMATICS, UNIVERSITY OF OTTAWA, OTTAWA, ON, CANADA KIN 6N5 
E-matl address: rxvsg<ftacadvml.uottawa.ca 

Rece ived May 3 0 , 1995 
I n r e v i s e d form O c t o b e r 9 , 1995 



C.R. Math. Rep. Acad. S c i . Canada - Vol. XVII, No. 5, October 1995 octobre 187 
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Presenced by M.A. Akcoglu, F.R.S.C. 

ABSTRACT: A.M. Ostrowski 's c l a s s i c a l theorem for s t a b i l i t y of 
s ingle-valued operators i s extended to multivalued opera to r s . 

KEYWORDS: Stable i t e r a t i o n , Banach contract ion, multivalued 
contract ion, fixed point . 

Mathematics Subject C las s i f i ca t ions (1991) : 65D15, 41A25, 47H10, 
54C60, 54H25. 

1. INTRODUCTION. Let {X, d) be a metric space and T :X ~ X. 
The concept of a fixed point iteration procedure given by 
•fn*x = flT, x„) being T-stable or stable with respect to T has 
been (formally) defined by Harder smd Hicks [3). Ostrowski's 
first stabillity result [7] {cf. Corollary 4 below) for Banach 
contractions has recently been extended to various classes of 
(Banach type) single-valued operators by Harder-Hicks [3], 
Rhoades [7]-[8] and Singh et al. [10]. The purpose of this paper 
is to extend Ostrowski's theorem [op. cit.] to multivalued 
contractions. 

"mis work was done while this author was visiting the University 
of Wisconsin, Eau Claire, and he thanks Professor S. S. Chadha, 
Professor David R. Lund and the Unlveristy for their hospitality 
and support. 
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2. MULTIVALUED CONTRACTIONS. Consistent with [6], p.620, we will 
use the following notation where (X, d) is a metric space: 

CB(X) a i A : A is nonempty closed bounded subset of X), 

CL(X) - I A: A is nonempty closed subset of X). 

For A, B e CM*) and e > 0, 

Nie, A) * {xe X : dix, a) < € for some a e Al, 

BA.B = < e > 0: A C W<e, B), B c i/(c. A) 1, 

inf EAt B if EAi „ * * , 
HiA, B) * { 

* " -î ŝ = *-
H is called the generalized Hausdorff metric (resp. Hausdorff 
metric) for CL(X) (resp. CB(X}) induced by d. 

An orbit of a multivalued map T at a point x0 is a sequence 
lxBi xa e Txa.lt n " 1. 2, . . .1. For a single-valued operator T, 
this orbit is 1 xB: xa = Tx^, n = 1, 2, -1. 

The following is Nadler's (now classic) fixed point theorem 
for multivalued contractions (see [l],t4J-(6] and [11]). 

THEOREM 1. Let X be a complete metric space and let T: X ~ CL{X) 
be a multivalued contraction, that is, 

(1.1) HiTx, Ty) i g dix. y) 

for all x., y in X, where q < 1 is a positive number. 

Then: 
(i) for every x0 e X, there exists an orbit ixBl of T 

at x0 and p e X such that limn xa = p; 
(ii) the point p is a fixed point of T, i.e, p e Tp-, and 

(iii) dixn. p) s. [ ( g l - V / ( l - ff1"*)] dix^, xj . where X < \ is 
a positive number. 

Indeed, Nadler [5] proved { i ) - ( i i ) of Theorera 1 for 
T: X-'CBiX), and the l a s t r e su l t ( i i i ) i s e s s e n t i a l l y due to 
Ci r i6 [1 ] . If T i s single-valued, i . e . , i f T: X~X, then (1.1) 
becomes diTx, Ty) i g dix, y), which i s the well-known Banach 
contraction condit ion. 
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The iteration procedure (i) is used very often in numerical 
praxis. However, in actual computation, because of rounding-off 
or discretization of the function, an approximate sequence ( ya ) 
is used in place of sequence lxnl. Refer Harder-Hicks [3] for 
an excellent exegesis on this aspect. 

3. STABILITY OF MULTIVALUED OPERATORS. Let X" be a metric space 
and T: Jf - CM*) . For a point x^G X, let 

(•) Jc0.i efCT, jg 
denote some iteration procedure. Let the sequence \xa\ 
be convergent to a fixed point p of T. Let I ya 1 be an 
arbitrary sequence in X and set 

«n = ffOV i' fi'r> rn) ) ' n = 0, 1, 2, -. 

If limn en = 0 implies that lim,, ya * p then the iteration process 
defined in (*) is said to be r-stable or stable with respect to T. 
Recall that this definition for a single-valued operator is due to 
Harder-Hicks [2]-[3], (see also [8J-[10]). 

Ostrowski's stability theorem (cf. Corollary 4) says that 
Picard iterative procedure for (single-valued) Banach contractions 
is stable. Now we extend it to multivalued contractions. 

THEOREM 2. Let X be a complete metric space and T: X - CL(X) such 
that (1.1) holds for all x, y e X. Let xg be an arbitrary point 
in X and i xa Ç.» an orbit for T at x0 such that {xB)âml is 
convergent to a fixed point p of T. Let i yB Ç-o be a sequence 
in X, and set 

«a 3 ff(ya. l' T/n), n = 0, X, 2, -. 
Then 

(I) dip, yatl) s, dip, x0^) * g*1 dix,,. y0) *yig0'i*i. 

Further, if Tp is singleton then 

(II) limn yB - p if and only if limB e,, = 0. 

PROOF. Let n be a nonnegative integer. Then, since T satisfies 

(1 .1) , 
^ J W rnn) s HiTxB, yBtl) i. HiTXB. TyB) * H{TyB. yn n) 

s q dixB, yB) + en & gi g dixB.lt yn.t) + e^J + en 

s g2 d(jcn.1# y ^ ) + q e ^ • ea. 
n 

Inductively, d(xfl.1, y^) s g"»1 d ^ , y0) * V g » - ^ . 
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Now the relation (I) follows immediately from 
dip, y^) s dip. xotl) * dCJW yn.x). 

To prove (II), first assume yn - p as n - <». Note that 
II(p, Tp) *> 0 since, by hypothesis, Tp - (p). Then for any 
nonnegative integer n, 

«a " # 0 W T/n) & d(y«.i' P) * "iP* 2t») + miP' TyJ 

s diy^, p) + g ol(p, yB) . 

Therefore limn ya = p implies lima ea » 0. , 

Now, suppose €a - o as n - «». Since 0 < q < 1 and xB " p as 
.n - », the first two terms on the right hand side of (I) vanish 
in the limit. Consequently 

lima d(p, y^j) s limai gg^e,). 

Let A denote the lower triangular matrix with entries aBi = g"'*. 
JL. 1 -CT0*1 i 

Then lima a^ = 0 for each j andlima (>^ aa>) = lima( =-X- )°  —i-. 

Therefore A is multiplicative (i.e., for any convergent sequence 

lsa}, limaA(sn) = ̂ i- lima sa (cf. [9], p. 692)). Since 
n 

limaea = 0, lima{y) g""^) » 0, proving limn yn =p . This 

completes the proof of the theorem. 
We remark that, in (II) of the above theorem, p e Jf is not 

required to be the unique fixed point of T. The related 
condition emphasizes that Ip contains just one point. 

The following, due to an idea of (11, p. 226], is another 
extension of Ostrowski's stability theorem for Banach contractions. 

THEOREM 3. Let aii the hypotheses of Theorem 2 hold, wherein the 
definition of en is replaced by the following 

en ' diy^t. P j , Pa 6 3ya. n = 0, 1, 2, ~. 
Then 

(III) dip, y ^ ) i dip. Jfa.x) + g"*1 dix0. y0) *Êq"'*{ai * eJ) ' 

where Hj « HlXjtl, 35fj) . FurtAer, i f Tp is singleton, then 

(IV) limn yB " p if and only if lima ea = 0. 
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PROOF. For any nonnegative i n t e g er n, 

dU., . i ' yn»i) s d(xa,1. pn) * cf(pn, y ^ ) s H{xB,l. 2ya) * €a 

S tf(JW 3!jfa) + tf(25ca,3yn) + €a 

siHB* q dlxB. yB) + ea 

s //„ • g [ Ha-i • g ^(x^! , y ^ ) * e ^ ] > ca 

s ga dCx^, y ^ ) • g ( « ^ • e^) + (ira + €a) . 
a 

Inductively, dUa4l, yB^) i g"*1 d(x0, y0) + Vgi,-^(tfi • ej), 
and the relation (III) follows as in the proof of (I). 

To prove (IV), first assume yn - p as n - •». 

Then ea = diyM. pa) s HiyBtl. TyJ . 

This, as in the proof of Theorem 2, gives limaca = 0. 

Now assume that limn en = 0. From (III), 
a 

dip. y^) s d{p. xBfl) + g-1 d(x0, y0) * g q*-*tj. 
where tj = Hj + e^. In view of the (corresponding part of the) 
proof of Theorem 2, it is sufficient to show that the sequence 
{ tj ) is convergent to 0. Since, by assumption, the sequence ( 6̂  ) 
is convergent to zero, it is enough to show that I HB) is also 
convergent to 0. Since T being contraction is continuous, 

lima HB = limn HlxBtl. TxB) = Hip. 2p) = 0. 
This completes the proof. 
REMARK 3. Relations (II) and (IV) say that the Picard sequence of 
iterates for multivalued contractions is stable at a fixed point 
p provided Tp is singleton. Further, in view of (iii) of Theorem 
1, relation (I) (resp. (Ill)) gives an upper bound for error 
while estimating d(yn, p) . 

