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INGULAR K 1

Yasuhiro Goto

Presented by R. Murty, F.R.S.C.

Abstract
We compute the Artin invariant of the minimal resolutions of supersingular weighted
Delsarte K3 surfaces. Consequently, we construct K3 surfaces with Artin invariant 10.
It is one of the two values for the invariant that were not realized in [10].

Let k be an algebraically closed field of characteristic p (> 0). Let X be a K3 surface
over k. It is known that NS(Xj), the Néron-Severi group of X, has rank at most 22. Put
A(Xk) = rankzNS(Xy). As in [10], we call X, a supersingular K3 surface if p(X;) = 22. On
a supersingular K3 surface, M. Artin [1] proved that

det NS(X,) = —p*°

for some integer oo = oo(X) satisfying 1 < g < 10, where det NS(X,) is the discriminant of
the intersection matrix of NS(X). The integer oo may be called the Artin invariant of X;.
Let W be the ring of Witt vectors over k. Denote by H2,,(Xx/W) the second crystalline
cohomology of Xi. There is a Chern class map:

¢: NS(Xp)@W — Hg.“(Xg/W).

Write F for the endomorphism of H2,,(Xx/W) induced from the Frobenius automorphism
of Xi. The image of c, is the largest sub-F-crystal, M, such that F(M) C pM. By the
Poincaré duality, the W-length of the cokernel of ¢, is equal to o, (cf. [5], [7], [10]).

In [9], Shioda showed that oo takes all 10 possible values; further, in [10], he used
Ekedahl’s algorithm on Delsarte surfaces in P} and gave examples of K3 surfaces for all
g except for op = 7, 10. In this paper !, we refine Shioda’s method and apply it to weighted
Delsarte surfaces to construct supersingular K3 surfaces with Artin invariant 10.

Let Q = (go, ¢1, 2, g3) be a quadruplet of positive integers such that p }g; (0 < i < 3). Let
P(Q) := Proj k[zo, Z1, 22, Z3] be the weighted projective 3-space over k of type Q graded by
the condition degz; = ¢; for 0 < i < 3 (cf. [2], [4]). Choose m € Z, such that p Jm. Let
A = (a;;) be a 4 x 4 matrix of integer entries satisfying

(i) ai; > 0and p fay for every (i,5)
(ii) p JdetA

(iii) Ti.ogja=mfor0<i<3

(iv) given j, a;; = O for some i.

' A more detailed account of this paper has been submitted for publication elsewhere.
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We define the weighted Delsarte surface in P3(Q) of degree m with matrix 4 (cf. (3], (10])
to be the surface:

3
Xa: Y z5°zi"23°z3° =0 CPY(Q) (1)
i=0

Weighted Delsarte surfaces are, in general, singular surfaces; let X4 denote the minimal
resolution of X,. If [0,0,0,0] is the only simultaneous solution to the system of 4 partial
derivatives of (1), then X, is quasi-smooth. In this case, X4 has only cyclic quotient
singularities of type A, ,; further, X, is K3 if and only if m = go + q1 + g2 + g5 (cf. [4]).

" Every weighted Delsarte surface and hence its minimal resolution are birational to a
quotient of a Fermat surface. In fact, let Yi be the Fermat surface in P} of degree d := det A.

Yao: +vi+vi+yi=0 CP

Denote by ug4 the group of d-th roots of unity in k*. Put I' = ®&}_yu4/(diagonal elements).
Let I'4 be a subgroup of I' defined by

Ta={y= (H:EO,\no:, [[: A, H: A, ngo’\;”) € [|(Ags At Az As) €T}

Then I'4 acts on Y} coordinate-wise and Y;/I" 4 is birational to X,.
For «y € T, let * be the endomorphism of H32.,,(Yi/W) induced from . Define

A(Y:) = {a = (ag, a1, 013, @'3) Ia‘ €Z/dZ,0; #0(0<i<3), 2 pai = 0}
Via) = {v € Hpn(Ya/W) | 7°(v) = %6°91"72*95° - v for all 7 = (%0, 71,72,7) € T}
where HZ2,..(Yi/W) denotes the primitive part of HZ, (Yi/W) and rankwV(a) = 1 for
a € A(Y:) U {0}. Then we have

H(Y/W)=VO)e @ V()
aeA(Yy)

(cf. [6], (8]). The I 4-invariant submodule is given as follows.

Proposition. Let X, be the weighted Delsarte surface in P3(Q) of degree m with matriz A.
Let Yy be the Fermat surface in P} of degree d = det A. Put

A(Xa) = {a = (a0, 01,02, @3) € A(Y) | Thgaije =0 (mod d) for 0 < j < 3}

Then
B G/WI=VOe @ Vi)
a€N(Xa)
Note that H2,,(X4/W) and H2,(Ya/W)F4 differ only by classes of exceptional cycles.
Assume that the minimal resolution X4 of X, is K3. Then there exist unique ap and
a,, € A(X4) such that V(ay) and V(a,,) are of type (0,2) and (2,0), respectively. Here
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V((ao, a1, a2,03)) is of type (2 - q,q) if ag + a1 + a2 + a3 = d(g + 1) (cf. [8]). Given
a,, = (ag, ay, a3, a3), we define

d

f = ————
4™ ged(ag, a1, az, a3)

Lemma. Let X, be a weighted Delsarte surface with matriz A. Assume that X4 is KS.
Then X, is supersingular if and only if p* = —1 (mod e4) for some integer u > 1.

Let r be the smallest positive integer such that F*(V(ay)) = V(as,). Put Iy = {p'ayg |
1 < i < 7}. Then the image of the map ¢, : NS(X,) @ W — H’,,-,(YA/W) is

a(NS(Xa)eW)=v(o)e DrV(@)e @ Vie)oE
aely acl\lp
where E denotes the classes of exceptional cycles arising from the desingularization Yi/Ta
(cf. [5], [10]). Hence the W-length of the image of ¢, (and so 0o(X,)) is equal to r.

Theorem. Let X, be a quasz-smooth weighted Delsarte surface in P§((go, g1, 92, g3)) of degree
m with matriz A. Write X a for the minimal resolution of X,. Assume that there exists a
positive integer p such that p* = —1 (mod e,); let po be the smallest positive integer among
such p’s. Assume also that m = go+qy +qa +q3. Then X4 is a supersingular K3 surface
and the Artin invarient of X, is equal to pg.

Example 1. Let X, be a weighted Delsarte surface in P}((1, 1, 1,3)) defined by the equation:
o3 + 23T + 15+ 23 = 0

(here p # 2,3,5). X, is quasi-smooth; in fact, X4 is smooth (YA = X,) since P§((1,1,1,3))
has singularity only at [0,0,0, 1] and this point is not on X,. As m = Q+q +g2+q3 Xa
is K3. We have d =22 3- 52 and a,, = (90, 48,42, 150). Hence e4 = 2 - 52. Therefore

2 ifp=1,11,21,31,41 (mod 50)
22 otherwise.

p(Xa) = {

When X, is supersingular, we obtain

10 if p = +3,427,433,4+37 (mod 50)
5 ifp=+9,+20 (mod 50)

2 ifp=+43 (mod 50)

1 ifp=-1 (mod 50)

Op =

Example 2. Let X, be a weighted Delsarte surface in P§((1, 1, 1, 3)) defined by the equation:

THT) + 2322 + 2373 + 23 = 0
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(here p # 2,3,5). This X, is also smooth (X4 = X,4) and K3. We find d = 2-3-5? and
a,, = (30,24,42,54). Hence e4 = 5%. Therefore

2 ifp=1,6,11,16,21 (mod 25)
22 otherwise.

p(Xa) = {

When X, is supersingular, we obtain

10 if p=42,43,+8,+12 (mod 25)
5 ifp=4,9,14,19 (mod 25)

2 ifp=+7 (mod 25)

1 ifp=-1 (mod 25)

Remark. We must modify our method to realize the Artin invariant 7 since there is no
integer d such that the maximal order of the units in (Z/dZ)* is equal to 14.
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ADAPTED NUMERICAL SCHEME FOR
VANISHING-LAG DELAY DIFFERENTIAL EQUATIONS

ABDERRAZEK KAROUI and REMI VAILLANCOURT

Presented by G.F.D. Duff, F.R.S.C.

ABSTRACT. This note presents a numerical method for solving vanishing-lag delay differential
equations. For asymptotically vanishing-lag as t — oo, once the lag is sufficiently small, the
solution can be continued by solving an ordinary differential equation which approximates
the original delay equation. Numerical tests, by means of a Fortran program called SYSDEL,
which is available from the authors, show that the theoretical results are valid in practice.

REsuME. On présente une méthode numérique pour résoudre des équations différentielles
avec un retard qui peut s’annuler. Si le retard s'annule asymptotiquement, des qu'il est
suffisamment petit, on continue la solution en résolvant une équation différentielle approchée.
Les résultats numériques obtenus au moyen du programme SYSDEL en Fortran, disponible
sur demande, montrent que les résultats théoriques sont valides dans la pratique.

Subject-classification: AMS(MOS): 65L06, 65L05
Keywords: Delay differential equations, vanishing-lag

1. Introduction. Delay differential equations (DDEs) play a central role in the mathe-
matical modeling of important real-life problems. Thus there is continued interest in the
numerical treatment of DDEs. A large class of DDEs can formulated as follows:

vie)=£ (t, y(t), y(alt, y(t))))- t€[a,b], and y(t)=(t), t€(da, (L1
where the vector functions y, f, ¢ and a have domains and ranges given by
y:[@b —R* f:labxR"xR"—=R", ¢: [@,a] = R*, a:[a,b] xR" = R",
respectively, and the number & = at%l‘igb {ci(t,y(t))} denotes the xmmmum of the delays.

i=l,...,n
The functions ¢ and o are assumed to be sufficiently smooth. To simplify vector notation

for systems, here and below, we have set

v(at9) = [n(@1E9).- - vn(an(t1)] - (1.2)

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada
under grant A 7691 and the Centre de recherches mathématiques of the Université de Montréal.

Typeset by ApS-TEX
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The above DDEs can be divided into two families, those with nonvanishing-lag and
those with vanishing- or asymptotically vanishing-lag. A lag is said to be nonvanishing if
the delay functions satisfy inequalities of the form

ai(t,y(t)) <t—¢,  for somee>0andall t > a.

A lag is said to be vanishing at to if a;(to, y(to)) = o and there exists 7 > 0 such that
ai(t,y(t) <t—e, for all ¢ satisfying |t — to| > 7.

. Finally, a lag is said to be asymptotically vanishing if

ai(t,y(t)) — ¢, as t — +oco.

In this note, we present two methods based on an adapted ODE scheme to solve
vanishing-lag and asymptotically vanishing-lag DDEs. Both methods are implemented
in a Fortran program called SYSDEL, available from the authors.

2. Method 1 for solving vanishing-lag problems. The numerical scheme proposed
in (3] for solving nonvanishing-lag state-dependent DDEs, can be turned into a vanishing-
lag problem solver by using an extrapolation polynomial of the appropriate degree to
approximate the solution when the delay time falls beyond the history queue.

2.1. Localization of the derivative jump discontinuities. For notational simplicity, we
shall consider only single-lag scalar DDEs. It is known [5] that any high-order numerical
scheme for solving DDEs needs to locate the derivative jump discontinuities to a specific
accuracy in order to include them in the set of mesh points. These discontinuities are
characterized as the set of zeros of the nonlinear switching function 9(t) = a(t,y(t)) - Z
where Z is a previous jump point. These zeros are efficiently located by the method
embodied in the following theorem which is proved in (3].