COROLLARY 4. (Ostrowski's stability theorem [7], see also [2], [4, 
p.101], [8], [10]). Let (X, d) be a congjiete metric space and 
T: X - X such that T is a Banach contraction (with contraction 
constant q). Let p be the fixed point of T. Let x0 be an 
arbitrary point in X, and put xBtl = 3Xa, n = 0, 1, 2,-. 
Let I yn I be a sequence in X,and ea = d(ya, 1, 3ya), n = 0, 1, 2, •••. 
Then, for n a 0, 1, 2, -. , 

(1) dip. yatl) i dip, xB^) * g**1 d(x0, y0) * £ g ^ e,. 
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Also 
(2) llmay0 -p If and only if lima €n - 0. 

PRP9F• It is exactly derivable from Theorem 2 simply by noting 
that €a - Hly^. 3ya) - dly^, TyB) when T is single-valued. As 
regards its derivation firom Theorem 3, one may note that 
Hj ' HlXj,x. aij)- diXj.i, x^ x)- 0 where T is single-valued, and 
(III) becomes (1). Thus Theorems 2-3 are appropriate extensions 
of this corollary. 
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SPECTRAL SYNTHESIS AND REFLEXIVE 
OPERATORS 

J. A. Erdos* M. S. Lambrou N. K. Spanoudakis 
Presented by P.A. Fillmore, F.R.S.C. 

Abstract 

We announce results which connect some aspects of basis 
theory with results about reflexivity of operators. These include 
an example of a non-reflexive compact operator which allows 
spectral synthesis. The selection problem for strong M-bases 
is shown to have a negative solution in Hilbert space. The 
results show that a number of statements in the literature are 
incorrect. 

Recall that an operator A on H is said to allow spectral synthesis (see 
for example [M]) if every invariant subspace M of .A is the span of root 
vectors corresponding to non-zero eigenvalues of A. One of the questions 
motivating our work was the following: 
Question 1. ff K is a compact operator on Hilbert space such that all 
its root vectors are eigenvectors and if K allows spectral synthesis, is K 
reflexive? 
By an obvious application of Sarason's lemma [RR], Theorem 7.1 it fol-
lows that, to prove reflexivity, it is sufficient to prove that for any operator 
K satisfying the hypotheses, its inflation K ® K on H ® H also allows 
spectral synthesis. This attack on the problem was followed in [F] which 
claimed a positive answer to Question 1, but our results show that the 
answer is, in fact, negative. 

'The first author wishes to thank the University of Crete for hospitality while this research was 
carried out. 
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The hypotheses of this question were related to some basis-theoretical 
conditions by Markus [M]. A sequence ( / „ ) * , of vectors of a Hilbert 
space H is called an M-basis (see e.g. [ALL]) if V~ Jn = -ff and there 
exists a sequence (/^SLi biorthogonal to it, {/m, /*> = Smn, such that 
V~ , / • = H. An M-basis (/n)SLi >s «iUed strong, if additionally x e 
V{/n: <x, /*) ^ 0} for every vector x of H. We also need a subspace 
version of a strong M-basis: suppose {Nj)f=x is a sequence of non-zero 
subspaces of H such that V^i Nj = H. We call the sequence separated if 
for each j G N, we have iV> 8 ^ = ff, where N' = V{Wt : A # j } . If Pj 
denotes the projection on Nj along W , we say that (AT,-) ,̂ is strongly 
complete if in addition i € V-fPjX : j = 1,2,...} for each x e H. It 
is shown in [M] that if A is compact and all the root vectors of A are 
eigenvectors then A allows spectral synthesis if and only if its eigenspaces 
form a strongly complete sequence. 
The following result is proved in [ELS] Theorem 2. 
Theorem. Let (AT,)^ be a separated sequence of subspaces H with 
ViV,- = H. Then (W,)£i is strongly complete if and only if for every 
collection of strong M-bases {/j( : fc = 1,2,-• •} of Nj, a strong M-basis 
of H is given by the union {fl : j = 1,2, • • •, fc = 1,2, • • •}. 

Suppose now that K satisfies the hypotheses of our Question 1. Then, 
from above, its sequence (JV,)^, of (finite-dimensional) eigenspaces is 
strongly complete. Choosing a basis {fl : fc = 1,2, • • • n,} of each sub-
space Nj, from our Theorem above, {/* : J = 1,2, • • • n,,fc = 1,2, • • •} is 
a strong M-basis of H. The eigenspaces of K ® K are [Nj ® Nj)f=l and 
{ ( / i , 0 ) : j = l , - -n i , f c = l , 2 , - - } U { ( 0 , / / ) : i = l , - n i , f c = l , 2 , - . } 
forms a strong M-basis ol H®H. 

Lemma 2 of [F] claims that, at least for finite-dimensional subspaces 
[Nj)^, a stronger version of our Theorem holds, namely that the phrase 
"for every collection of strong M-bases" may be replaced by "for some 
collection of strong M-bases". This would be sufficient to establish that 
the eigenspaces of K®K form a strongly complete sequence and so prove 
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the reflexivity of K. Unfortunately this claimed result is not valid. In 
[ELS], we give explicit examples (Examples 2 and 3) of sequences of 2-
dimensional subspaces [Nj)^ which are not strongly complete and a 
selection of a basis of each Nj such that the union of these bases forms 
a strong M-basis of H. Our work also provides an example of a non-
reflexive operator which satisfies all the hypotheses of Question 1. 

The above examples arise from our solution in [ELS] of the so-called 
selection problem of strong M-bases in Hilbert space. This is expressed 
using the concept of block sequence which we now define: given an M-
basis (/„)£-|, and a sequence 0 = no < ni < ... of integers, we call a 
6/ocfc sequence of (/„)£! i any sequence {gk)f=\ of non-zero vectors with 

9k Z V /. (fc = l,2,...) 
i=nt_i+l 

The selection problem asks whether given a strong M-basis (/n)SLi, every 
block sequence of it is also a strong M-basis on the space it spans. Terenzi 
[T] gave the first (negative) solution to this problem in a specially con-
structed Banach space. The counterexample in [ELS] is based on results 
in [KLPj. It is the first example in Hilbert space and also improves on 
the one in [T] by having 2-dimensional blocks as against blocks of rapidly 
increasing dimension. 
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A note on the diophantine eouation x*-^ 4 - ' - a 

Kejian Wg and Maohua Le 
Presented by J. Friedlander, F.R.S.C. 

Abstract 

Let p be an odd prime . In this note we prove that the eauation 

5C4_y4 = 2.P [,as n o positive integer solutions ( x - . ^ . 5 ) satisfy gcqC^.)) 
= 1 , 21 ^ and J>]fz . 

Let Z , RJ be the sets of integers and posit.ve intepers respectively 
Let p be a prime More than three hundred years apo . Fermat 
proved thaï if p = 2 , then the eouation 

(I) x^-y4'*-*1' , %,y,ztNi • 

has no solutions {*.y.*) (see [ 2 , 0 8 ^ 6 2 ] ) . |n this note we 
deal with the case that p is an odd prime . Let a, 0 be positive 
integers with Q>b , and let c - o4- b* . Further let m , i) be 
positive integers satisfy 

f 1 (nuxk) , if n s i (mod4) . 
Tns'j ' 

13 (mod4-) , if p s 3 ( m o d 4 ) . 

1991 Mathematics Subject Classification ; l l D 4 i 
Supported by the National Natural Science Foundation of China . 
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and v-iwp-O/^ . Then (I) has a trivial infinity of solutions 
{%y.z)-'(Qcn.l)cn.cm) with gccj(?t,jy)>| . Recentlv , under 
the assumption that the Taniyama - Shimura conjecture is true , 

Darmon CD proved that if J>^\\ , then (D has no solutions 
(* .V,»} with pcd(*.^)Œl . In this note , with some elementary 
methods , we pive an unconditional proof of the following result : 

Theorem . ff p is an odd prime , then (I) has no solutions 
[x.y.z) satisfv gcdU.^)"! , l\z and p/f2 • 

Proof . Let (x.y.*) be a solution of (I) satisfies gcdCx.^) 
= I , 21 2 and p>i ^ • Since % and V are both odd , and since 
y appears only in the term 7* in n ) , we can change y to -y 
if necessary So as to force x=y (mod 4 ) . Then we have 

2 . P «^ . , n^f ~ M J'K? JC-V = 2 z (2) xl+y ~zz; , x*y = 2z[ , %-y 

where z,, z,, zi are positive integers satisfying 

(3) Z.= 22,Z2Z3 • 

From (2) , we pet 

(4) ix1+yi)ll =• 22
2,)+ 27f'bz*? = zf 

Since x^y (mod 4) and p are all odd , by (2) , we have 22,= 
22i

p=!?£.2fj)f2 = 2 (mods) and 222= 2z2
p= x + V = 2x (mo44) . This 

implies that zl = \ (mod 4) and zJ( Zz . From (4) , we pet 

\ 2 . - 2 2 / 

Since Ph and {*!-*?)/i*r*i)~ zr**r*h * ^ *_P 
(mod4) , we see from (3) and (5) that J>)[zi , ^-zl**^ * 
2., and 
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P 2P z;- 2 / 2f 
(6) Y ~ hi 

2, - Zl 

where 231,232 are positive integers satislying z^z^^Zj and Z^Zn. 
Since P c d ( * ^ > 2 , x ^ ) - 2 ff gcd(x..)0= | and ifay > we 

see from (2) that g c d ^ z * ) - ( . For any positive integer n , let 

21
n-(2/)n 

EM 

Then , (6) can be written as 

2 , - Z j 

(?) £(P)=4P 

Smce z . a z / a i (mod4) and 2^232 , we see from (7) that p = l 
(mod 4) . Then there exists a square nonresidue Q modulo p with 
2^0 . Further . by f 3 . Lemma] , we have 

where ( ' •7 ! ) is Jacobi's symbol . Since p= l (mod4) , we get from 

(7) and (8) that 

a contradiction . Thus , the theorem is proved • 

Acknowledgment . The authors would like to thank the 
referee for his valuable suppestions . 
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FINITE C O N J U G A C Y A N D N I L P O T E N C Y IN LOOPS OF U N I T S 

EDGAR G. GOODAIRE.AND CÉSAR POLCINO MILIES 

Presenced by V. Dlab, F.R.S.C. 