Theorem 1. Consider the DDE
V() = F(ty@)yety®), telndl, ad yt)=¢), telaa. (21)
Consider also the continuous and discrete switching functions,
9t)=a(t,y®)) =Y,  gn(t:) = alti, ;) - Ya,

where y, is @ numerical approzimation to the solution y(t;) of the DDE, and Y and Y, are
the ezact and the approzimate derivative jump discontinuities of y(t) and y;, respectively.
Assume that the function a(t,y) is Lipschitzian with respect to y with Lipschitz constant
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Mg and Z is a zero of g(t) in (t;,tj4+1). Then, by eztrapolating Newton’s backward inter-
polation polynomial Py, (t) for gn(t,), one can approzimate Z by the zero Zp of P, (t) to
order O (h™in{P/mP/2}) provided
(1) the degree of the interpolation polynomial is at least (p — 1),
(2) |Y = Ya |= O(k),
(3) the global integration method is of order at least p,
(4) the zeros, Zp and Zp, nearest to Z, of P, and P,, are of multiplicity r and s,
respectively, where Py is Newton’s backward interpolation polynomial interpolating
g at the points {tj_p41,...,¢;}, :
(5) the divided difference g[t;, ... ,t;—ps1, 2] is bounded.

2.2. Adapted Runge-Kutta methods for vanishing-lag problems. When using an explicit
Runge-Kutta formula to solve an n-dimensional vanishing- or asymptotically vanishing-
lag problem of the form (1.1), we approximate the solution at the delay time a(t,y(t))
by a vector-valued polynomial, Q% (c(t;, y(t;))), of appropriate degree as done in (7). The
components of Q,’,‘ are taken to be a g-point Hermite polynomial interpolating or extrap-
olating the solution as the delay time falls in, or beyond, the history queue, respectively.

An adapted r-stage Runge-Kutta method for solving vanishing- and asymptotically
vanishing-lag problems can be formulated as follows:

Yn+l =Yn + ’l‘[’(t", Yn, Q:;(a(tﬂlyﬂ))'h), (2:2)

where the increment vector function is
r
w (tna Yn, Q:; (a(tm y!l)) ) h) = Z cl'kis
i=1

and, for = 1,...,n, the [th component of k; is

i-1 i-1
ka = fi (tn + Aih,yn + hZﬂqkj,Q.';(a(tn + Aih,yn + hzﬂijkj)))- (2.3)

=1 ij=1

In (3], a set of conditions has been given which ensure the convergence of the present
scheme. If the degree of Qf; is at least p and g > p, then the local truncation error is of
order p + 1, and hence, by using Theorem 2 proved in [3], one easily concludes that the
global truncation error of our method is still of order p.

3. Method 2 for solving asymptotically vanishing-lag problems. For notational
simplicity, we restrict ourselves to the scalar case with a state-independent delay function
a(t) satisfying a(t) — t as t — +o0o. However, the results of this section are still valid for
a system of equations with asymptotically vanishing state-dependent delays.
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Since a(t) — t as t — +o00, then for all € > 0, there exists ¢, such that, for all ¢ > ¢,
we have |a(t) — t| < e.

Hence, if we assume that the solution y(t) is twice differentiable for ¢ > a, and
Iy (t)| |a(t) — |7 < M for some n € [0,2) and a positive constant M, then it is reasonable
that, for t > t., one can approximate y(a(t)) to a required accuracy by its first degree
Taylor polynomial. Consequently, the problem is no longer to solve a delay problem.

If y(t) is not twice continuously differentiable, it is not advised to use Method 2; however
Method 1 will give a good approximate solution.

The modified problem has the following form: find a solution, §(t), of

7(t) = F(t.5(), 5(t) + [a(t) = }7' (1)), t=t., and §(t)=y(t),  (3.1)
where y(t) is the numerical solution of the delay problem found by Method 1.

For t > t., the solution of the modified problem can be efficiently and simply obtained
by means of a non-delay ODE solver. In the following theorem, proved in [4], it is shown
that under some specific conditions, the solution of the modified problem can approximate
the true solution to any order of accuracy.

Theorem 2. Consider the delay differential equation:
¥'(t) = f(ty(t),y(al(t))), t2a, and y(t)=¢(t), te€[a,a] (3.2)
Assume that

(1) 3tp € R and a positive constant cy such that Vt >> ly, y and z in R, f;.(t.y,z) is

continuous and |f;.(t,y, z)| < co;

@) 1fy(t 9, 9)I+f:(8,9,9)| < elt) for some c(t) € L*(R) andVy € R and® f(t,y,y) —

0ast— +00;

(3) the solution y(t) of (3.2) is of class C?;

(4) 3 a positive constant M and n € [0,2) such that |a(t) — ¢|*"" € L*(R) and

W't la(t) -t <M vVt 2 t.
Then, Ve > 0, 3t, > ty such that the solution §(t) of the differential equation

7'(t) = f(t,5(t),5(2) + [a(t) = t]7'(1)), t=t, and §(t)=y(t)+6,  (3.3)
satisfies |j(t) — y(t)] < K(e + 6), where K depends only on ||c{|;.
Remark 1. In general, it is not practically possible to find the exact solution y(t) to
problem (1.1); nevertheless an approximation of order O (k?) is possible. Hence, the § in
(3.3) is generally of order O (h?), where h is the step size used by the numerical integration
and p is the order of the global integration method. If € in the above theorem is also of
order O (hP), it is easily seen that the global truncation error of the new numerical scheme
is still of order p.

17The need of this assumption, which is missing in [4}, was pointed out to the authors by the Editor of
the Math. Rep.
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4. Numerical results. The following abbreviations and notation will be used:
TOL: tolerance for the maximum norm of the error estimate,
NFE: number of function evaluations,
t.: transition time from Method 1 to Method 2,
t: final integration point,
MRE: maximum relative error in the components of the solution at time ¢;.

4.1. Solution of vanishing-lag problems by Method 1. A Runge-Kutta formula pair of
orders (5,6) is used as the global integration method. The solution at the delay time is
approximated by a 3-point Hermite polynomial used as an interpolant when the delay
time falls in the history queue, and otherwise as an extrapolant in a neighbourhood of a
vanishing-lag point. The derivative jump discontinuities are located by using the algorithm
given in [3].

The step size control policy bounds the local truncation error per unit step of the
Runge-Kutta formula pair. At each integration step, an estimate of the local truncation
error is given by EST = (|3 — vill/h, where §; and y; are the numerical solutions given
by the 6th- and Sth-order formulas, respectively, and h is the previous step size. If
EST > Tolerance, the step is reduced, otherwise it may be increased, as described in (3].

The accuracy and cost of Method 1 is illustrated by the following example.

Example 1. Consider the state dependent delay system [2], with vanishing lag at t=1,
20 (t) = v2(t),  va(t) = —ya (exp(l — y2(t)) [w2(t)}? (exp(1 — 32(t)),  te€ [0.5,5],
n®=ht,  wO=; te 0,0.]

The exact solution is y;(t) = Int, y2(t) = 1/t. The numerical results att y = 5 for different
values of the error tolerance are listed in Table 1.

TABLE 1. Numerical results for Example 1 at t; = 5.

TOL NFE MRE

10-° 553 1.85E—06
10-8 959 5.05E—09
10-10 1946 2.85E—-11
1012 4214 1.11E-13

4.2. Comparison of Methods 1 and 2 for asymptotically vanishing-lag problems. The
numerical solution of an asymptotically vanishing-lag problem is started by Method 1.
Then from a point t. on, to be fixed by the user, Method 2 solves an ODE which approx-

imates the given delay equation.
The results of the two methods are compared in the following example.
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Example 2. Consider the asymptotically vanishing-lag DDE, as ¢t — oo,

2'(t) = y(t—t7) t€[1.5,50), and y(t)=arctan(t), te[0,1.5],

(1 + t?) arctan (t — t~2)’

whose exact solution, y(t) = arctan(t), is infinitely differentiable. The results obtained by
Method 1 and Method 2 with ¢, = 15, are listed in Table 2 at t; = 50.

5‘

TABLE 2. Numerical results for Example 2 at ¢t; = 50.

Method 1 Method 2, t. = 15
TOL NFE _ MRE NFE MRE
107 770 1.08E—09 525 1.14E-09
10-8 833 7.36E-10 553 7.75E-10
10~ 1680 8.51E-12 805 2.87E-11
10-12 3528 4.50E-14 1344 2.05E-11

Conclusion. Numerical results indicate that vanishing-lag problems can be solved

accurately by Method 1. In the case of an asymptotically vanishing-lag, under appropriate
smoothness conditions, the solution can be started by Method 1 up to a time ¢, to be
fixed by the user, and then continued by Method 2 applied to an approximate ODE
whose solution is an accurate approximation to the exact solution and is obtained with a
relatively small number of function evaluations. It is seen from the numerical results that
Method 2 is comparable with other known methods [2,6].

1.

2.

3.
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ROUND-OFF STABILITY OF ITERATIONS FOR MULTIVALUED OPERATORS

S. L. SINGH* and VEENA CHADHA

Presented by M.A. Akcoglu, F.R.S.C.

ABSTRACT: A.M. Ostrowski's classical theorem for stability of
single-valued operators is extended to multivalued operators.

KEYWORDS: Stable iteration, Banach cbntraction, multivalued
contraction, fixed point.

Mathematics Subject Classifications(1991): 65D15, 41A25, 47H10,
54C60, 54H25.

1. INTRODUCTION. Let (X, d) be a metric space and T :X - X.

The concept of a fixed point iteration procedure given by

Xpa = £(T, X,) being T-stable or stable with respect to T has
been (formally) defined by Harder and Hicks [3). Ostrowski's
first stabillity result [7] (cf. Corollary 4 below) for Banach
contractions has recently been extended to various classes of
(Banach type) single-valued operators by Harder-Hicks [3],
Rhoades (7]-({8] and Singh et al. [10). The purpose of this paper
is to extend Ostrowski's theorem [op. cit.] to multivalued
contractions.

*This work was done while this author was visiting the University
of Wisconsin, Eau Claire, and he thanks Professor S. S. Chadha,
Professor David R. Lund and the Univeristy for their hospitality
and support.
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2. MULTIVALUED CONTRACTIONS. Consistent with (6], p.620, we will
use the following notation where (X, d) is a metric space:

CB(X) = { A: A is nonempty closed bounded subset of X},

CL(X) = { A: A is nonempty closed subset of X}.
For A, B€ CL(X)and € > 0,

N(e, &) ={xeX: d(x, a) <€ for some a € A},
Byy=le>0: AcN(e, B), BcN(e, a) L,

inf B, , ifE, z* ¢,
H@, B) = {
+ if Eyp=9¢.
H is called the generalized Hausdorff metric (resp. Hausdorff
metric) for CL(X) (resp. CB(X)) induced by d.

An orbit of a multivalued map T at a point X, is a sequence
{x,: x,e ™%, ,, n=1, 2, ...}. For a single-valued operator T,
this orbit is {x,: x, = Tx,,, n =1, 2, -~}

The following is Nadler's (now classic) fixed point theorem
for multivalued contractions (see (1}, (4])-(6] and [11}]).

THEOREM 1. Let X be a complete metric space and let T: X — CL(X)
be a multivalued contraction, that is,

(1.1) H(Tx, Ty) s gd(x, y)
for all x, y in X, where @ < 1 is a positive number.

Then:
(i) for every x, € X, there exists an orbit {x,} of T

at %, and p € X such that lim, X, = p;
(ii) the point p is a fixed point of T, i.e, p € Tp; and

(iii) d(x, p) s [{g**)%/(1 - ¢*~%)] d(x,, x), where A <1 is
a positive number.

Indeed, Nadler [5) proved (i)-(ii) of Theorem 1 for
T: X~ CB(X), and the last result (iii) is essentially due to
€irié [1). If T is single-valued, i.e., if T: X~ X, then (1.1)
becomes d(Tx, Ty) s gqd(x, y). which is the well-known Banach
contraction condition.
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The iteration procedure (i) is used very often in numerical
praxis. However, in actual computation, because of rounding-off
or discretization of the function, an approximate sequence ({y,!}
is used in place of sequence {Xx,!}. Refer Harder-Hicks (3] for

an excellent exegesis on this aspect.

3. STABILITY OF MULTIVALUED OPERATORS. Let X be a metric space
and T: X - CL(X). For a point X, € X, let

(*) Xa 1 € £(T, X,)

denote some iteration procedure. Let the sequence { x, !}

be convergent to a fixed point p of T. Let {y,!} be an

arbitrary sequence in X and set

€, = H(y,,. 1 £(T, Y,)), n=0,1, 2, -,

If lim, e, = 0 implies that 1lim, y, = p then the iteration process
defined in (*) is said to be T-stable or stable with respect to T.
Recall that this definition for a single-valued operator is due to
Harder-Hicks [2]1-(3), (see also [8]-[10]).

Ostrowski's stability theorem (cf. Corollary 4) says that
Picard iterative procedure for (single-valued) Banach contractions
is stable. Now we extend it to multivalued contractions.

THEOREM 2. Let X be a complete metric space and T: X - CL(X) such
that (1.1) holds for all x, y € X. Let x, be an arbitrary point
in X and { x, );., an orbit for T at x, such that {x,};., is

convergent to a fixed point p of T. Let {y,}., be a sequence

in X, and set
€, = H(}'n. 1 Wn): n=0,1, 2, -
Then
n

(I) d(P, Yau) s d(Ds Xa,) + @™ dixy, ¥,) + ?:q‘“"e,.
)
Further, if Tp is singleton then
(II) lim, y, =p if and only if lim, e, = 0.
PrRoor. Let n be a nonnegative integer. Then, since T satisfies

(1.1),
d(Xper Yaer) S H(TXy, Yaa) < H(TX,, Ty,) + H(TYp Yau)

< q d(xnl y’.) + en < q[ qd(xﬂ-l’ yﬂ-l) + eﬂ'l] * eﬂ
< @® d(Xgyr Vo) * T€py * €,

n
Inductively, d{(Xg.,, Ya.) < @ dix,, ¥,) + ;_;qn-iej_
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Now the relation (I) follows immediately from
d(p: Yau) s dPs X)) + d(Xpe, You) -
To prove (II), first assume y,~p as n -, Note that
H(p, Tp) = 0 since, by hypothesis, Tp = {p). Then for any
nonnegative integer n,

€ = H(Yan: o) s d(¥p,. P) + H(p, Tp) + H(Tp, Ty,)
S d{Ypes P) + @dip, ¥,) .

Therefore lim, y, = p implies 1lim,¢, = 0.

Now, suppose €, -0 as n-~, Since 0 < q<1and x,-p as
n-o, the first two terms on the right hand side of (I) vanish
in the limit. Consequently

lim, d(p, Ygu) < 1im,( ;_; qa-jej) .

Let A denote the lower triangular matrix with entries a, = gsd,

o *
Then 1im, a = 0 for each J andlim, (3 a,)= lim, (3227« L.
-0 q

Therefore A is multiplicative (i.e., for any convergent sequence

{s,}, lim, A(s,) = T-]:_q lim, s, (cf. (9], p. 692)). Since
n
lim, €, = 0, 1im, (Y g°Je) = 0, proving lim,y, = p . This

0
completes the proof of the theorem.

We remark that,‘ in (II) of the above theorem, p € X is not
required to be the unique fixed point of T. The related
condition emphasizes that Ip contains just one point.

The following, due to an idea of (11, p. 226}, is another
extension of Ostrowski's stability theorem for Banach contractions.

THEOREM 3. Let all the hypotheses of Theorem 2 hold, wherein the
definition of €, is replaced by the following

€, = d(}’a. %) P,.): P € Wnl n=0,1 2, -.
Then

a
(III) d(p, Yp.y) s d(p, X5.,) + g dixy, ¥o) + gqn-‘,(ﬁj + ej) ’
where H; = H(x,,,, TX;) . Further, if Tp is singleton, then

(Iv) lim, y, = p if and only if lim, e, = 0.
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Proor. For any nonnegative integer n,

d(anl ynq) < d(an' p,,) + d(pnl .Y,..;) < H(xnd' 1)'") + €,
S H(Xp,,, TX;) + H(TX,, Ty,) + ¢,
SH, + qdix,, ya) *+¢€,
SHy+q [ Hyy + @d(Xy,y, Vo) +€,,] +¢,
s qz d(xn-l' yn-l) +q (Hn-l + en-l) ¥ (Hn % €n) .

a
Inductively, d(Xa.,, Ya.) S @™ d(xy, ¥,) + ;qrj“{j v €,
=0
and the relation (III) follows as in the proof of (I).

To prove (IV), first assume y,~p as n -~ «.

Then €, = d(Yp., Pa) S H(Yper TV3) .
This, as in the proof of Theorem 2, gives lim, €, = 0.

Now assume that lim, €, = 0. From (III),
n

d(pl an) < d(pl xnol) + q”n‘l d(xol yo) + gqa.jtj'

where t; = Hy + €;. In view of the (corresponding part of the)
proof of Theorem 2, it is sufficient to show that the sequence
{ £;} is convergent to 0. Since, by assumption, the sequence te!
is convergent to zero, it is enough to show that { H,!} is also
convergent to 0. Since T being contraction is continuous,

lim, H, = lim, H(X,.,, TX,) = H(p, Tp) = 0.
This completes the proof.

REMARK 3. Relations (II) and (IV) say that the Picard sequence of
iterates for multivalued contractions is stable at a fixed point
p provided Tp is singleton. Further, in view of (iii) of Theorem
1, relation (I) (resp. (III)) gives an upper bound for error

while estimating d(y,, p) .

COROLLARY 4. (Ostrowski's stability theorem (7], see also [2], [4,
p-101],(8),(10])). Let (X, d) be a complete metric space and

T: X~ X such that T is a Banach contraction (with contraction
constant q). Let p be the fixed point of T. Let X, be an
arbitrary point in X, and put Xx,, = Tx,, n =0, 1, 2,~.

Let { y,} be a sequence in X,and €, = d(¥,. 4. T¥V,), £ =0, 1, 2, ~.

Then, for n=0, 1, 2, ~.,
n

(1) d(p, Vo) S diD, Xp.,) + @ dix,, ) + ;:; g7 ey.
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Also
(2) lim, y, = p if and only if lim; e, = 0.

PROQOF. It is exactly derivable from Theorem 2 simply by noting
that €, = H(Vauys T¥,) = d(Yoes TV.) when T is single-valued. As
regards its derivation from Theorem 3, one may note that

Hy = H(Xy0y, TXy)= d(xy,,, %4,,)= 0 where T is single-valued, and
(III) becomes (1). Thus Theorems 2-3 are appropriate extensions
of this corollary. i
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SPECTRAL SYNTHESIS AND REFLEXIVE
OPERATORS

J. A. Erdos* M. S. Lambrou N. K. Spanoudakis
Presented by P.A. Fillmore, F.R.S.C.

Abstract

We announce results which connect some aspects of basis
theory with results about reflexivity of operators. These include
an example of a non-reflexive compact operator which allows
spectral synthesis. The selection problem for strong M-bases
is shown to have a negative solution in Hilbert space. The
results show that a number of statements in the literature are
incorrect.

Recall that an operator A on H is said to allow spectral synthesis (see
for example [M]) if every invariant subspace M of A is the span of root
vectors corresponding to non-zero eigenvalues of A. One of the questions
motivating our work was the following:

Question 1. If K is a compact operator on Hilbert space such that all
its root vectors are eigenvectors and if I allows spectral synthesis, is I
reflezive?

By an obvious application of Sarason’s lemma [RR], Theorem 7.1 it fol-
lows that, to prove reflexivity, it is sufficient to prove that for any operator
K satisfying the hypotheses, its inflation X @ K on H @ H also allows
spectral synthesis. This attack on the problem was followed in [F] which
claimed a positive answer to Question 1, but our results show that the
answer is, in fact, negative.

*The first author wishes to thank the University of Crete for hospitality while this research was
carried out.
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The hypotheses of this question were related to some basis-theoretical
conditions by Markus [M]. A sequence (fa)ox, of vectors of a Hilbert
space H is called an M-basis (see e.g. [ALL)) if V32, fo = H and there
exists a sequence (f2)%, biorthogonal to it, (fm, fa) = Omn, such that
V2, f: = H. An M-basis (fn)o2, is called strong, if additionally z €
V{fa: (z, f2) # 0} for every vector z of H. We also need a subspace
version of a strong M-basis: suppose (N;)%2, is a sequence of non-zero
subspaces of H such that Vj2, N; = H. We call the sequence separated if
for each j € N, we have N; ® N7 = H, where N7 = V{N; : k # j}. I F;
denotes the projection on N; along N7, we say that (N;)2, is strongly
complete if in addition z € V{Pjz : j = 1,2,...} for each z € H. It
is shown in [M] that if A is compact and all the root vectors of A are
eigenvectors then A allows spectral synthesis if and only if its eigenspaces
form a strongly complete sequence.

The following result is proved in [ELS] Theorem 2.

Theorem. Let (N;)32, be a separated sequence of subspaces H with
VN; = H. Then (N;)R, is strongly complete if und only if for cvery
collection of strong M-bases {f;: :k=1,2,---} of Nj, a strong M-basis
of H is given by the union {f : j=1,2,---,k=1,2,---}.

Suppose now that K satisfies the hypotheses of our Question 1. Then,
from above, its sequence (N;)%2, of (finite-dimensional) eigenspaces is
strongly complete. Choosing a basis { f,{ : k =1,2,---n;} of each sub-
space N;, from our Theorem above, {fl:5=12,---n,k=1,2,---} is
a strong M-basis of H. The eigenspaces of K & K are (N; ® N;)%2, and
{(f,0):j=1,---nj,k= ,2,---}u{(0,fl):j=1,---nj,k=1,2,---}
forms a strong M-basis of H & H.

Lemma 2 of [F] claims that, at least for finite-dimensional subspaces
(Nj)$21, a stronger version of our Theorem holds, namely that the phrase
“for every collection of strong M-bases” may be replaced by “for some
collection of strong M-bases”. This would be sufficient to establish that
the eigenspaces of K & K form a strongly complete sequence and so prove
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the reflexivity of K. Unfortunately this claimed result is not valid. In
[ELS], we give explicit examples (Examples 2 and 3) of sequences of 2-
dimensional subspaces (N;)32, which are not strongly complete and a
selection of a basis of each N; such that the union of these bases forms
a strong M-basis of H. Our work also provides an example of a non-
reflexive operator which satisfies all the hypotheses of Question 1.

The above examples arise from our solution in [ELS] of the so-called
selection problem of strong M-bases in Hilbert space. This is expressed
using the concept of block sequence which we now define: given an M-
basis (fa)52,, and a sequence 0 = ng < n; < ... of integers, we call a
block sequence of (f,)3%, any sequence (gx)$2; of non-zero vectors with

ny
we€ V fi (k=12,.)
i=ng_1+1

The selection problem asks whether given a strong M-basis (f,)%2,, every
block sequence of it is also a strong M-basis on the space it spans. Terenzi
[T] gave the first (negative) solution to this problem in a specially con-
structed Banach space. The counterexample in [ELS] is based on results
in [KLP]. It is the first example in Hilbert space and also improves on
the one in [T] by having 2-dimensional blocks as against blocks of rapidly
increasing dimension.

References

[ALL] S. Argyros, M. Lambrou and W. E. Longstaff, Atomic Boolean
Subspaces Lattices and Applications to the Theory of Bases,
Memoirs Amer. Math. Soc. No 445 (1991).

[ELS] J. A. Erdos, M. S. Lambrou and N. K. Spanoudakis, Block
strong M-bases and spectral synthesis, J. London Math. Soc.
(submitted)



196 J. Erdos, M. Lambrou and N. Spanoudakis

(F] A.Feintuch, On Reflezive Compact Operators, Can. J. Math. 29
(1977) 460 - 465.

[KLP] A. Katavolos, M. S. Lambrou and M. Papadakis, On some al-
gebras diagonalized by M-bases of 2, Int. Equat. Op. Th. 17
(1993) 68-94.

(M] A. S. Markus, The problem of spectral synthesis for operators
with point spectrum, Math. USSR-Izvestija 4 (1970) 670-696.