ABSTRACT. Let U{RL) denote the Moufang loop of units in an alternative loop ring 
RL. In this paper, we give necessary and sufficient conditions {oiU(RL) to be nilpotent 
or to have the finite conjugacy property when R is the ring of rational integers or a 
field. 

1. Introduction. An altemative ring is a ring which satisfies the left and right al-

ternative laws, xixy) = x2y and iyx)x = yx2. Any associative ring is alternative, but in 

this paper we are concerned primarily with alternative rings which are not associalive. 

The Cayley numbers is undoubtedly the best known example of such a ring. 

A Moufang loop is a loop in which xiy-xz) = (zy •x)z is an identity. Any loop of units 

(invertible elements) contained in an alternative ring is a Moufang loop. For example, 

the standard basis elements of the Cayley numbers, together with their negatives, form 

a Moufang loop of order 16, and one which is Hamiltonian (all its subloops are normal). 

We refer the reader to [17] and [13] for information about alternative rings and Moufang 

loops, respectively. 

Generalizing the terminology of group theory, we say that a Moufang loop L is FC, or 

has the finite conjugacy property, if, for all I € L, the set {x~lix | i S £,} is finite. The 

concept of nilpotency in loop theory, like that for groups, is a measure of the deviation 

of a loop from an abelian group, so it involves associators as well as commutators. If a, 

b and c are elements of a loop L, the commutator of a and 6 and the associator of a, 6 

and c are the elements (a, 6) and (o,6,c) of i , respectively, defined by 

ab = &a(a,6) and (a6)c = (a • 6c)(a, 6,c). 

If A', Y, Z are subsets of L, we write [X, Y) for the set of all commutators ( i , y ) , x € -Y, 

y € Y, iX,Y,Z) for the set of all associators ( i , y , z ) , x € X, y € Y, s e Z, and (.Y) 
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for the subloop of L generated by X. Let 7o(I) = L, i\iL) = HL, £.),(!, L,L)) and, for 

7.+,(i) = ( (Z„7. ( i ) ) , (7 iW,- t ) . ( i .A7.W), (^7 . ( i ) , i ) . (7 . ( i ) , i ' , i ) ) . 
The subloop 71 ( i ) is also denoted L' and called the commutator/associalor subloop of £>. 
The loop L is nilpotent (Bruck uses the term "centrally nilpotent" in Chapter VI of his 
weU-known treatise [1]) if 7„(.£) = {1} for some positive integer n, which is then called 
the nilpotency class of L. 

Let Z> be a loop and suppose that the loop ring RL is alternative, but not associative, 
for any commutative and associative ring R with unity. Then the loop L (which, as we 
have observed, is necessarily Moufang) has many special properties, including nilpotence 
and finite conjugacy [2]. In fact, L is nilpotent of class 2 and, for any ieL, the set 
{x~ltx \x S L} has cardinality at most 2. 

The complete set UiRL) of units in RL is a Moufang loop containing L and it is 
natural to wonder if UiRL) inherits any of the properties of L. In this connection, and 
for various rings R, we have recently explored the possibility that UiRL) is nilpotent or 
has the finite conjugacy property and it is our purpose here to report our findings. 

2. Integral Alternative Loop Rings. Over the ring Z of rational integers, nilpo-
tency and finite conjugacy in UiZL) are equivalent. In fact, we have established the 
following theorem [9j. 

Theorem 2.1. Suppose ZL is an alternative, but not associative, ring. Then the follow-
ing are equivalent: 

1. UiZL) is FC; 
2. UiZL) is nilpotent; 

3. UiZL) is nilpotent of class 2; 

4. The set T of torsion elements of L form an abelian group or a Moufang Hamiltonian 
2-loop such that for any t S T and any x Ç L, we have x~ltx = l±l. Moreover, if 

T is an abelian group and x € L is any element which does not centralize T, then 1 
x-Hx = r 1 for all teT. 
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A torsion element in a loop is an element of finite order. As a consequence of The-

orem 2.1, \iU{ZL) is nilpotent or FC, then the only torsion elements of ZL are trivial; 

that is, of the form ±i, ê £ L [10]. In particular, the torsion units of ZL form a subloop. 

3. Alternative Loop Algebras over Fields. More recently, we have examined 

nilpotency and finite conjugacy in alternative loop algebras over fields and found the 

situation to be quite different from the case of loop rings over Z. It is interesting to 

contrast our results for the cases that L is or is not a torsion loop. 

Theorem 3 .1. Let L be a torsion loop and F afield such that FL is altemative. Then 

1. UiFL) is an FC loop if and only if both F andL are finile [6]. 

2. UiFL) is nilpotent if and only if F has characteristic 2 [7]. 

Thus we see, for example, that if £ is a finite loop, it is the field which alone determines 

whether or not UiFL) is nilpotent or FC. We do not know if nilpotency or finite conjugacy 

of a Moufang loop implies that the torsion units form a subloop, but, as with loop rings 

over the integers, such is the case for unit loops in the altemative loop algebras of torsion 

loops. 

Theorem 3.2. [8] Let L be a torsion loop and F a field such lhat FL is altemative. 

Then the torsion units of FL form a subloop if and only if F has positive characteristic 

p and either p = 2 or F is algebraic over its prime field. 

Turning to the case that L is not a torsion loop, we use T to denote the set of torsion 

units in L and note that, for any loop considered in this paper, T is always a subloop 

[9, Lemma 2.1). We consider finite conjugacy and nilpotency of the unit loop UiFL) 

separately. 

Theorem 3.3. [6] Let L be a loop with torsion subloop T ^ L. Let F be a field such 

that FL is an altemative algebra. 

I. If the characteristic of F is 0, UiFL) is FC if and only ifT is central in L and, if 

it is also infinite, Ihen T = Z(200) x B where B is a finite group, and then exists 

an integer k such lhat F does not contain roots of unity of order 2k. 
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2. If the characteristic ofFisp>0 andL contains an element of order p, then UiFL) 
is FC if and only ifp = 2andT = L'xA, when A is a finite abelian group of odd 
order. 

3. If the characteristic of F is p > 0 and L does not contain an element of order p, 
then UiFL) is FC if and only ifT is an abelian group and one of the following 
occurs: 

(i) FT is finite and, for all t e T and all x £ L, we have xtx-1 = t'r for some 

integer r > 0, a multiple of[F: PJ, when V denotes the prime field ofF. 
(ii) T is finite and central. 

(iii) T is central and of the form Z(2-) x B with B finite, and there exists an integer 
k such that F does not contain roots of unity of order 2*. 

Theorem 3.4. [7] Let L be a loop with torsion subloop T ? L. Let F be a field such 
that FL is an altemative algebra. 

1. If the characteristic of F isO, or if cYin F = p > Q and L contains no element of 
order p, then UiFL) is nilpotent if and only if either T is central or\F\ = p = 2'3-l 
for some positive integer fi, T is an abelian group of exponent Zip - I) and, for all 
xe L and all teT, we have x~ltx = t or f. 

2. If the characteristic ofFispXi andL contains an element of order p, then UiFL) 
is nilpotent if and only ifp = 2. 

Once again, nilpotency or finite conjugacy oî UiFL) implies that the torsion units of 
UiFL) form a subloop, for we have 

Theorem 3.5. [8] Let L be a loop with torsion subloop T £ L and F a field such that 
FL is alternative. Then 

1. If the characteristic ofF is 0, then the product of torsion units in FL is a torsion 
unit if and only ifT is an abelian group, for each t e T and x e L, we have 
xtx-1 = f for some i and, for each noncentral element teT, F contains no root 
of unity whose order is the order of t. 
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2. / / tAe characteristic of F is p > 0, tAen (Ae product of torsion units in FL is a 

torsion unit if and only if p = 2 or T is an abelian group and, if it is not central, 

then V, the algebraic closure in F ofthe prime field ofF, is finite and, for allx £ L 

and all t €T of order relatively prime to p, we have xtx~l = tp, for some posilive 

integer r, a multiple of[P: V]. 

4. Conclusion. It is appropriate to observe that the questions we have considered in 

this paper have all previously been settled in the case of group rings. In fact, the literature 

is rather extensive. For finite conjugacy of unit groups over fields or the integers, we refer 

the reader to [4] and [15] respectively. Nilpotence in group rings is the subject of [5] and 

[16]. The interested reader should also consult (14, Chapter VI]. Both finite conjugacy 

and nilpotency of the unit group are related to the property that the torsion units in a 

group ring form a subgroup; see [12], [11] and [3]. 
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COMPLEX REPRESENTATION S OF GL(2,g) 

MARTIN PEROLER 

Presented by V. Dlab, F.R.S.C. 

ABSTRACT. A direct construction of the irreducible mfttrix representations over C of 
GL(2, q) is given. The crucial ingredient is a recent result on tbe existence of certain 
primitive elements in the quadratic extension of a finite field. 

1. OVERVIEW 

The character table of the groups GL(2,ç) is weU-known, either through Green's 
treatment of the characters of the groups GL(n,f), or by more ad-hoc methods. 
The actual representations, i.e. homomorphisms from GL(2,9) to GL(-, C), have 
been described using indirect methods by several authors (see (5, 7, 11]). 

The problematic case is that of the so-caUed cuspidal representations of degree 
g — I. These arise by inflation of their restrictions to the Borel subgroup, but 
computation is complicated by the nonnaturaUty of the embedding of Zvi_i into 
GL(2, q). We use the following recent result to choose a suitable system of genera-
tors for GL(2,g) in terms of which the conjugacy class structure can be expressed 
expUcitly. We use this to give a new construction of the cuspidal representations. 