[RR] H. Radjavi and P. Rosenthal, /nvariant subspaces, Springer-
Verlag , Berlin, 1973

(T] P. Terenzi, Block sequences of Strong M-bases in Banach spaces,
Collectanea Mathematica (Barcelona) 35 (1984) 93-114.

DEPARTMENT OF MATHEMATICS, KING’s COLLEGE, LoNDON, WC2R 2LS,

U.K.
E-mail address: J.ERDOS@kcl.ac.uk

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CRETE, PO Box 1470,

71409, IRAKLION, CRETE, GREECE.
E-mail address: LAMBROU@talos.cc.uch.gr

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CRETE, PO Box 1470,

71409, IRAKLION, CRETE, GREECE.
E-mail address: SPANOUD@talos.cc.uch.gr

Received August 11, 1995


http://ac.uk

C.R. Math. Rep. Acad. Sci. Canada - Vol. XVII, No. 5, October 1995 octobre
197

A nole on the cliophantine equatién xt- y‘=- "

Kejian Wy and Maochua Le

Presented by J. Friedlander, F.R.S.C.

* Abstract

Lel p be an odd prime . In this nole we prove that the equalion
x4_),4=z?' has no Positive inl'eger solulions (x.y,z) satisfy gcd (x.y)
=1, 2'2 and P,}’z )

Lef Z,N be the sels of integers and Posif;ve integers resPecfiveiy
Lt p be a prime More than three hundred years ago . Fermal
Proveq' that f p=2 , then the equatién

() x*-y"=zp , %.y.2€N

has no solulions (%.y.2z) (see [2, pege 2]) . In this nole we
deal with the case that p is an odd prime . Let a,b be posilive
integers with a>b 5 and |et ct-a"— 64 . Furl'her ‘et m,n be
Positive inlegers safisfy

{I (mod4) , if p=| (mod4) ,
3 (md4) , i p=3(mod4) ,

1991 Mathematics Subject Classiﬁcation. 1D 4
SuPForted b}l the National Nafural Science Foundation of China .
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and = (T"P‘|)/4‘ . Then 1) has a trivial infimty of  solulions
(x.y,2)=(ac", bc", ¢") yith ged(%y)>1 . Recenﬂ)f , under
the asswnpfion thal the Teniyema - Shimura conjeclure is true ,
Darmon (1) Provecl thet if p=zu , then (1) has no solulions
(7'-.)"‘) with gcd (x,9)=1 . In this nole , with some e'ementar)l
methods , we gve an uncondiLional Froo'F of the "fo”owing resull -

Theorem . If p is an odd prime then (1) has no solulions
(x,),z) saUsf)/ gcd(x-.)’)"_l , 2Iz and P*z .

Prosf . Lef (x.2) be a solution of (1) salisfies gcd(%.)’)
=1, ZIZ and P*Z . Since x and)l are both odd , and since
}’ aPPears onl)/ in the term 7" in (1) , we can change )' fo -)’
if necessary So as to foree x= ) (mod4) . Then we have
(2) xz+y2=2zlp ) 76+)'=2z2p ) x-)l=zp-2zf
where 2,.%,, 2, are posilive inlegers sal'isfymg

(3) Z=222,2,

From (2) , we get
4) (xzfyz>/2 - Z:P"' 2?P-szszP - zlP

Since x=y (mod4) and p are all odd , by @ , we have 22,=

22"’:98*)252 (mod8) and 22,= 22 = Xty =2x (mod4) . This

imFlies that 2= (mod4) and 2*22 . From @) , we get

P _2p
& z - z -0
(53 o z:”-(z.—zf)(;—-z—> o P

2
z,- 2,
Since P/fz and (z,P-z:P)/(z‘-z:)a Z.P-'*z,"'zsz~-~+z:"’"’sp
(mod4) , we see fron (3) and (5) that z . 2, ~22=oT "
P

z. and
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2
Z,P- ZzP p
(6) 2 = zu )
z - zz

where 7z, , 2 are posilive infepers sals g Zy, 2= 2 and 2}z .
Since gcd(%z*yz,x'fy)‘Z if gcd(%.)’)“l and 2*%)' , we
see Trom (2) thal gcd( z,z2)=| . For any Fosil'ive lnfeger n, |

n 2\N
z, -(z
Em)= ’2)
2, -2,
Then , (6) can be written as
M E(P)=zy .

Since 2=z =1 (mod4) and 2*332 , we see from (7) that p=I
(mod 4) . Then there exisls a square nonresidue @ modulo 4 with
2fa . Further by (3, Lemma ] , we have

E(P) P

e ( E(a)) = (T) '

where (+/ “) 15 Jacobi's s mbol . Since p=1(mod4) . we pef from
Y P 3

(1) and (8) That

P.2
(S (E)-(2)t2)--

a contradiction . Thus , the theorem is Proved .

Acknowleclgment . The authors would like To thank the

referee for his valuaHe wggestions .
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FINITE CONJUGACY AND NILPOTENCY IN LOOPS OF UNITS

EDGAR G. GOODAIRE‘.AND CESAR POLCINO MILIES
Presented by V. Dlab, F.R.S.C.
ABSTRACT. Let U(RL) denote the Moufang loop of units in an alternative loop ring

RL. In this paper, we give necessary and sufficient conditions for W(RL) to be nilpotent
or to have the finite conjugacy property when R is the ring of rational integers or a

field.

1. Introduction. An alternative ring is a ring which satisfies the left and right al-
ternative laws, z(zy) = z% and (yz)z = yz®. Any associative ring is alternative, but in
this paper we are concerned primarily with alternative rings which are not associative.
The Cayley numbers is undoubtedly the best known example of such a ring.

A Moufang loop is a loop in which z(y-zz) = (zy- )z is an identity. Any loop of units
(invertible elements) contained in an alternative ring is a Moufang loop. For example,
the standard basis elements of the Cayley numbers, together with their negatives, form
a Moufang loop of order 16, and one which is Hamiltonian (all its subloops are normal).
We refer the reader to [17] and [13] for information about alternative rings and Moufang
loops, respectively.

Generalizing the terminology of group theory, we say that a Moufang loop L is FC, or
has the finite conjugacy property, if, for all £ € L, the set {z='¢z | z € L} is finite. The
concept of nilpotency in loop theory, like that for groups, is a measure of the deviation
of a loop [rom an abelian group, so it involves associators as well as commutators. If a,
b and c are elements of a loop L, the commutator of a and b and the associator of a, b

and c are the elements (a,b) and (a, b, c) of L, respectively, defined by
ab = ba(a,b) and (ab)c = (a-bc)(a,b,c).
If X,Y, Z are subsets of L, we write (X,Y) for the set of all commutators (z,y), z € X,
y €Y, (X,Y,2) for the set of all associators (z,y,2),z € X,y €Y, = € Z, and (X)
1991 Mathematics Subject Classification. Primary 20N05; Secondary 17D05, 16S34.
This research was supported by the Instituto de Matematica e Estatistica, Universidade de Sio

Paulo, by FAPESP and CNPq. of Brasil (Proc. No. 94/4726-3 and 501253/91-2, respectively) and by
the Natural Sciences and Engineering Research Council of Canada, Grant No. 0GP0009087.
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for the subloop of L generated by X. Let vo(L) = L, (L) = ((L, L),(L, L, L)) and, for
i21,
Yiur (L) = (L, %(L)), (%(L), L), (L, Ly % L)), (Ly (L), L), (:(L), L, L)).

The subloop (L) is also denoted L’ and called the commutator/associator subloop of L.
The loop L is nilpotent (Bruck uses the term “centrally nilpotent” in Chapter VI of his
well-known treatise [1]) if 9,(L) = {1} for some positive integer n, which is then called
the nilpotency class of L. ‘
~ Let L be a loop and suppose that the loop ring RL is alternative, but not associative,
for any commutative and associative ring R with unity. Then the loop L (which, as we
have observed, is necessarily Moufang) has many special properties, including nilpotence
and finite conjugacy [2]. In fact, L is nilpotent of class 2 and, for any ¢ € L, the set
{z~'z | z € L} has cardinality at most 2.
The complete set U(RL) of units in RL is a Moufang loop containing L and it is
natural to wonder if Z{(RL) inherits any of the properties of L. In this connection, and
for various rings R, we have recently explored the possibility that Z/(RL) is nilpotent or

has the finite conjugacy property. and it is our purpose here to report our findings.

2. Integral Alternative Loop Rings. Over the ring Z of rational integers, nilpo-

tency and finite conjugacy in U(ZL) are equivalent. In fact, we have established the

following theorem [9).

Theorem 2.1. Suppose ZL is an alternative, but not associative, ring. Then the follow-
ing are equivalent:
1. U(ZL) is FC;
2. U(ZL) is nilpotent;
3. U(ZL) is nilpotent of class 2;
4. The set T of torsion elements of L form an abelian group or a Moufang Hamiltonian
2-loop such that for anyt € T and any z € L, we have z~'tz = t*'. Moreover, if
T is an abelian group and x € L is any element which does not centralize T, then

zMtz=t" forallteT.
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A torsion element in a loop is an element of finite order. As a consequence of The-
orem 2.1, if U(ZL) is nilpotent or FC, then the only torsion elements of ZL are trivial;
that is, of the form £¢, £ € L [10]. In particular, the torsion units of ZL form a subloop.

3. Alternative Loop Algebras over Fields. More recently, we have examined
nilpotency and finite conjugacy in alternative loop algebras over fields and found the
situation to be quite different from the case of loop rings over Z. It is interesting to

contrast our results for the cases that L is or is not a torsion loop.

Theorem 3.1. Let L be a torsion loop and F a field such that FL is alternative. Then

1. U(FL) is an FC loop if and only if both F and L are finite 6).
2. U(FL) is nilpotent if and only if F has characteristic 2 [7).

Thus we see, for example, that if L is a finite loop, it is the field which alone determines
whether or not Z/(F L) is nilpotent or FC. We do not know if nilpotency or finite conjugacy
of a Moufang loop implies that the torsion units form a subloop, but, as with loop rings

over the integers, such is the case for unit loops in the alternative loop algebras of torsion

loops.

Theorem 3.2. [8] Let L be a torsion lobp and F a field such that FL is alternative.
Then the torsion units of FL form a subloop if and only if F has positive characteristic

p and either p = 2 or F is algebraic over its prime field.

Turning to the case that L is not a torsion loop, we use T to denote the set of torsion
units in L and note that, for any loop considered in this paper, T is always a subloop

(9, Lemma 2.1). We consider finite conjugacy and nilpotency of the unit loop U(FL)

separately.

Theorem 3.3. [6] Let L be a loop with torsion subloop T # L. Let F be a field such
that FL is an alternative algebra. _

1. If the characteristic of F is 0, U(PL) is FC if and only if T is central in L and, if

it is also infinite, then T = Z(2°) x B where B is a finite group, and there ezists

an integer k such that F does not contain roots of unity of order 2k,
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2. If the characteristic of F isp > 0 and L contains an element of order p, then U(FL)
s FCifand only ifp=2and T = L' x A, where A is a finite abelian group of odd
order.

3. If the characteristic of F is p > 0 and L does not contain an element of order p,
then U(FL) is FC if and only if T is an abelian group and one of the following

occurs:
(i) FT is finite and, for allt € T and all z € L, we have ztz™' = t*" for some

integer r 2 0, a multiple of [F: P|, where P denotes the prime field of F.

(ii) T is finite and central.

(iii) T is central and of the form Z(2°) x B with B finite, and there ezists an integer
k such that F does not contain roots of unity of order 2*,

Theorem 3.4. (7] Let L be a loop with torsion subloop T # L. Let F be a field such
that FL is an alternative algebra.
L. If the characteristic of F is 0, or if char F = p > 0 and L contains no element of
order p, then U(F L) is nilpotent if and only if either T is central or |F| =p =29~
Jor some positive integer B, T is an abelian group of ezponent 2(p — 1) and, for all
z€Landallt €T, we have z-'tz =t or ¢*.
2. If the characteristic of F is P > 0 and L contains an element of order p, then U(FL)
is nilpotent if and only if p = 2.

Once again, nilpotency or finite conjugacy of U(F L) implies that the torsion units of

U(FL) form a subloop, for we have

Theorem 3.5. 8] Let L be a loop with torsion subloop T # L and F a field such that
FL is alternative. Then
1. If the characteristic of F is 0, then the product of torsion units in FL is a torsion
unit if and only if T is an abelian group, for eacht € T end z € L, we have
ztz™! = t' for some i and, for each noncentral element t € T, F contains no root

of unity whose order is the order of ¢t.
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2. If the characteristic of F is p > 0, then the product of torsion units in FL is a
torsion unit if and only if p =2 or T is an abelian group and, if it is not central,
then P, the algebraic closure in F of the prime field of F, is finite and, for all z'e L
and all t € T of order relatively prime to p, we have ztz™' = t*" for some positive

integer r, a multiple of [P: P).

4. Conclusion. It is appropriate to observe that the questions we have considered in

this paper have all previously been settled in the case of group rings. In fact, the literature

rather extensive. For finite conjugacy of unit groups over fields or the integers, we refer

the reader to [4] and [15] respectively. Nilpotence in group rings is the subject of [5] and
[16]). The interested reader should also consult [14, Chapter VI]. Both finite conjugacy

and nilpotency of the unit group are related to the property that the torsion units in a

group ring form a subgroup; see [12], [11] and [3].
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COMPLEX REPRESENTATIONS OF GL(2,q)

MARTIN PERGLER

Presented by V. Dlab, F.R.S.C.

ABSTRACT. A direct construction of the irreducible matrix representations over C of
GL(2, g) is given. The crucial ingredient is a recent result on the existence of certain
primitive elements in the quadratic extension of a finite field.

1. OVERVIEW

The character table of the groups GL(2, ¢) is well-known, either through Green’s
treatment of the characters of the groups GL(n, ¢), or by more ad-hoc methods.
The actual representations, i.e. homomorphisms from GL(2,¢) to GL(-,C), have
been described using indirect methods by several authors (see [5, 7, 11]).

The problematic case is that of the so-called cuspidal representations of degree
g — 1. These arise by inflation of their restrictions to the Borel subgroup, but
computation is complicated by the nonnaturality of the embedding of Z,:., into
GL(2, g). We use the following recent result to choose a suitable system of genera-
tors for GL(2,¢) in terms of which the conjugacy class structure can be expressed
explicitly. We use this to give a new construction of the cuspidal representations.

Theorem 1 ([1, 10}). For any prime power g, there is a primitive element ¢
of GF(g®) over GF(g) (i.c. an element of multiplicative order g — 1) with trace

T(=(+(I=1.

Apart from this result, our construction uses only elementary techniques at the
level of a first graduate course in groups and representations. This allows for a
shorter and perhaps more easily motivated approach than previously. The under-
lying argument in §5 comes from (3], where it is used, without number-theoretic
complications, to construct the degree (p + 1)/2 representations of SL(2,p). The
author wishes to thank John Dixon for discussions on this topic.

We take g to be a prime power greater than 2 throughout.

1881 Mathematics Subject Classification. Primary 20G03, secondary 20G40.
Research supported in part by Carleton University, Csnada, snd an NSERC Undergraduate

Research Award.
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2. STRUCTURE OF GL(2,q)

Let F = GF(q) and E be its quadratic extension. We denote by G the group
GL(2,F) = GL(2,q) of order (g — 1)*¢(q + 1). For any generator ¢ of the multi-
plicative group F* (we choose one below), G is generated by the elements

z z t
1 11 -1
€ 1 1
order g¢-1 q 4

Let y = t~1z¢ = 1 andw=yz = (€ e)' The elements z,y, and :

generate the Borel (triangular) subgroup T of index q + 1.

The conjugacy classes of G are classified by the way in which the minimal poly-
nomial of their elements factors over E, as follows:

(1) The minimal polynomial is linear. This gives ¢ — 1 classes denoted by [e€],
each consisting of the single element w°® (0 < c < ¢ —-1).

(2) The minimal polynomial is a square. This gives ¢ — 1 classes [¢°]* with
representatives w°z. The stabilizer of wz under conjugation is H = (w, z)
of order g(g — 1), so each class has size g% — 1.

(3) The minimal polynomial has two distinct roots in F. This gives (¢ —1)(q —
2)/2 classes [¢®,€!] (0 < a < b < g — 1) with representatives y®z® (note that
y°z® is conjugate to y*z® in G). The stabilizer subgroup is (y, z) so each
class has size g(q + 1).

(4) The minimal polynomial has roots £ and ¢9 for some £ € E\ F. The
corresponding classes [£, £7] arise from some fixed embedding E* in G. The
stabilizer subgroup is E*, of order ¢? — 1, s0 each class has size g(q — 1).

The characteristic polynomial of ¢2"z* is X2 ~ sX + ¢”. By Theorem 1 we can
choose a primitive element ¢ in E with trace 1, and then define ¢ to be the norm
¢9*! of ¢. With this choice of ¢, tzz is an element of order ¢ — 1 and ¢+ tzz fixes
an embedding of E* in G, completely determining the conjugacy classes in (4).

Define K to consist of the elements of Z/(q? — 1)Z of the form aq + 8 for 0 <
@ < f < q. Then K has g(g — 1)/2 elements and Z/(¢q? — 1)Z can be partitioned
into three subsets: X, ¢-X,and R = {m(g+1)|m=0,...,q— 2} . The conjugacy
classes in (4) can be indexed as (¥, (*9) for k € K.

Finally, it is easy to see that the conjugacy classes of the Borel subgroup T are
derived from those of G as follows. The singleton classes [¢°] remain unchanged.
The classes [¢°]? also remain, but now have size ¢ — 1. The classes [¢*, (?*] are not
present. The elements y°z® and y*2° are no longer conjugate, so there are distinct
classes [¢2,¢’] and [¢%,¢%), each of size g. In particular, for ¢ fixed, the elements
w°z? are conjugate in T for d # 0 (mod g). Similarly, for fixed a % b (mod ¢ — 1),
the elements y®z°z¢ are conjugate in T for all d.

3. CHARACTER TABLE OF GL(2,q)

The character table of G is as follows. Here w is a primitive (¢? ~ 1)th root
of 1, and ? = w?*!, Both superscripts and subscripts indicate exponentiation (so
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Q2 = Q°C); the lower position is used to distinguish between representations of
the same type.

e fe)? [e2, €] (%, ¢%)
o o 9% 208 o
ac qﬂ’c" 0 QC —QE‘
vas | (g+1)0505 Q405 Q05 +2,9% 0
| (@-19% -9 0 —(wk +wik)

The degree 1 representations ¢c arise from the characters of G/G' = F* and are
given by oc(g) = xc(det g). The representation gy is given by ¢o@ oo = T, where
is the permutation representation of G acting on P!(F) in the standard manner. The
other oc are given by tensoring with the ¢c. The representations Y4 g are induced

from the degree 1 representations of T' given By 12;4'5 (a ;) = xa(a)xs(B) for

distinct characters y4 and xp of F*.

The characters of the remaining so-called cuspidal representations px can be
obtained by judicious fiddling with the character table (see [4, Section 5.2]). Al-
ternatively, the character tables of all the groups GL(n,¢) can be determined by
a method of J. A. Green (see [6] or (9, Chapter IV]). Here again the parabolic
subgroups (the Borel subgroup in our case) play an important role, and the cuspi-
dal characters arise from a change of basis for a system of symmetric polynomials.
Green'’s approach fixes a one-to-one correspondence between irreducible characters
and conjugacy classes, shown in the table above by equating corresponding low-
ercase and uppercase variables. Since the representations px correspond to the
classes [C*,(4], it is not surprising that giving the representations px explicitly
is as sensitive a problem as fixing the conjugacy class structure of G precisely in
terms of a fixed system of generators.

4. CONJUGACY CLASSES OF tz"z*

We construct a look-up table specifying the conjugacy classes of the elements
tz"z°. Define the sequence {T}} for k € Z/(g* - 1)Z by the equations

1N =T =1

(2) Toqx =T,

(3) Te =1 = ycmeisz (m)€™ Te—zam (mod g).

Proposition 2. Let r vary from 0 to g — 2 and s vary from 0 to ¢ — 1. There is
ezactly one element tz"z° in each conjugacy class of G ezcept for the classes fec],
which contain no such elements.

In particular, tz® € [1,1); tz'z° € [(*,(*] if r = k (modg—1) and s = T
(mod q) for k € K; and tz'z* € [!/W+V] if r = k (mod g — 1) and s = T}
(mod gq) for k € R,k # 0. Otheruwise, tz"z* has distinct eigenvalues in F.

Proof. We first observe tz"z* is never diagonal, and so cannot be in [e°].
~ Now. let £ € E havenorm N = £9+1, The norm of £* is N*. Expanding (E+€9)*
by the binomial theorem and grouping the terms for m and m — k, we see that the
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trace T = £* 4+ £9% of £* for k > 0 satisfies

TE= ) ( ”; )N"‘Tk_z,,. (mod q).

0<m<k/2

We set Ty = 1, so the case m = k/2 works out.

Setting £ = (, our trace 1 primitive element, we obtain equation (3). The field
structure gives (2). This shows that the conjugacy classes of ¢z"z* are as given.
The special treatment of ¢z? is necessary since Tp 7 Tr(® = 2.

Since tz0z¢"+¢" belongs to [¢?, ¢!}, there is an element ¢z"z* in each nondiagonal
class. Uniqueness follows by counting the number of elements tz"z* and the number
of classes. O

5. CONSTRUCTING THE DEGREE q — 1 REPRESENTATIONS

Fix K € K. Calculation of the inner product shows that the restriction Resr px
is irreducible, and in fact, Resr px = Indg Lg, where H = (w,z) and Ly is the
degree 1 representation of H given by

Lg(w) = Qk, and Ly (z) = 0, n a primitive gth root of 1.

Indeed, T is metabelian so any irreducible representation must be monomial.

Doing the induction using the basis 2%,z!,..., 29=2 for CT over CH, we obtain
pr(w) = Qx I
pi(z) = Diag(n,n", 1", ....0"""")
g 1 (1)
pK(z) =
1

Now, the relation stz = wt is preserved by py. This implies that pr(t) has the
form

-2
ap Q}{dj Q%-az &8 4 Q}‘ Qgq-2
aq Qxaz Q%‘-a: cen Q}(-zao
-2
pr(t)=| a2z Rkxaz Q%aq ... Q ‘ay (2)
-2
Qg2 Qkao }‘-al ‘en Q;‘ Qg3

Expanding from (1) and (2) now forces
q=2

Xox(t72*) = Tepk(8272°) = 3 arsan@it " 3

n=0

Here the indices on a are taken (mod g —1).
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We sum (3) over s with weighting n~°. The terms on the right involve the sum
S92 p*®=1) which sums to g if n = 0 and vanishes otherwise. Hence the a, are

given by
q-1

apqQy = Z N Xox (tz72") (4)
sl

Since the character values on the right can be identified using Proposition 2. this
fully determines pk.

6. MORE ON THEOREM 1

The known proofs of Theorem 1 ([1, 10}) involve rather delicate arguments using
character sums to show the result holds except possibly for a finite list of g's. These
remaining cases (roughly 200 in {10]) are checked by computer.

For our purposes, we require a method to find a specific ¢ € F such that X?—X+¢
is the minimal polynomial of a primitive element of E. This can be done using the
following result.

Theorem 3 (Alanen-Knuth, [8, Theorem 3.18]). A monic quadratic f € FX]
with constant term e is the minimal polynomial of a primitive element of E iff ¢ is
a generator of F* and the least integer m for which X™ is congruent to an element
of F (mod f(X)) is m = g+ 1. In this case, X™ is congruent to e. o

This procedure for finding a suitable ¢, together with the calculation of the T},
seems particularly suited to computer methods.