Theorem 1 ((1, 10}). For any prime power q, ihere is a primitive element C 
of GFiq2) over GF(</) (i.e. an element of multiplicaUve order q2 — 1) with trace 
li-C = < + <» = 1-

Apart from this result, our construction uses only elementary techniques at the 
level of a first graduate course in groups and representations. This aUows for a 
shorter and perhaps more easily motivated approach than previously. The under-
lying argument in §5 comes from [3], where it is used, without number-theoretic 
compUcations, to construct the degree ( p ± l ) / 2 representations of SL(2,p). The 
author wishes to thank John Dixon for discussions on this topic. 

We take 9 to be a prime power greater than 2 throughout. 

1991 Mathematics Subject Classification. Primary 20G0S, secondary 20G40. 
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2. STRUCTURE OF GL(2,9) 

Let F = GF(9) and E be its quadratic extension. We denote by G the group 
GL(2, F) = GL(2,9) of order (g - \fqiq + 1). For any generator « of the multi-
pUcative group IT (we choose one below), G is generated by the elements 

order 9 — 1 9 4 

Let y = t - ' z t = ( e
 1 j a n d t » = y « = ( e j . The elements x,y, and z 

generate the Borel (triangular) subgroup T of index 9 + 1. 

The conjugacy classes of G are classified by the way in which the minimal poly-
nomial of their elements factors over E, as follows: 

(1) The minimal polynomial is linear. This gives 9 - 1 classes denoted by [ec], 
each consisting of the single element wc (0 < c < 9 — 1). 

(2) The minimal polynomial is a square. This gives 9 - 1 classes («c]2 with 
representatives wcx. The stabiUzer of wex under conjugation is H = iw, x) 
of order 9(9 — 1), so each class has size q2 — 1. 

(3) The minimal polynomial has two distinct roots in F. This gives (9 — 1)(9 -
2)/2 classes [c0,«6] ( 0 < a < 6 < 9 - l ) with representatives yar6 (note that 
y0«4 is conjugate to y6*" in G). The stabiUzer subgroup is iy,z) so each 
class has size 9(9 + 1). 

(4) The minimal polynomial has roots ( and ( ' for some ( € E \ F. The 
corresponding classes (£,£'] arise from some fixed embedding E* in G. The 
stabiUzer subgroup is E*, of order 92 — 1, so each class has size 9(9 — 1). 

The characteristic polynomial of trrx* is X2 - sX + er. By Theorem 1 we can 
choose a primitive element C in E with trace 1, and then define t to be the norm 
C' + l of Ç. With this choice of «, Ux is an element of order 92 - 1 and ( •-» tzx fixes 
an embedding of E* in G, completely determining the conjugacy classes in (4). 

Define K to consist of the elements of Z/(92 — 1)Z of the form 09 + /Î for 0 < 
a < ^ < 9. Then AC has 9(9 - l ) /2 elements and Z/(92 - 1)Z can be partitioned 
into three subsets: /C, 9-XT, and 72 = («1(9+1) ] m = 0 , . . . , 9 - 2 } . The conjugacy 
classes in (4) can be indexed as (C*,C*'] for * 6 AC. 

FinaUy, it is easy to see that the conjugacy classes of the Borel subgroup T are 
derived from those of G as foUows. The singleton classes [«*] remain unchanged. 
The classes («c]2 also remain, but now have size 9 — 1. The classes ((*• C'*] MC not 
present. The elements y0z6 and yiza are no longer conjugate, so there are distinct 
classes («",«6] and [e 4 ,^ ] , each of size 9. In particular, for c fixed, the elements 
wexd are conjugate in T for d ?É 0 (mod 9). Similarly, for fixed a ^ fr (mod 9 - 1), 
the elements yazixd are conjugate in T for aU d. 

3. CHARACTER TABLE OP GL(2,9) 

The character table of C7 is as follows. Here u; is a primitive (92 — l)th root 
of 1, and ft = w ' + , . Both superscripts and subscripts indicate exponentiation (so 

file:///fqiq
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ÎÎJ. = naC); the lower position is used to distinguish between representations of 
the same type. 

[ec] [ec]2 [*V41 [<k,Cqk] 

ec 
oc 

VA,B 
PK 

ay n2
c
e iih&c " c 

qay o nac&c -nkc 
iq+WAa% n c

A f i e
B ^"A^B + ^ ' B Q

 k 
(9-l)ft'K -ftjf o -i^K+O 

The degree 1 representations <l>c arise from the characters of G/G' = F* and are 
given by <?c(s) = xcidet g). The representation ao is given by ^o® *o = "". where n 
ia the permutation representation of G acting on P^F) in the standard manner. The 
other ac are given by tensoring with the <t>c- The representations rl>A,B are induced 

from the degree 1 representations of T given by ij>A,B {* ^ j = XAi<*)XBi0) fc>r 

distinct characters \A and xa of F* • 
The characters of the remaining so-caUed cuspidal representations PK can be 

obtained by judicious fiddling with the character table (see (4, Section 5.2]). Al-
ternatively, the character tables of aU the groups GL(n,9) can be determined by 
a method of J. A. Green (see [6] or (9, Chapter IV]). Here again the paraboUc 
subgroups (the Borel subgroup in our case) play an important role, and the cuspi-
dal characters arise from a change of basis for a system of symmetric polynomials. 
Green's approach fixes a one-to-one correspondence between irreducible characters 
and conjugacy classes, shown in the table above by equating corresponding low-
ercase and uppercase variables. Since tbe representations PK correspond to the 
classes (C*.?'*). it is not surprising that giving the representations PK expUcitly 
is as sensitive a problem as fixing the conjugacy class structure of G precisely in 
terms of a fixed system of generators. 

4. CONJUGACY CLASSES OF WX' 

We constnict a look-up table specifying the conjugacy classes of the elements 
tzrx'. Define the sequence {Tk} for k € Z/(92 - 1)Z by the equations 

(1) To=T, = 1 . 
(2) T,* = Tk. 
(3) Tk=l- Ei*»<*/2 O m T * - 2 - (m o d «)' 

Proposition 2. Let r vary from 0 to q-2 and s vary from 0 to q-l. There is 
exactly one element Wx' in each conjugacy class of G except for tAe classes \ec\, 
which contoin no jticA elements. ^ 

Jn pariicular, tx2 € [1,1]; tx'x* 6 (C*,^*! if r = k (mod 9 - 1) and s = Tk 
(mod 9) fork € AC; «nd tzrx' € [«»/t»+1>]2 if r = k (mod 9 - 1) and s = 2* 
(mod q) for A- € 72, Jfc ?£ 0. Otherwise, tx'x* has distinct eigenvalues m F. 

Proof. We first observe tzrx' is never diagonal, and so cannot be in («']. 
Now. let Ç € E have norm iV = ^ + , . Tbe norm of Ç* is JV*. Expanding it + Ç» ) 

by the binomial theorem and grouping the terms for m and m - fc, we see that the 
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trace Tk = Çk + {«* of (k for fc > 0 satisfies 

0<m<*/2 V ' 

We set To = 1, so the case m = fc/2 works out. 
Setting ( = <, our trace 1 primitive element, we obtain equation (3). The field 

structure gives (2). This shows that the conjugacy classes of izrx' are as given. 
The special treatment of tx2 is necessary since TojtTrÇ0 =2. 

Since tra*i«'+«* belongs to [«", e4], there is an element tzrx' in each nondiagonal 
class. Uniqueness foUows by counting the number of elements tz'x' and the number 
of classes. D 

5. CONSTRUCTING THE DEGREE 9 - 1 REPRESENTATIONS 

Fix A' € AC. Calculation of the inner product shows that the restriction Resr pK 
is irreducible, and in fact, RBSTPK = Ind« LK, where H = iw,x) and LK is the 
degree 1 representation of H given by 

L/c(u)) = QK, and Ijf(x) = 'Z. i? a primitive 9th root of 1. 

Indeed, T is metabeUan so any irreducible representation must be monomial. 
Doing the induction using the basis z0,z1,...,zi-2 for CT over Cff, we obtain 

PA-(u>) = HKI 

PKix) = Diagirl,r|',l),\...%q^,'') 

- H 1 • • • . ' 

a) 

Now, the relation ztz = wt is preserved by PK. This implies that phit) has the 
form 

/ ao ilh-ai H -̂Oî 
Ql «K-Oî fÎK-QS 

«2 QKOS n2K0« PKit) = 

\Qq-l fttfOfl QKOI 

Expanding from (1) and (2) now forces 

nr2«,-2\ 
ny QO 
r2-. nr2 

nrS-3/ 

(2) 

1-2 
XpA*''*') = TtPKitz'x') = ^ Q r + 2 n n r / n 7 " " (3) 

Here the indices on a are taken (mod 9 - 1). 

file:///Qq-l
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We sum (3) over s with weighting t)~'. The terms on the right involve the sum 
Y^lZo l'(,'''~l), which sums to 9 if n = 0 and vanishes otherwise. Hence the Qr are 
given by 

"r9ftï(: = I>"x«..r(**^*•) W 

Since the character values on the right can be identified using Proposition 2. this 
fully determines PK-

6. MORE ON THEOREM 1 

The known proofe of Theorem 1 ((1,10]) involve rather deUcate arguments using 
character sums to show the result holds except possibly for a finite Ust of 9's. These 
remaining cases (roughly 200 in (10]) are checked by computer. 

For our purposes, we require a method to find a specific e € F such that X -X+e 
is the minimal polynomial of a primitive element of E. Thia can be done using the 
foUowmg result. 
Theorem 3 (Alanen-Knuth, [8, Theorem 3.18]). A monic quadratic f € E[X] 
with constant term e is the minimal polynomial of a primitive element of E iff e is 
a generator off and the least integer m for which Xm is congruent io an element 
of F (mod fiX)) is m = q + l. In this ease, Xm is congruent to e. O 

This procedure for finding a suitable «, together with the calculation of the Tk, 
seems particularly suited to computer methods. 