Theorem 1 has been generalized in (2] to show that for any n > 2, there exists a
primitive element of GF(g") over GF(g) of arbitrary trace T, except for the cases
T=0n=2andT=0,n=3,g=4¢.

7. EXAMPLE, ¢ = 3

We conclude by computing px for the simplest case, that of ¢ = 3. Let n =
exp27i/3 and w = exp 27i/8, so Ak = (-1)X. The only generator of F* is e = 2.
We choose K = {1,2,5}. For K € K, we see from (1), (2), and (4) that

_(« _( 1 _[oo (-1)fe

et = (% a)oowter=(; 1) sad w0 = (32 (0],

where 5 1 2
3ap = pr(t) + 7’ xpx(tz) +n pr(t: ), and

3(=1)% ay = Xpx(t2) + 12 Xoxc (822) + 1" Xox (t227).

From Proposition 2, we see that To = T, =Ts=1,Ta =T =0T =1,
and Ts(= Tis) = Tr = 2, and so tz? € [1,1}, t2z € (€, ¢3), t € [¢%,¢°), tz € [2,2),
tzz? € [¢%,¢7), and tz has distinct eigenvalues in F. Hence '

3ap = —(wk +wk) —n*(-1) —n, and
3(-1)¥ay = —n¥(wk +wk) — n(wk +wk)-
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Free Bicompletion of Enriched Categories
André Joyal, F.R.S.C.

This is the second of a series of comptes rendus on free bicomplete categories. Here
we extend the results of the first to enriched categories. In the third we shall introduce a
game theoretic semantic for bicomplete categories as in [Blass].

§ 1. Bicomplete V-categories

For the basic concepts of enriched category theory see [Kelly]. To fix the notation
and terminology we shall review briefly a few concepts. For any monoidal category V
(sometime called a tensor category), we shall denote V" the monoidal category obtained
by reversing the tensor product of V: A®" B = B ® A. Recall that V is closed if for every
A €V the functors X — A® X and X — X ® A have right adjoints, denoted respectively
by X — A\X and X — X/A. A category C enriched over V, also called a V-category, is
defined by a map [—, —] : ObC x ObC — ObV together with associative composition laws

[4,B]®[B,C] — (4,C]

and units 14 : I — [A, A]. The map [—,~] is sometime denoted by C[—, —]. Observe that
a V-category is defined by composition laws

[B,C]®[4, B] — [A,C]

An errow A — B of C is an arrow I — C[4, B] in V. The category V isitselfa V-category
with V[4, B] = A\B, and a V"-category with V"[4,B] = B/A. The opposite C°P of a
V-category is a V" -category with C°P[A°, B°] = C[B, A] where the map A + A° is a formal
bijection C =~ C°P. In the absence of indication to the contrary, we shall suppose that
all functors and natural transformations are V-functors and V-natural transformations. A
functor F is an embedding if the arrows C[A, B] — [F A, FB] are invertible.

In this paper V denotes an arbitrary but fixed closed monoidal category that admits
small limits and colimits. When C is small the category [C°P, V)] of V"-functors CP — V is
enriched over V.

We shall denote by X ® A the tensor and AX the cotensor of an object X € C with an
object A € V, when they exist. A V-category C is cocomplete (resp. complete) if it admits
tensors and cotensors, and limits and colimits of small diagrams.

We shall use upper and lower integrals. Recall that a V-graph is a set S with a map
[-,-]: S x8 — ObV. A weighton S is a map w : S — ObVY together with a family of
arrows [i,j] @ w(j) — w(i). A diagram D: S — C is a map D : S — ObC together with a
family of arrows [i, j] — [D(3), D(j)). In a cocomplete category the lower integral
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/ D@{i)@uw(i))=Dew
i€s
can be defined as the colimit of the diagram of canonical maps
D(i) ® w(i) «<— D(i) ® [i, j] ® w(j) —> D(j) ® w(j),

where i and j run through S. A functor F : C — D between cocomplete categories is
cocontinuous iff the canonical arrow F(D) ® w — F(D ® w) is invertible for any (small)
weighted diagram (D, w).

Dually, a co-weight on a V-graph S is a diagram w : S — V. The upper integral

i€S
/ w(i)D(i) = wD
is the limit of the diagram of canonical maps
w(i)D(i) —> w(i) ® [i,j1D(j) «<— w(5)D(j)
where i and j run through S. A functor F is continuous iff the canonical arrow

F(wD) — wF(D) is invertible for any (small) coweighted diagram (D, w).

Definition 1: An object A € C of a cocomplete (resp. complete) V-category is o-atomic
( resp. w-atomic) if the functor [A4,—] : C — V (resp. [—, A] : C°? — V) is cocontinuous.
An object is atomic if it is both o— and w—atomic.

A V-category is bicomplete if it is complete and cocomplete. A functor is bicontinuous
if it is continuous and cocontinuous. The concept of free bicompletion i : C — AC of a
V-category C is defined as in [J).

The equivalence (AC)°? =~ A(C°P) can be used to identify these two categories. We
shall write A° € AC°? for A € AC.

Definition 2: A bicomplete V-category C is soft if the following square of canonical
arrows is a pushout

[ veun.seleui) — [ X.Buleul)
(s.7)EIxJ J€J

i |

/ (i) ® [A(i), Y] (X.Y]
€l

for any upper and lower integrals X = f‘el v(i)A(i) and Y = LEJ B(j) @ w(j).
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Theorem 1. The free bicompletion i : C — AC of a V-category C has the following
properties:
i) the category AC is soft ;
ii) for every A € C the object iA € AC is atomic;
iii) the functor i is an embedding;
iv) the category AC is the biclosure of i(C) C AC.
Moreover, these properties characterize the pair (i, AC) up to equivalence of categories.

The free completion i : C — IIC and the free cocompletion i : C — ZC of a V-category
are defined similarly to the free bicompletion. It is well known that when C is small we
have IC = [C°P, V)] with i the Yoneda functor. The so-called Cauchy completion C¢ (see
[Lawvere]) is the subcategory of o-atoms of ZC. It is also equivalent to the subcategory of
w-atoms of IIC (an object of C¢ being often described by a pair of functors).

Proposition 1. The canonical functors £C — AC and TIC — AC are embeddings and
their images are respectively the full subcategories of w-atoms and of o-atoms. Moreover
C¢ is equivalent to the full subcategory of atoms of AC.

Consider now the continuous extension IIEC — AC of the embedding £C — AC; and
dually, consider LIIC — AC.

Corollary. The functors LIIC — AC and IIEC — AC are embeddings.

Recall [Benabou] that a distributor M : C = D between two small V-categories is
defined to be a functor M : C°? x D — V. This concept make sense even when V is

non-symimetric; namely, we specify M by a family of arrows
|A,B]® M(B,C)®|C, D] — M(A, D)

satisfying obvious conditions. For every B € D we have a functor M(~,B) : C? —
V and the map B — M(—,B) is a functor M(—,=) : D — [C°?,V]. If we use the
equivalence [C°?, V] =~ £C the functor M(—,=) can be extended to a cocontinuous functor
ZM : ¥D — XC. The functor LM has a bicontinuous extension AM : AD — AC.
The transpose of a distributor M is a distributor ‘M : D? x C — V". The distributor
tM defines a cocontinuous functor LM : EC°? — TD°? and by duality, a continuous
functor IM* = II*M° : [IC — ID. The functor [IM* has a bicontinuous extension

AM* : AC — AD.

Proposition 2. For any distributor M : C = D the functor AM* : AC — AD is left
adjoint to the functor AM : AD — AC. Moreover, any adjoint pair of bicontinuous
functors between AC and AD is of this form.

Remark: To every functor f : C — D we can associate two distributors I'/ : D = C
and 'y : C = D, where I'/(B, A) = hom(B, fA) and Ty(A,B) = hom(fA, B). The
functors LI/ : ¢ — D and 0ry : ¢ — IIC are respectively the cocontinuous and
the continuous extensions of f. It follows that AT/ = Af = AT} and therefore that
Af has bicontinuous left and right adjoints. When D is Cauchy complete this property
characterizes the bicontinuous functors AC — AD of the form Af.
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The relative completion j : C — A™C of a cocomplete V-category C is defined as
in [Joyal]. Recall that a cocomplete category is also complete when it is accessible (see
[Makkai & Paré]).

Theorem 2. Let C be a bicomplete V-category. The relative completion j : C — A™C
exists and has the following properties:
(i) the category A™C is soft ;

(ii) for any A € C the object jA is w-atomic;

(iii) the functor j has a cocontinuous right adjoint k : A*C —C

(iv) the functor j is full and faithful;

(v) A*C is the biclosure of j(C).
Moreover, these properties characterize the pair (j, A™C) up to equivalence of categories.

§2. The symmetric case
From this point on we shall suppose that V is symmetric. The (tensor) product C x D
of two V-categories is then defined (see [Kelly]). Recall that we have

[(4, B), (CvD)] = [Ar Cle (B, D]

for pairs of objets (A, B) and (C,D) € C x D.

Definition 3: Let A, B and C be cocomplete V- categories. A functor of two variables
F: Ax B — Cis soft if the following commutative square of canonical arrows

[ . FOO.EM e eui) —> [ FX.EG)eul)
(s,3)€lxJ 1€J

: !

/ | F(DG.Y) @ u(i) — > F(X,Y)
$€

isa bushout for any pairs of lower integrals f-’el D(i)®v(i) = X and fjeJ E@(G)ew(j) =Y

The concept of soft functors in n > 3 variables is defined similarly, but by using cubical
diagrams instead of (pushout) squares. A soft functor of one variable is a cocontinuous
functor.

A functor of n > 2 variables F = F(—,...,—) is responsive if it is continuous in each
variable, and if fixing at o-atoms the values of any subset of 0 < k < n variables produce
a soft functor. The functor [—,—] : AC°® x AC — V is an example of responsive functors
(Theorem 1).

We have also the dual concepts of cosoft and coresponsive functors.

Theorem 3. Let F: [[7_, C; — D be a functor from a non-empty product of V-categories
and taking its values in a bicomplete V-category D. Then F has a responsive extension
F' : [Ty ACi — D. Morover this extension is unique up to a unique isomorphism.

We have the dual concepts of cosoft and coresponsive functors. Theorem 3 has a dual

which we do not state.
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The external tensor and the external dual tensor products
® and @:ABx AC -+ A(BxC)

are defined as in [Joyal]. They are respectively the coresponsive and responsive extensions
of i: B x C — A(B x C). These operations are associatives up to coherent isomorphisms.
Proposition 3. For any X € AB the functor X ®(—) : AC — A(B®C) has a right adjoint
R~ X\R.

Remark: When C is small let A € A(C x C°P) be the element corresponding to (-, —]
via the embedding [C°? x C, V] = Z(C x C%?) C A(C x C°P). It can be shown that for any
X € AC we have a canonical map X ® X° — A and a natural isomorphism X° ~ X\A.

As in Classical Linear Logic [Girard] we have obviously the duality isomorphism
(XoY)P~X°@Y°
We have also mized associativity transformations
(AGB)®C—-AG(B®C) A®(BOGC)—(A®B)OC
(see [Lambek] for the history of this concept).

Certain structures on categories can be extended to their free bicompletion. Recall
that a monoidal V-category D is closed if for every A € D the functors X — A ® X and
X — X @ A have right adjoints, denoted respectively X +— A\X and X — X/A (see
[Kelly]). An object J € D is dualizing if the (contravariant) adjoint functors A — A\J =
A*® and A — J/A = *A are inverse equivalences. A closed category D equipped with a
dualizing object J € D is said to be x-autonomous.

Theorem 4. Let D = (D, ®,I) be a monoidal V-category. The coresponsive extension of
the tensor product on D defines a monoidal structure on AD. Moreover AD is closed if D
is, and iJ € AD is dualizing if J € D is.

When D is closed the functor (—\—) : AD°? x AD — AD is the responsive extension
of the corresponding functor on D.

Corollary. The free bicomplete V category generated by a finite chain of arrows is *-
autonomous. In particular, Al the free bicomplete V-category generated by one object is
*-autonomous.