Theorem 1 has been generalized in [2] to show that for any n > 2, there exists a 
primitive element of GF(9n) over GF(9) of arbitrary trace T, except for the cases 
T = 0,n = 2 and T = 0,n = 3,9 = 4. 

7. EXAMPLE, 9 = 3 

We conclude by computing PK for the simplest case, that of 9 = 3. Let »j = 
exp2x1/3 and w = exp2^/8, so QK = (-1)K- The only generator of F* is « = 2. 
We choose AC = {1,2,5}. For A' 6 AC, we see from (1), (2), and (4) that 

„,„.(- „,).««-(, ^nm-iZ jlîfc)-
vf here « t 

3ao = XPKW + rfXrA**) + VXPA**)' *** 
3i-l)Kai = Xncit^+rfXrAtzx) + I ' X P K ^ " 2 ) -

FVom Proposition 2, we see that To = T! = T3 = 1, Tj = Ts = 0, T* = 1, 
and Ts(= T,5) = TT = 2, and so tx2 € [1.1], t « € (C,C31. * e (C'.C6]. <* € [2,2], 
tzx2 € {C8,C71. vd iz ha» distinct eigenvalues in F. Hence 

3oo = -(U»K- + wjf) - 12(-1)K - 1 . *** 
3(- l ) ' f a i = -rfi^K+UK) - »K«K +«*:)• 
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Free Bicompletion of Enriched Categories 
André Joyal, F.RS.C. 

This is the second of a series of comptes rendus on free bicomplete categories. Here 
we extend the results of the first to enriched categories. In the third we shall introduce a 
game theoretic semantic for bicomplete categories as in [Blass]. 

§ 1. Bicomplete V-categories 
For the basic concepts of enriched category theory see [KeUy]. To fix the notation 

and terminology we shaU review briefly a few concepts. For any monoidal category V 
(sometime caUed a tensor category), we shaU denote V the monoidal category obtained 
by reversing the tensor product of V: A®r B = B®A. RecaU that V is closed if for every 
A e V the functors X >-* A®X and X i-> X®A have right adjoints, denoted respectively 
hy X i-» A\X and X >-* X/A. A category C enriched over V, also called a V-category, is 
defined by a map (—, —] : ObC x ObC —» 06V together with associative composition laws 

[A,B]e>[B,C]-*[A,C\ 

and units l/i : / —• [A, A]. The map (-, —] is sometime denoted by C[—, —]. Observe that 
a V-category is defined by composition laws 

[B,C\®[A,B]^[A,C\ 

An arrow A —• 5 of C is an arrow I -*C[A, B] in V. The category V is itself a V-category 
with V[A, B\ = A\B, and a V-category with V[A, B] = B/A. The opposite Cop of a 
V-category is a V-category with C^A", B"] = C[B, A] where the map A •-• A" is a formal 
bijection C a: Cop. In the absence of indication to the contrary, we shall suppose that 
aU functors and natural transformations are V-functors and V-natural transformations. A 
functor F is an embedding if the arrows C[A, B\ -* [FA, FB] are invertible. 

In this paper V denotes an arbitrary but fixed closed monoidal category that admits 
smaU limits and coUmits. When C is smaU the category [Cop, V] of V-functors Cop -* V is 
enriched over V. 

We shaU denote by Jf ® A the tensor and AX the cotensorof an object XeC with an 
object A e V, when they exist. A V-category C is cocomplete (resp. complete) if it admits 
tensors and cotensors, and Umits and coUmits of small diagrams. 

We shaU use upper and lower integrals. RecaU that a V-graph is a set 5 with a map 
[—,—]: 5 x 5 —» ObV. A weight on S is a map w : S -* ObV together with a family of 
arrows [i,j\ ® u/Q") —• u)(t). A diagram D : S —*Cisa map D : S —* ObC together with a 
family of arrows [i,j] —» [Z3(i), £>(;)]. In a cocomplete category the /ou;er integral 
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£>(t) ® «;(») = D ® iw i fi€S 

can be defined as the colimit of the diagram of canonical maps 

D(i) ® u;(i) < Dii) ® [t, j] ® w(j) > Dij) ® wij), 

where i and j run through S. A functor F : C —* V between cocomplete categories is 
cocontinuous iff the canonical arrow F(U) ® tu -• F(Z? ® iu) is invertible for any (small) 
weighted diagram (17, w). 

Dually, a co-weight on a V-graph 5 is a diagram w: S —*V. The upper integral 

f ies 
wii)Dii) = wD 

is the Umit of the diagram of canonical maps 

w(j)Dit) > wii)®[i,j]Dij) <— wiJ)DiJ) 

where t and j run through S. A functor F is contmuous iff the canonical arrow 
FiwD) —• wFiD) is invertible for any (small) coweighted diagram (£>, w). 

Definition 1; An object A e C of a cocomplete (resp. complete) V-category is a-atomic 
( resp. ir-atomtc) if the functor [A, —) : C —• V (resp. (—, A] : Cop — V) is cocontinuous. 
An object is atomic if it is both cr— and TT—atomic. 

A V-category is bicomplete iî it is complete and cocomplete. A functor is bicontinuous 
if it is continuous and cocontinuous. The concept of free bicompletion i : C —* AC of a 
V-category C is defined as in [J]. 

The equivalence (AC)op ^ A(Cop) can be used to identify these two categories. We 
shaU write A" 6 AC"»' for A e AC. 

Definition 2: A bicomplete V-category C is soft if the following square of canonical 
arrows is a pushout 

/ vii) ® (A(i), BU)] ® wij) — > f [X, Bij)] ® wij) 

i 
w 

/ vii)®[A(i),Y] — M * . y ] 

for any upper and lower integrals X = J* u(»)A(i) and Y = Jjej Bij) ® wij). 
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Theorem 1. The free bicompletion i : C —* AC of a V-category C has the following 
properties: 

i) tbe category AC is soft ; 
ii) for every A € C the object iA e AC is atomic; 

in) tbe functor i is an embedding; 
iv) tbe category AC is tbe biclosure o/i(C) C AC. 

Moreover, these properties characterize tbe pair (t, AC) up to equivaience of categories. 

The free completion i:C -*IIC and the free cocompletion i : C - • EC of a V-category 
are defined similarly to the free bicompletion. It is weU known that when C is small we 
have EC = [Cop, VJ with i the Yoneda functor. The so-caUed Cauchy completion Cc (see 
[Lawvere]) is the subcategory of a-atoms of EC. It is also equivalent to the subcategory of 
JT-atoms of TIC (au object of Cc being often described by a pair of functors). 

Proposition 1. Tbe canonical functors EC -* AC and IIC —> AC are embeddings and 
their images are respectively tbe full subcategories of it-atoms and of a-atoms. Moreover 
Ce is equivalent to tbe full subcategory of atoms of AC. 

Consider now the continuous extension IIEC -» AC of the embedding EC <-> AC; and 
dually, consider EIlC -, AC. 

Corollary. The functors EIIC — AC and IIEC —• AC are embeddings. 

Recall (Benabou) that a distributor M iC =>V between two smedl V-categories is 
defined to be a functor M : C0* x P —• V. This concept make sense even when V is 
non-symmetric; namely, we specify M by a family of arrows 

(A, B] ® MiB, C) ® (C, DJ - A/fA, D) 

satisfying obvious conditions. For every B e V we have a functor M(—,B) : C0* —* 
V and the map B »-• A/(-, B) is a functor Af (-, =) : 2> -» [C"1', VJ. If we use the 
equivalence (Cop, VJ ^ EC the functor A/(—, =) can be extended to a cocontinuous functor 
EM : EP -» EC. The functor EM has a bicontinuous extension AM : AV -» AC. 
The transpose of a distributor M is a distributor tM : 'Dop x C —> V . The distributor 
'M defines a cocontinuous functor E'M : EC01" -* EP0'' and by duality, a continuous 
functor IIM* = II'M" : IIC - • IIP. The functor IIM* has a bicontinuous extension 
AM* : AC — AP. 

Proposition 2. For any distributor M : C =» P the functor AM' : AC —• AP is left 
adjoint to the functor AM : AV —» AC. Moreover, any adjoint pair of bicontinuous 
functors between AC and AP is of this form. 
Remark: To every functor / : C —• P we can associate two distributors F' : P =̂  C 
and F/ : C => P, where r / (5 ,A) = Aom(5,/A) and F/(A,i3) = homifA,B). The 
functors EF^ : EC — EP and XIFJ : UC —• IIC are respectively the cocontinuous and 
the continuous extensions of / . It foUows that AF^ = A/ = AFJ and therefore that 
Af has bicontinuous left and right adjoints. When P is Cauchy complete this property 
characterizes the bicontinuous functors AC - • AP of the form Af. 
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The relative completion j : C -* A'C of a cocomplete V-category C is defined as 
in [Joyal]. RecaU that a cocomplete category is also complete when it is accessible (see 
[Makkai & Paré]). 
Theorem 2. Let C be a bicomplete V-category. The relative completion j : C -* A'C 
exists and bas tbe following properties: 

(i) tbe category A'C is soft ; 
(ii) for any A 6 C the object jA is Tr-atomic; 

(iii) tbe functor j has a cocontinuous nght adjoint k : A'C —» C 
(iv) tbe functor j is full and faithful; 
(v) A'C is the biclosure offiC). 

Moreover, these properties characterize the pair (j, A'C) up to equivalence of categories. 

§2. The symmetric case 
Ftom this point on we shall suppose that V is symmetric. The (tensor) product C x P 

of two V-categories is then defined (see (KellyJ). RecaU that we have 

\iA,B),iC,D)] = [A,C]®lB,D] 

for pairs of objets (A, B) and (C, P) e C x P. 
Definition 3: Let A, B and C be cocomplete V- categories. A functor of two variables 
F : A x B —• C is soft if the following commutative square of canonical arrows 

/ F(P(i), FO)) ® vii) ® wij) > f FiX, Eij)) 0 wij) 
J{i,j)ei*j JJçJ 

L 
I 

F(P(i), Y) ® vii) : > FiX, Y) 

is a pushout for any pairs of lower integrals / é 6 ; P(i) ® t;(i) = X and J.^j Eij)® wij) = y 
The concept of soft functors in n > 3 variables is defined similarly, but by using cubical 

diagrams instead of (pushout) squares. A soft functor of one variable is a cocontinuous 
functor. 

A functor of n > 2 variables F = F ( - , . . . , - ) is responsive if it is continuous in each 
variable, and if fixing at a-atoms the values of any subset of 0 < & < n variables produce 
a soft functor. The functor (-, - ] : AC"'' x AC -• V is an example of responsive functors 
(Theorem I). 

We have also the dual concepts of cosoft and coresponsive functors. 
Theorem 3. Let F : 11?= i Ci-*Vbea functor ftom a non-empty product of V-categories 
and taking its values in a bicomplete V-category V. Then F has a responsive extension 
F' : n"=i ACi - • P. Mbrover this extension is unique up to a unique isomorphism. 

We have the dual concepts of cosoft and coresponsive functors. Theorem 3 has a dual 
which we do not state. 
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The externa/ tensor and the external dual tensor products 
® and O : AB x AC -+ A(B x C) 

are defined as in [Joyal]. They are respectively the coresponsive and responsive extensions 
of t : B x C —» A(B x C). These operations are associatives up to coherent isomorphisms. 
Proposition 3. .Fbr any A" 6 AB the functor Jf® (-) : AC - • A(B® C) has a right adjoint 
R~X\R. 
Remark: When C is smaU let A € A(C x C0»*) be the element corresponding to (-, - ] 
via the embedding [C* x C, V] = E(C x C*) C A(C x &?). It can be shown that for any 
X 6 AC we have a canonical map X ®X0 -* & and a natural isomorphism X" a X\A. 

As in Classical Linear Logic [Girard] we have obviously the duaUty isomorphism 

iXQY)0c*X0®Y0 

We have also mixed associativity transformations 
( A 0 B ) ® C - > A O ( B ® C ) A ® ( B © C 7 ) - * ( A ® B ) 0 C 

(see [Lambek] for the history of this concept). 

Certain structures on categories can be extended to their free bicompletion. Recall 
that a monoidal V-category P is closed if for every A € P the functors X >-* A®X and 
X H-» X ® A have right adjoints, denoted respectively X >-• A\X and X i-> X/A (see 
(KellyJ). An object J 6 P is dualizing if the (contravariant) adjoint functors A h-, A\J = 
A' and A i-» J/A — 'A are inverse equivalences. A closed category P equipped with a 
dualizing object J 6 P is said to be *-outonomo«s. 
Theorem 4. Let P = (P, ®, /) be a monoidal V-category. The coresponsive extension of 
the tensor product on P defines a monoidai structure on AP. Moreover AP is closed i / P 
is, and U 6 AP is dualizing ifJeV is. 

When P is closed the functor ( - \ - ) : AV* x AP —• AP is the responsive extension 
of the corresponding functor on P. 
Corollary. The free bicomplete V category generated by a finite chain of arrows is *-
autonomous. In porticuiar, Al the free bicomplete V-category generated by one object is 
^-autonomous. 

For any V-category C let (-, - ] : AC0»* x AC -• Al be the responsive extension of 
j(-.-J : C'' x C - • Al, where j : V -» Al is given by jA = 1 ® A. 
Proposition 4. Let C a V-category. The responsive functor [—, -] : ACop x AC -* Al 
defines an enrichement of AC over Al. Moreover, AC is bicomplete as a Al-category. 

We now sketch a generaUzation of the theory of distributors. It is based on the 
observation that we have 

[Cop x P, VJ = E(C x P0") <-* A(C x Pop) 

for any small V-category C and P. 
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Definition 4: A X-distributor M : C =*• P is an object M e A(C x P0?) = A(C,P). 
RecaU that distributors M : B => C and AT : C =*• P can be composed M o AT : B =* P 

The operation of composition of distributors is a functor of two variables 

E(B x C0*) x E(C x P""') — E(B x Pop). 

By taking its coresponsive extension we obtain an operation of composition (M, N) >-* 
M oN on A-distributors: 

A(B,C)xA(C,P)-A(B,P). 
Proposition 5. For any M 6 A(B,C) the functor Mo ( - ) : A(C,P) - • A(B,P) has a 
tight adjoint Q •-» M\Q. And similarly for the functor i-)oN : A(B,C) -+ A(B,P) for 
anyiVeA(C,P). 
Remark: The composition of A-distributors can be explained in term of other operations. 
More precisely, let us denote by 1 the V-category with a single object and let e : P x P"'' =* 1 
be the distributor given by eiX,Y, 1) = IX,Y\. Observe that the category of small V-
categories and distributors is a compact closed bi-category. Then for M Ç A(B,C) and 
N € A(C, P) we have the formula 

MoN = A ^ x e x P)(M® N) 

where M ® Af e A^"'' x C x Cop x P). We shall formalise the whole situation later with 
a concept of Linear Theory. 
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FVee Bicomplete Categories 
André Joyal, F.RS.C. 

This is the first of a series of comptes rendus on free bicomplete categories. A cate-
gory is bicomplete if it admits limits and coUmits. A functor is bicontinuous if it preserves 
limits and coUmits. The free bicompletion AC of a category C is the bicomplete category 
freely generated by C. More precisely, we have a functor C —» AC satisfying a universal 
property with respect to bicomplete categories and bicontinuous functors. One motivation 
for this work is to extend to categories the classical results of Phillip M. Whitman on free 
lattices. We introduce the concept of soft functors and prove that the hom functor of a 
free bicomplete category is soft. The result has a central role in a theorem characterizing 
free bicomplete categories by a few combinatorial properties. We introduce the concept of 
responsive functors and prove that any functor defined on a product of categories has a 
responsive extension to the product of their bicompletions. It foUows that AC is monoidal 
closed, or «-autonomous when C is. In particular Al, the bicomplete category freely gen-
erated by a single object, is «-autonomous. We also show that any AC is enriched over Al. 
In the second compte rendu we shall consider free bicompletion of enriched categories. In 
a third we shall discuss the game-theoretic semantics of free bicompletions. This work was 
partly motivated by Andreas Blass's game semantic of linear logic [Blass]. 

§ 1. The characterization theorem 
We first recall Whitman's theorem on free lattices (see (Whitmanj). A lattice is a poset 

with binary infima and suprema. The free lattice generated by a poset F is a iattice L(P) 
equipped with an order-preserving map i : F —• L(F) satisfying the following universal 
property: for any order-preserving map f : P —* L with values in a lattice L there is a 
unique lattice map / ' : L(F) —» L such that fi = / . 
Theorem 0. (Whitman^ Let i : P -* L(F) be the free iattice generated by a poset P. 
Then for any a,b in P and x, y, u and v in L{P) we have: 

(i)xAy<uVviffxAy<uorxAy<vorx<u\/vory<uWv; 
(ii) i(o) <uVv ifti(a) < u or t(a) < v; 

(iii) i A y < i(b) ift i < i(6) or y < i(6); 
(iv) i(a) < »(6) ift a < 6; 
(v) tbe lattice L(F) is generated by t(F). 

Moreover, these properties characterize the free lattice generated by P. 
The central thing here is the condition (i). Our first task wiU be that of formulating 

an analogous condition for categories. In the absence of any indication to the contrary, 
we shall suppose that aU Umits and colimits are finite -that is, taken over finite diagrams. 
But the results and proofe remain valid with «t-smaU Umits and coUmits where K is any 
infinite regular cardinal, and also with aU smaU ones. 
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RecaU (see [Mac Lane]) that a category is complete (resp. cocomplete) if it admits 
Umits (resp. colimits), that a functor is continuous (resp. cocontinuous) if it preserves 
Umits (resp. colimits). A category is bicomplete if it is complete and cocomplete. A 
functor is itcontinuous if it is continuous and cocontinuous. 

A free bicompletion of a category C is a bicomplete category AC equipped with a 
functor t : C — AC such that: 

i) (existence) for any functor F : C —» B with values in a bicomplete category there exist 
a bicontinuous functor F ' : AC —» B such that F ' o i = F ( we shall say that F ' is a 
bicontinuous extension of F) ; 

ii) (uniqueness) if F ' , F " : AC —• B are two bicontinous extensions of F then there is a 
unique isomorphism u: F' -* F" such that u o t = idf. 

Remark: It follows from this definition that the free bicompletion of a category is unique 
up to an equivalence of categories. Moreover, the equivalence is unique up to an isomor-
phism of functors; and the isomorphism itself is unique. 

When C is small the existence of AC can be proved by standard categorical methods 
that we shall not discuss. For large C the existence can be proven using Theorem 1. 
Definition 1: Let F : A x B — • C b e a functor of two variables between cocomplete 
categories. We shaU say that F is soft if for any pair of finite diagrams D : I -* A and 
E: J —* B the following commutative square of canonical maps 

lirj F (P , E) > U r ^ F p , lim E) 
IxJ I J 

UrqF(UmP.F) > F(limP.limF) 
J l t J 

is a pushout. A bicomplete category B is soft if the hom functor Bop x B —» Sets is soft. 
The concept of soft functors in n > 3 variables is defined similarly, but by using 

cubical diagrams instead of (pushout) squares. A soft functor of one variable is just a 
cocontinuous functor. 
Remark: Note that the functors F(A, - ) obtained by fixing one of the variables of a 
soft functor need not be cocontinuous. However, when A is an initial object, F(A, —) is 
cocontinuous. A similar observation can be made for soft functors of n > 3 variables. 