For any V-category C let [—,—] : AC°® x AC — Al be the responsive extension of
j[=.—]:C°? x C — Al, where j: V — Al is given by jA=1® A.
Proposition 4. Let C a V-category. The responsive functor [—,—] : AC® x AC — Al

defines an enrichemeut of AC over A1. Moreover, AC is bicomplete as a Al-category.

We now sketch a generalization of the theory of distributors. It is based on the
observation that we have

[c°? x D, V] = E(C x D) — A(C x D)
for any small V-category C and D.
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Definition 4: A A-distributor M : C = D is an object M € A(C x D°P) = A(C, D).

Recall that distributors M : B => C and N : C = D can be composed Mo N : B =D
The operation of composition of distributors is a functor of two variables

B(B x C°) x (C x D) — 2(3 x D).

By taking its coresponsive extension we obtain an operation of composition (M, N) —
M o N on A-distributors:
A(B,C) x A(C,D) — A(B, D).

Proposition 5. For any M € A(B,C) the functor M o (=) : A(C,D) — A(B,D) has a
right adjoint Q — M\Q. And similarly for the functor () o N : A(B,C) — A(B, D) for
any N € A(C, D).

Remark: The composition of A-distributors can be explained in term of other operations.
More precisely, let us denote by 1 the V-category with a single object and let e : DxD°P = 1

be the distributor given by €(X,Y,1) = [X,Y]. Observe that the category of small V-
categories and distributors is a compact closed bi-category. Then for M € A(B,C) and

N € A(C, D) we have the formula
MoN=A(B”xexD)(M®N)

where M @ N € A(B° x C x C°? x D). We shall formalise the whole situation later with
a concept of Linear Theory.

References:

Benabou J., Les Distributeurs, Rapport 33, Inst. de Math., Univ. Cath. de Louvain, 1973
Blass A., A game semantic for linear logic, Ann. Pure & App. Logic, 56 (1992), 183-220.
Girard J.-Y., Linear Logic, Theoretical Computer Science 50, (1987) 1-102.

Joyal A., Free Bicomplete Categories, Math. Rep., RSC.

Kelly G. M., Enriched Category Theory, Cambridge UP, 1982, London Math. LN , no. 64.

Lambek J. From Categorical Grammar to Bilinear Logic, in Substructural Logics,
Schroeder-Heister & Dosen ed., Oxford Science Publications, 1993.

Lawvere F. W., Metric Spaces, Generalized Logic and Closed Categories, Rend. Sem. Mat.
Fis. Milano, XLIII, 1973, pp. 135-66.
Mac Lane S., Categories for the Working Mathematician, GTM, Springer Verlag, 1971.

Makkai M. & Paré R., Accessible Categories , AMS, Contemporary Math. 104, 1990.
Whitman P. M., Free Lattices, Annals of Mathematics, Vol. 42, No 1, 1941. 325-330.

Département de Mathématiques, UQAM, Montréal, Québec H3C 3P8.
e-mail: joyal@math.ugam.ca. Received September 22, 1995



mailto:joyal@math.uqam.ca

C.R. Math. Rep. Acad. Sci. Canada - Vol. XVII, No. 5, October 1995 octobre
219

Free Bicomplete Categories
André Joyal, F.R.S.C.

This is the first of a series of comptes rendus on free bicomplete categories. A cate-
gory is bicomplete if it admits limits and colimits. A functor is bicontinuous if it preserves
limits and colimits. The free bicompletion AC of a category C is the bicomplete category
freely generated by C. More precisely, we have a functor C — AC satisfying a universal
property with respect to bicomplete categories and bicontinuous functors. One motivation
for this work is to extend to categories the classical results of Phillip M. Whitman on free
lattices. We introduce the concept of soft functors and prove that the hom functor of a
free bicomplete category is soft. The result has a central role in a theorem characterizing
free bicomplete categories by a few combinatorial properties. We introduce the concept of
responsive functors and prove that any functor defined on a product of categories has a
responsive extension to the product of their bicompletions. It follows that AC is monoidal
closed, or *-autonomous when C is. In particular Al, the bicomplete category freely gen-
erated by a single object, is x-autonomous. We also show that any AC is enriched over Al.
In the second compte rendu we shall consider free bicompletion of enriched categories. In
a third we shall discuss the game-theoretic semantics of free bicompletions. This work was
partly motivated by Andreas Blass’s game semantic of linear logic [Blass).

§ 1. The characterization theorem

We first recall Whitman’s theorem on free lattices (see [Whitman]). A lattice is a poset
with binary infima and suprema. The free lattice generated by a poset P is a lattice L(P)
equipped with an order-preserving map i : P — L(P) satisfying the following universal
property: for any order-preserving map f : P — L with values in a lattice L there is a
unique lattice map f’: L(P) — L such that f'i = f.

Theorem 0. (Whitman) Let i : P — L(P) be the free lattice generated by a poset P.
Then for any a,b in P and z, y, u and v in L(P) we have:
(i) zAny<uVvifzAySuorzAy<vorz<uVvory<uVuy;
(i) i(a) <u Vv iffi(a) <uorifa) <v;
(iii) z Ay <i(b) if z <i(b) ory < i(b);
(iv) i(a) <i(d) ifa<b;
(v) the lattice L(P) is generated by i(P).
Moreover, these properties characterize the free lattice generated by P.

The central thing here is the condition (i). Our first task will be that of formulating
an analogous condition for categories. In the absence of any indication to the contrary,
we shall suppose that all limits and colimits are finite —that is, taken over finite diagrams.
But the results and proofs remain valid with x-small limits and colimits where « is any
infinite regular cardinal, and also with all small ones.
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Recall (see [Mac Lane]) that a category is complete (resp. cocomplete) if it admits
limits (resp. colimits), that a functor is continuous (resp. cocontinuous) if it preserves
limits (resp. colimits). A category is bicomplete if it is complete and cocomplete. A
functor is bicontinuous if it is continuous and cocontinuous.

A free bicompletion of a category C is a bicomplete category AC equipped with a

functor i : C — AC such that:
i) (existence) for any functor F : C — B with values in a bicomplete category there exist

a bicontinuous functor F’/ : AC — B such that F' oi = F ( we shall say that F' is a

bicontinuous extension of F) ;
ii) (uniqueness) if F’, F : AC — B are two bicontinous extensions of F' then there is a

unique isomorphism u : F/ — F” such that uoi = idp.

Remark: It follows from this definition that the free bicompletion of a category is unique
up to an equivalence of categories. Moreover, the equivalence is unique up to an isomor-
phism of functors; and the isomorphism itself is unique.

When C is small the existence of AC can be proved by standard categorical methods
that we shall not discuss. For large C the existence can be proven using Theorem 1.
Definition 1: Let F : A x B — C be a functor of two variables between cocomplete
categories. We shall say that F is soft if for any pair of finite diagrams D : I — A and
E : J — B the following commutative square of canonical maps

lim F(D,E) —> _m,F(D lim F)
IxJ J

l |

_xr;FQan'D E) — F(___D lim E)
J

is a pushout. A bxcomplete category B is soft if the hom functor B°P x B — Sets is soft .
The concept of soft functors in n > 3 variables is defined similarly, but by using
cubical diagrams instead of (pushout) squares. A soft functor of one variable is just a
cocontinuous functor.
Remark: Note that the functors F(A4, —) obtained by fixing one of the variables of a
soft functor need not be cocontinuous. However, when A is an initial object, F(4,—-) is
cocontinuous. A similar observation can be made for soft functors of n > 3 variables.
Let B be a soft category. Then for any pair of finite diagtams D: I - Band E: J — B

the square
lim hom(D, E) ——> limhom(D, hmE)

IxJ 1

| l

lim hom(})im D, E) —> hom(lim D, lim E)
J 1 1 J
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is a pushout. In particular, every arrow f : limD — lmE has either a factorization
f = gpi, or a factorization f = g;h, where p; : imD — D; and g; : E; — LmE are
canonical. This is the categorical analogue of property i) in the Whitman theorem.

Definition 2: An object A € C of a cocomplete (resp. complete) category is o-atomic
(resp. m-atomic) if the functor hom(A,—) : C — Sets (resp. hom(—, A) : CP — Sets) is
cocontinuous. An object which is both o- and w-atomic is said to be atomic.

Remark: In a soft category the o-atoms ( resp. w-atoms) are closed under limits (resp.
colimits). In particular, the terminal object T (resp. initial object 1) is o-atomic (resp.
m-atomic).
Theorem 1. For any category C, the free bicompletion i : C — AC has the following
properties:
(i) the category AC is soft ;
(ii) for any A € C the object iA is atomic;
(iii) the functor i is full and faithful;
(iv) the category AC is bigenerated by i(C).
Moreover, these properties characterize the pair (i, AC) up to an equivalence of categories.

In this theorem, condition (iv) means that AC is the closure of (C) under the opera-
tions of limits and colimits.

The free completion TIC and the free cocompletion £C of a category C are defined
similarly to the free bicompletion. Let [C°P, Sets] be the category of functors C°P —
Sets. It is well known that IC is the full subcategory of [C°P, Sets] whose objects are the
finitely presentable functors, and that i is defined by the Yoneda embedding. Recall that
the Karoubi completion KC is obtained by splitting the idempotents of C. It is the full
subcategory of o-atoms of IC, and also the full subcategory of 7-atoms of IIC.

Proposition 1. The canonical functors £C — AC and IIC — AC are full and faithful.
Their (essential) images are respectively the full subcategories of w-atoms and of o-atoms.
Moreover, KC is equivalent the full subcategory of atoms.

Consider now the continuous extension IILC — AC of £C — AC. Dually, we have a
cocontinuous functor XIIC — AC.

Corollary. The canonical functors ZIIC — AC and IIZC — AC are full and faithful,

For the rest of this section we shall remove the condition of finiteness that we had
imposed on limits and colimits, supposing only that they should be small. Recall that a
distributor M : C = D between two small categories is a functor M : C°? x D — Sets.
For every B € D we have a functor M(—, B) : C°? — Sets and the map B — M(-,B)
is a functor M(—,=) : D — [C°P, Sets]. Using the equivalence [C°?, Sets] ~ £C we can
extend M(—,=) to a cocontinuous functor M : D — IC. Furthermore, the functor
M has a bicontinuous extension AM : AD — AC. The transpose of M is a distributor
*M : DxC° — Sets defining a cocontinuous functor Z*M : £CP — TP and, by duality,
a continuous functor ITM* : [IC — IID. The functor [IM* has a bicontinuous extension

AM® : AC — AD.
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Proposition 2. For any distributor M : C = D the functor AM® : AC — AD is left
adjoint to the functor AM : AD — AC. Moreover, any adjoint pair of bicontinuous
functors between AC and AD is of this form.

Remark: Following [J. Benabou] to every functor f : C — D we can associate two dis-
tributors I/ : D = C and Ty : C = D, where I/(B, A) = hom(B, fA) and T'y(A, B) =
hom(fA, B). The functors ZI'/ : £C — ED and IIT'j : [IC — IIC are respectively the
cocontinuous and the continuous extensions of f. It follows that AT/ = Af = AI‘}, and
therefore that Af has bicontinuous left and right adjoints. When D is Karoubi complete
this property characterizes the bicontinuous functors AC — AD of the form Af.

§ 2. Extension theorems

We shall say that a functor of two variables F = F(—, =) is responsive if it is continuous
in each variable and soft, and if the functors F(4, —) and F(—, B) are cocontinuous for o-
atoms A or B. The functor hom(—,—) : AC°? x AC — Sets is an example of a responsive
functor (Theorem 1). More generally, we shall say that a functor of n 2> 2 variables
F = F(-,...,-) is responsive if it is continuous in each variable, and if fixing at s-atoms
the values of any subset of 0 < k < n variables produces a soft functor.
Theorem 2. Let F: []}_, Ci — £ be a functor taking its values in a bicomplete category
E. Then F has a responsive extension F' : [, AC; — £. Moreover this extension is
unique up to a unique isomorphism.