Let B be a soft category. Then for any pair of finite diagrams D : J —• B and E : J —* B 
the square 

lirq homjD, E) > Um/iom(P,limF) 
UJ i j 

v V 
liiq/tom(/imP.F) > homi]imD,\imE) 

J t t j 
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is a pushout. In particular, every arrow / : ]imP - • UnjF has either a factorization 
f = 9Pi, ot a factorization f = qjh, where pi : UmZ? - • P^ and g7 : Ej -» Umf; are 
canonical. This is the categorical analogue of property i) in the Whitman theorenT 

Definition 2: An object A 6 C of a cocomplete (resp. complete) category is «r-atomic 
(resp. jr-atomic) if the functor Aom(A,-) : C - • Sets (resp. homi-. A) : C"*' - • Sets) is 
cocontinuous. An object which is both o- and Tr-atomic is said to be atomic. 

Remark: In a soft category the a-atoms ( resp. jr-atoms) are closed under limits (resp. 
coUmits). In particular, the terminal object T (resp. initial object J.) is ff-atomic (resp. 
jr-atomic). 

Theorem 1. For any category C, the free bicompietion i : C - • AC has the following 
properties: 

(i) tbe category AC is soft ; 
(ii) for any AeC the object iA is atomic; 

(iii) the functor i is full and faithful; 
(iv) the category AC is bigenerated by i(C). 

Moreover, these properties characterize tbe pair (i, AC) up to an equivaience of categories. 

In this theorem, condition (iv) means that AC is the closure of t(C) under the opera-
tions of limits and colimits. 

The free completion HC and the free cocompletion EC of a category C are defined 
similarly to the free bicompletion. Let [Cop,Sets] be the category of functors Cop -, 
Sets. It is weU known that EC is the fuU subcategory of [C", Sets] whose objects are the 
finitely presentable functors, and that i is defined by the Yoneda embedding. Recall that 
the Karoubi completion KC is obtained by splitting the idempotents of C. It is the fuU 
subcategory of a-atoms of EC, and also the fuU subcategory of w-atoms of IIC. 

Proposition 1. The canonical functors EC -• AC and HC -• AC ore full and faithful. 
Their (essential) images are respectively the full subcategories of it-atoms and ofa-atoms. 
Moreover, KC is equivalent the full subcategory of atoms. 

Consider now the continuous extension IIEC -» AC of EC -• AC. Dually, we have a 
cocontinuous functor EEC - • AC. 

Corollary. The canonical functors EIIC -• AC and IIEC - • AC ore fiiii and faithful. 

For the rest of this section we shaU remove the condition of finiteness that we had 
imposed on limits and colimits, supposing only that they should be smaU. Recall that a 
distributor M :C =*V between two small categories is a functor M : Cop x P —» Sets. 
For every B e P we have a functor M(- ,B) : C* — Sets and the map B H- M( - ,B) 
is a functor M ( - , = ) : P — [C^.Sets]. Using the equivalence [C^.Sets] 2; EC we can 
extend M(- , =) to a cocontinuous functor EM : EP - • EC. Furthermore, the functor 
EM has a bicontinuous extension AM ; AP -• AC. The transpose of M is a distributor 
tM •.V>iCop -* Sets defining a cocontinuous functor E*M : EC0'' - • EP0»" and, by duaUty, 
a continuous functor RM* : RC -» HP. The functor HM* has a bicontinuous extension 
AM* : AC — AP. 
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Proposit ion 2. For any distributor M : C =* P the functor AM* : AC - • AP is left 
adjoint to the functor AM : AP -» AC. Moreover, any adjoint pair of bicontinuous 
functors between AC and AV is of this form. 
Remark: FoUowing (J. Benabou] to every functor / : C -» P we can associate two dis-
tributors F ' : P =• C and F/ : C =*• P , where F^B.A) = hom(B,/A) and F/(A,B) = 
homifA,B). The functors E F ' : EC -* EP and HF) : IIC - • RC are respectively the 
cocontinuous and the continuous extensions of / . It follows that AF' = A/ = AFJ, and 
therefore that Af has bicontinuous left and right adjoints. When P is Karoubi complete 
this property characterizes the bicontinuous functors AC —» AP of the form Af. 

§ 2. Extension theorems 
We shaU say that a functor of two variables F = F ( - , - ) is responsit/e if it is continuous 

in each variable and soft, and if the functors F(A, - ) and F ( - , B) are cocontinuous for er-
atoms A or B. The functor homi-, -) : ACop x AC-* Sets is an example of a responsive 
functor (Theorem 1). More generaUy, we shaU say that a functor of n > 2 variables 
F = Fi—,...,—) is responsive if it is continuous in each variable, and if fixing at tr-atoms 
the values of any subset of 0 < A; < n variables produces a soft functor. 
Theorem 2. Let F : fl"»! &-*£ bea functor taking its values in a bicomplete category 
£. Then F has a responsive extension F' : HILi ACi - • £- Moreover this extension is 
unique up to a unique isomorphism. 

We have the dual concepts of cosoft and coresponsive functors. Theorera 2 has a dual 
which we do not state. 

The external tensor product 

® : AB x AC -» A(B x C) 

is defined to be the coresponsive extension of i : B x C - • A(B x C). We have a natural 
associativity isomorphism X ® (V ® Z) 2i (Jf ® Y) ® Z in A(B x C x P) for Jf e AB, 
Y € AC and Z 6 AP. 
Proposition 3. For any .X' 6 AB tbe functor X®i-) : AC -» A(B0C) has a right adjoint 
R i-* X\R. 

The external dual tensor product 

0 : AB x AC -» A(B x C) 

is defined to be the responsive extension of i : B x C - • A(B x C). It is also associative and 
we have the duality isomorphism 

iXQY)0*X0®Y0 

familiar in Classical Linear Logic [Girard]. We have also mixed associativity transforma-
tions 

( A © B ) ® C - * A 0 ( B ® C ) A ® ( B O C ) — ( A ® B ) O C 
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( this concept has been discovered in logic by Grishin; the categorical form independently 
by de Paiva and by Cockett it, Seely; see [Lambek]). 

Certam structures on categories can be extended to their free bicompletion. RecaU 
that a monoidal category P is closed if for every A € P the functors X t-* A®X and X »-> 
X ®A have right adjoints, denoted respectively X •-• A\X and X •-• X/A (see [Kelly]). 
An object J 6 P is dualizing if the (contravariant) adjoint functors A t-, A\J — A* and 
A >-* J/A = *A are inverse equivalences. A closed category P is «-autonomous if it is 
equipped with a dualizing object J € P. 

Theorem 3. Let P = (P, ®, / ) be a tensor category. Tbe coresponsive extension of the 
tensor product on V defines a monoidal structure on AV. Moreover AV is closed i / P is, 
and iJ € AP is dualizing if J € P is. 

When P is closed the functor (—\—) : AP"'* x AP —» AP is the responsive extension 
of the corresponding functor on P. The theorem shows that free bicompletions of *-
autonomous categories are «-autonomous. The posets [n] = {0,1 , . . . ,n} (n > 0) are 
•-autonomous categories on setting x ® y = 0 V (i + y - n) at taking 0 for dualising object. 

Corollary. The free bicomplete category generated by a finite cbain of arrows is *-
autonomous. In particular, Al the bicomplete category freely generated by one object 
is «-autonomous. 

For the next proposition we remove the condition of finiteness normally imposed on 
limits and colimits and only suppose they are small. Let j : Sets —» Al be the coproduct-
preserving functor sending a singleton to 1. For any category C let (—, —J : ACop x AC —» Al 
be the responsive extension of j/iom(—.—) : Cop x C —» Al. 

Proposition 4. For any free bicompiete category AC, the functor [—, —J : AC0'' x AC —• A1 
defines an enrichement of AC over Al. The category AC is bicomplete as a category enriched 
over Al. 

§ 3. Relative completions 

The relative completion of a cocomplete category C is a bicomplete category AT 
equipped with a cocontinuous functor j :C —* A'C such that: 

i) (existence) for any cocontinuous functor F : C -* B with values in a bicomplete 
category there exists a bicontinuous functor F' : A'C —» B such that F' o j = F; 

ii) (uniqueness) if F', F" : A'C -» B are two bicontinous extensions of F then there is a 
unique isomorphism u: F' —* F" such that u o j = tdjr. 

The relative cocompletion j -.C -* A'C of a complete category is defined dually. 

When C is smaU the existence of A'C can be proved by standard categorical methods 
which we shall not discuss. The construction of free bicompletion of a small category can 
be broken up into two steps, and this in two ways: 

AC =; A'lIC =: A'EC 



224 A. Joyal 

Let C a small cocomplete category . The category (C"'', ^etsj" of continuous functors 
CP -» Sets is bicomplete since it is a fiiU reflective subcategory of the presheaf category 
[C^Sets]. For any A e C we have yA = homi-. A) e [Cop,Sets]', and the Yoneda 
functor y : C -» [C^fSets]' is cocontinuous. 

The edye of a cocontinuous functor f : C —• B is defined to be the functor 

if-.B—[C^.Sets]' 

given by /•(£) = /iom(/(-), B) for any B 6 B. 
Theorem 4. fbr any cocompfete small catcgoiy C the relative completion j : C -* A'C 
has the following properties: 

(i) the category A'C is soft ; 
(ii) for any A e C the object j A is jr-stomic; 
(iii} the edge functor j * : A T - • [ C ^ e t s ] " is cocontinuous; 
(iv) the functor j is fill/ and faithful; 
(v) A'C is the biclosure of j(C) under limits and coUmits. 

Moreover, these properties characterize the pair ij,C) up to an equivalence of categories. 

It foUows from (iii) and (iv) that j * is the bicontinuous extension of the Yoneda 
functor y. When C is bicomplete the identity functor C -» C has a bicontinuous extension 
fc : A'C —• C and (iii) can be replaced by the foUowing condition: 
(iii)' the functor j has a cocontinuous right adjoint k : A'C -» C. 

The theorem remains valid if finite diagrams are replaced by /t-small diagrams. It 
further remains valid with aU smaU digrams in the case where C is accessible [Makkai & 
Paré]; in this case C is bicomplete and (iii)' can be used instead of (iii). 
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Abstract 
We find the Virasoro algebra of master symmetries constructed for 

the isotropic harmonic oscillator and the Toda lattice. For either sys-
tem a suitable conformai invariance scaling basic tensor invariants is 
found. The corresponding master symmetries connected by the Vira-
soro commutator relation lead to exact hierarchies of higher order in-
variants. The approach is shown to be applicable in the bi-Hamiltonian 
case. 

1 Introduction 
Wc shall study the dynamical systems admitting the Hamiltonian descrip-
tion 

X = PdH, (1.1) 

where X is a Hamiltonian vector field, F is a Poisson tensor and H is the 
corresponding Hamiltonian function. In the case of P being kernel-free, we 
can consider tbe symplectic form u :u = P~l instead. Then the equation 
(1.1) becomes 

ixu = dH. (1.2) 

A vector field Y commuting wilh the initial Hamiltonian vector held A' 

[Y,X] = 0 

is called a symmetry of the Hamiltonian system (1.1). 

'Supported by NSERC, uader Grant OGPIN 337. 
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The notion of a master symmetry for the vector field A" introduced in [I] 
we define as a vector field Z satisfying [[Z, X], X] = 0. provided [Z. X] ^ 0. 

This is the case, in particular, when Z is a conformai invariance for A', 
i.e. LzX = kX,kSR. 

Consider a (1,1) tensor A the Nijenhuis tensor NA [4] of which vanishes: 

NA := A2[X, Y] + [AX, AY] - A([X, AY] + [AA. Y]) = 0, ( 1.3) 

where X, Y is an arbitrary pair of vector fields. We shaU caU such tensor A 
a recursion operator. 

In the bi-Hamiltonian case, namely when the dynamical system (1.1) 
admits two Hamiltonian descriptions: 

X = P0dHo = PidHi, (1.1) 

where Po, A are compatible Poisson tensors [6], i.e. their Schouten bracket 
[3] vanishes: [Po, A] = 0. This compatibility condition garantees integrabil-
ity ofthe system (1.4) [5-8] and can be reformulated in an alternative way. 
If one of the Poisson tensors Po, Pi is nondegenerate, for example — P0, we 
can construct a (1,1) tensor A := PIPQ1. Then the compatibiUty condition 
is equivalent to the fact that A is a recursion operator [6J. If. initiaUy, the 
bi-Hamiltonian vector field Ao preserves a symplectic form u-'i and a Poisson 
tensor P, we have the foUowing bi-Hamiltonian description 

Ao = PodHo wi A'o = dHi, (1.5) 

and the Hamiltonians Ho, Hi are connected by the corresponding recursion 
operator A := PQUI : dHi = AdHo. 

Define Xn := AnX,iJn+i := w,An and Pn := AnP0. Then by Gelfand-
Dorfman-Magri-Morosi's theorem [5-8] aU .Yn's constitute a commutative 
Lie algebra of bi-Hamiltonian vector fields relative ;o the higher order 
symplectic structures wn and the Poisson tensors Pn. The functions Hn := 
l / n r r ( An) are invariants of the vector fields A'„, in involution relative tothe 
Poisson brackets defined by the Poisson tensors Pn. 

If an appropriate conformai invariance is found, we can construct a hi-
erarchy of higherorder master symmetries [2]. 

Proposition 1.1 Let XQ be a bi-Hamiltonian vector field defined by a sym-
plectic form ui and a Poisson tensor P0l in addition the operator A := ^'iPo 
is recursive. 
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Assume tAere is a conformai symmetry ZQ for Ao,u>i, PQ-' 

LZQXO = ofA'o, Lz0Po = PPQ, Lz0wj = 7W1; Q. J .7 ç R 

Then, defining Zn := AnZ0 we can derive for all n,m the foUowing hierar-
chies of higher order invariants 

LZnXm = (a + miP + a)Xn+m, Lz„ A = iP + -,)An+l. 

Lzn"m =i-0 + im + n)i0 + 7))Wn+m, 

LZnPm = (/? + (m - n)iP + -rVPn+m, 

Lz„Hm = ia-(i + im + n)i0 + 7))/fn+m, 

i z „ ^ m = ( m - n ) ( / ? + 7 ) Z n + m . (l.C) 

If A is invertible, — n and m are arbitrary integers, otherwise — only 
positive. AU Z„'s are master symmetries for the hierarchy of bi-Hamiltonian 
vector fields (A'n},n e Z. 

It is remarkable that the hierarchy of master symmetries {Zn},n G Z 
with the commutator relation (1.6) form a Lie algebra isomorphic to the 
Virasoro algebra (9, 10]. Indeed, the latter one, denoted by I'tr. is a Lie 
algebra over C with the basis /.„(« € Z), c and the following commutator 

[Lm, Lnl = (m - n)Lm-n + (5m,_n(m3 - m)/12c, [c. Ln] = 0. (1.7) 

Assuming c is a constant the needed isomorphism foUows. 

2 Applications 
2.1 T h e h a r m o n i c osci l la tor 

The isotropic one-dimensional oscillator is defined by the equations 

dq/dt = p, dp/dt=-q. (2.1) 

It is a Hamiltonian system oa M - R2 with the canonical symplectic form 
wo := -dpAdq and the corresponding Hamiltonian function H0 := jiq2+p2). 
The vector field Ao = -qj: + p§: yields another Hamiltonian description 
for the symplectic form wj and the HamUtonian Hi given by 

wi := -iq2 + p2)dp A dq. Hi := ^lni2Ho). 
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The operator A := wowf1 is found to be A = (ç2 +p2)~1idqe f- + dp(èf-) = 
l/(2/fo)(dç® ^-|-dp® g^). A is diagonal and in the action-angle coordinates 
(r,v>), where r2 = p2 + q2, ip = arctaniq/p), has the eigenvalue depending 
only on the action coordinate r. Therefore, by Nijenhuis' theorem [4] A is 
recursion. 

We use the vector field ZQ := ^ ^ A + ^ i ^ . ^ ^ a conformai invariance 
for Po := WQ ,u>i and Ao. Indeed, direct calculations show 

Lz0Xo = 0, LZOPQ = -2Po, LZOLJI = 0. 

In this case ZQ is not a master symmetry, but only a symmetrv ofthe vector 
field Ao. 

Defining Zn := AnZo, wn+1 := wiA", P„ := AnPo and applying Propo-
sition 1.1, we derive the foUowing higher order invariants for the isotropic 
harmonic osciUator 

Lz„Xm = -2mXn+m, Lz„Zm = -2 (m - n)Zn+m, 
LznA = -2An+l, LznPm = -2(7n -n+ l)Pn+m, 

LznUm = - 2 (m + n - l)un+m, Lzn Hm = -2(m + n - l)Hn+m. 

We note, that n and m are arbitrary integers on account of invertibiUly of 
the recursion operator A. The master symmetries {Zn), nGZ constitute 
the Virasoro algebra up lo isomorphism. 

2.2 The Toda lattice 

Consider the finite, non-periodic Toda lattice. In terms of the canonical 
coordinates q' and momenta p,, i = 1,2,.. . ,n it is given by 

dq'/dt = p.-, 

dpi/dt = expi-if - ç-1)) - expi-iq*1 - j)). 
This system takes the HamUtonian form (1.2) and its Hamiltonian function 
HQ is defined by the formulae HQ := j È ^ i P ? + E?=il exp(-(<7,+l - </,)), 
while the corresponding symplectic form wo is canonical: wo = - £?=i dq'A 
dp,-. This particular case of the Toda lattice was studied in [11] from the 
bi-Hamiltonian point of view. There was found the second symplectic form 
wi with the Hamiltonian Hi 

wi = £ e^-'-" W A d,'"» + f; pM A p. + i è rf* A Pi 
i=l i=l * i<) 
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1 n n 

^1(9.P) = 3 ! > ? + E(P'- + P.•+l)e*P(-(<7'•H - 9')). 
i = l i = l 

Furthemore, the corresponding operator A := w ^ - ' given by the formulae 

A = É P ^ ® W + Ë eiP(-(?,+1 " WilT- 0 rf?' - # - ® d?1^1) 
i=l 0 q i=l OPi+l "Pi 

was proved to be recursion [11]. This leads to integrabiUty of the Toda 
lattice as a bi-Hamiltonian system of the type (1.5). 

We introduce the vector field Zo given by 

ZQ := ±{2in+I-i)^+ »£.], {2.3) 

for which one finds 

Lz0Ao = -Ao , Lz0ui = 2w,, Lz0Po = -Po , 

where Po := u^1 and A'o is the vector field of the system (2.2). Conse-
quently, the vector field Zo is a conformai invariance for the system. Setting 
Zn := AnZo, Xn := /TAo, w„+i := w,/ln, Pn := / T P Q and applying Propo-
sition 1.1, we come up with the foUowing exact hierarchies of higher order 
invariants of the Toda lattice for aU n, m 6 Z: 

Lz„Am = ( -1 + m)A„+ m, Lz„Zm = (m - n)Zn+m, 
LznA = An+l, Lz„Pm = (m - n - l ) P n + m , 

iz„wm = (m + n + l )wn + m i LznHm = (m + n)Hn+m. 

Thus, we have constructed all the higher order invariants for the Toda lattice 
using the Virasoro algebra of master symmetries Zn, n € Z. 
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