We have the dual concepts of cosoft and coresponsive functors. Theorem 2 has a dual

which we do not state.
The external tensor product

®:ABx AC — A(Bx ()

is defined to be the coresponsive extension of i : B x C — A(B x C). We have a natural
associativity isomorphism X @ (Y ® Z2) (X ®@Y)® Z in A(B x C x D) for X € AB,
Y € AC and Z € AD.

Proposition 3. For any X € AB the functor X®(~) : AC — A(B®C) has a right adjoint
R— X\R.

The ezternal dual tensor product
@:ABx AC— A(BxC)

is defined to be the responsive extension of i : B x C — A(B x C). It is also associative and
we have the duality isomorphism

(XoY)=2X°QY"

familiar in Classical Linear Logic [Girard]. We have also mized associativity transforma-

tions
(A®B)®C - AG(B®C) A®(BOC)—(A®B)OC
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( this concept has been discovered in logic by Grishin; the categorical form independently
by de Paiva and by Cockett & Seely; see [Lambek]).

Certain structures on categories can be extended to their free bicompletion. Recall
that a monoidal category D is closed if for every A € D the functors X — A® X and X —
X ® A have right adjoints, denoted respectively X — A\X and X — X/A (see [Kelly]).
An object J € D is dualizing if the (contravariant) adjoint functors A — A\J = A® and
A — J/A = *A are inverse equivalences. A closed category D is x-autonomous if it is
equipped with a dualizing object J € D.

Theorem 3. Let D = (D,Q®,I) be a tensor category. The coresponsive extension of the
tensor product on D defines a monoidal structure on AD. Moreover AD is closed if D is,

and iJ € AD is dualizing if J € D is.
When D is closed the functor (—\—) : AD°? x AD — AD is the responsive extension
of the corresponding functor on D. The theorem shows that free bicompletions of *-

autonomous categories are x-autonomous. The posets [n] = {0,1,...,n} (n > 0) are
*-autonomous categories on setting z®y = 0V (z +y — n) at taking 0 for dualising object.

Corollary. The free bicomplete category generated by a finite chain of arrows is *-
autonomous. In particular, Al the bicomplete category freely generated by one object

is x-autonomous.

For the next proposition we remove the condition of finiteness normally imposed on
limits and colimits and only suppose they are small. Let j : Sets — Al be the coproduct-
preserving functor sending a singleton to 1. For any category C let [-, =] : ACPxAC — Al
be the responsive extension of jhom(—.=) : C°? x C — Al.

Proposition 4. For any free bicomplete category AC, the functor [—, —] : AC? x AC — Al
defines an enrichement of AC over Al. The category AC is bicomplete as a category enriched

over Al.

§ 3. Relative completions

The relative completion of a cocomplete category C is a bicomplete category A™C
equipped with a cocontinuous functor j : C — A*C such that:
i) (existence) for any cocontinuous functor F : C — B with values in a bicomplete
category there exists a bicontinuous functor F' : A*C — B such that F'oj = F;
ii) (uniqueness) if F', F" : A*C — B are two bicontinous extensions of F then there is a
unique isomorphism u : F/ — F” such that uo j = idp.
The relative cocompletion j : C — A°C of a complete category is defined dually.

When C is small the existence of A*C can be proved by standard categorical methods
which we shall not discuss. The construction of free bicompletion of a small category can
be broken up into two steps, and this in two ways:

AC ~ A°TIC ~ A™ZC
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Let C a small cocomplete category . The category [C°P, Sets]™ of continuous functors
C°P — Sets is bicomplete since it is a full reflective subcategory of the presheaf category
[coP, Sets]. For any A € C we have yA = hom(-,A) € [C°P, Sets]", and the Yoneda
functor y : C — [C°P, Sets|" is cocontinuous.

The edge of a cocontinuous functor ! : C — B is defined to be the functor

It: B — [C, Sets]”

given by I'(B) = hom(l(-), B) for any B € B.
Theorem 4. For any cocomplete small category C the relative completion j : C — A™C
has the following properties:
(i) the category A™C is soft ;

(ii) for any A € C the object jA is w-atomic;

(iii) the edge functor j! : A*C — [C°P, Sets]" is cocontinuous;

(iv) the functor j is full and faithful;

(v) A~C is the biclosure of §(C) under limits and colimits.
Moreover, these properties characterize the pair (j,C) up to an equivalence of categories.

It follows from (iii) and (iv) that j! is the bicontinuous extension of the Yoneda
functor y. When C is bicomplete the identity functor C — C has a bicontinuous extension
k : AC — C and (iii) can be replaced by the following condition:

(i)’ the functor j has a cocontinuous right adjoint k : A"C — C.

The theorem remains valid if finite diagrams are replaced by x-small diagrams. It
further remains valid with all small digrams in the case where C is accessible [Makkai &
Paré); in this case C is bicomplete and (iii)’ can be used instead of (iii).
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Master symmetries and higher order
invariants for finite dimensional
bi-Hamiltonian systems

Roman G. Smirnov*

Presetned by G.F.D. Duff, F.R.S.C.

Abstract

We find the Virasoro algebra of master symmetries constructed for
the isotropic harmonic oscillator and the Toda lattice. For either sys-
tem a suitable conformal invariance scaling basic tensor invariants is
found. The corresponding master symmetries connected by the Vira-
soro commutator relation lead to exact hierarchies of higher order in-
variants. The approach is shown to be applicable in the bi-Hamiltonian

case.

1 Introduction

We shall study the dynamical systems admitting the Hamiltonian descrip-

tion
X = PdH, (1.1)

where X is a Hamiltonian vector field, P is a Poisson tensor and H is the
corresponding Hamiltonian function. In the case of P being kernel-free, we
can consider the symplectic form w : w = P~! instead. Then the equation

(1.1) becomes
ixw=dH. (1.2)

A vector field Y commuting with the initial Hamiltonian vector field .Y
Y, X]=0

is called a symmetry of the Hamiltonian system (1.1).

*Supported by NSERC, under Grant OGPIN 337.
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The notion of a master symmetry for the vector field .\ introduced in (1]
we define as a vector field Z satisfying [[Z, Y], X] = 0. provided [Z. .X] # 0.

This is the case, in particular, when Z is a conformal invariance for .X,
ie. LzX =kX,k€eR.

Consider a (1, 1) tensor A the Nijenhuis tensor N, [4] of which vanishes:

N4 = A%[X,Y] + [AX, AY] - A([X, AY] + [AX.Y]) =0, (1.3)

where X, Y is an arbitrary pair of vector fields. We shall call such tensor A
a recursion operalor.

In the bi-Hamiltonian case, namely when the dynamical system (1.1)
admits two Hamiltonian descriptions:

X = PodHo = PidH,, (1.4)

where Py, P, are compatible Poisson tensors [6], i.e. their Schouten bracket
(3] vanishes: [Py, P] = 0. This compatibility condition garantees integrabil-
ity of the system (1.4) [5-8] and can be reformulated in an alternative way.
If one of the Poisson tensors Py, P, is nondegenerate, for example — Py, we
can construct a (1, 1) tensor A := P, Py '. Then the compatibility condition
is equivalent to the fact that A is a recursion operator [6). If. initially, the
bi-Hamiltonian vector field X preserves a symplectic form .; and a Poisson
tensor P, we have the following bi-Hamiltonian description

."o = PodHo leo = d]f], (1.5)

and the Hamiltonians Hg, | are connected by the corresponding recursion
operator A := Pyw, : dH, = AdHp.

Define X, := A®X,wn41 := w1 A" and P, := A"Py. Then by Gelfand-
Dorfman-Magri-Morosi’s theorem [5-8] all X,,’s constitute a commutative
Lie algebra of bi-Hamiltonian vector fields relative to the higher order
symplectic structures w, and the Poisson tensors P,. The functions H, :=
1/nTr(A"™) are invariants of the vector fields .X,, in involution relative tothe
Poisson brackets defined by the Poisson tensors P,.

If an appropriate conformal invariance is found. we can construct a hi-
erarchyof higherorder master symmetries [2].

Proposition 1.1 Let Xg be a bi-Hamiltonian vector field defined by a sym-
plectic form w; and a Poisson tensor P,, in addition the operator A\ := w: Py
is recursive.
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Assume there is a conformal symmetry Zo for Xo,w), Py:

Lz, Xo = aXy, Lz, Py = BP,, Lz,wy = yun; a. J.v€R
Then, defining Z, := A™Zy we can derive Jor all n,m the following hierar-
chies of higher order invariants

Lz, Xm = (a+m(B+e)Xnym, Lz,A=(B+7)A".

Lzywm = (=3 + (m + n)(B +7)nsm,
Lz, Pn = (B + (m = n)(8 + 7)) Pasm,
Lz, Hm = (@ =B+ (m+n)(B+7))Hnim,
LzaZm = (m = 0)(8 + 7)Zn4m. (16)

If A is invertible, — n and m are arbitrary integers, otherwise — only
positive. All Z,’s are master symmetries for the hierarchy of bi-Hamiltonian

vector fields {X,.},n € Z.

It is remarkable that the hierarchy of master symmetries {Z,},n € Z
with the commutator relation (1.6) form a Lie algebra isomorphic to the
Virasoro algebra [9, 10]. Indeed, the latter one, denoted by Vir. is a Lie
algebra over C with the basis L,(n € Z), c and the following commutator

(LinsLn] = (10 = 0)Linon + 8m,—n(m® = m)/12¢,  [e.L,] = 0. (1.7)

Assuming c is a constant the needed isomorphism follows.

2 Applications
2.1 The harmonic oscillator
The isotropic one-dimensional oscillator is defined by the equations
dg/dt = p, dp/dt = —q. (2.1)

It is a Hamiltonian system on M = R? with the canonical symplectic form
wo := —dpAdq and the corresponding Hamiltonian function Hg := %(q2+p2).
The vector field Xo = —qa% + p% yields another Hamiltonian description
for the symplectic form w, and the Hamiltonian H; given by

1
wy := —(q% + p?)dp A dg, Hy = Eln('ZHo).
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The operator A := wow; ! is found to be A = (g2+p?)~'(dg® 5’%+dp® 5'9;) =
1/(2Ho)(dg® 3‘%+dp® 38;). A is diagonal and in the action-angle coordinates
(r,9), where r? = p? + ¢%, p = arctan(q/p), has the eigenvalue depending
only on the action coordinate r. Therefore, by Nijenhuis’ theorem [4] A is

recursion.

= 2 5 ... N
We use the vector field Zg := 3”# 5k F—_ﬁ,— 3p 252 conformal invariance

for Py :=wy 1 w; and Xo. Indeed, direct calculations show
Lz,Xo0 =0, Lz, Py = -2P,, Lzywy =0.

In this case Z, is not a master symmetry, but only a symmetry of the vector
field JYO.

Defining Z, := A™Zp, wn41 := w1 A*, P, := A"P, and applying Propo-
sition 1.1, we derive the following higher order invariants for the isotropic
harmonic oscillator

Lz, Xm = -2mXnim, Lz,Zm = =2(m — n)Zpnym,
Lz,A=-24"", Lz Pn=-2(m-n+1)Puim,
Lz,wm = -2(m+n - wpem, Lz Hp=<-2(m+n—-1)H .
We note, that n and m are arbitrary integers on account of invertibility of

the recursion operator A. The master symmetries {Z,}, n € Z constitute
the Virasoro algebra up to isomorphism.

2.2 The Toda lattice

Consider the finite, non-periodic Toda lattice. In terms of the canonical
coordinates ¢* and momenta p;, i = 1,2,...,n it is given by

dq'/dt = p;,

dpi/dt = ezp(—(q' - ¢'")) - ezp(~(¢'*' - ¢')),
This system takes the Hamiltonian form (1.2) and its Hamiltonian function
Hp is defined by the formulae Hop := 1 5%, p? + T0 ! ezp(—(gig1 — ),
while the corresponding symplectic form wy is canonical: wo = — 1, dg* A
dp;. This particular case of the Toda lattice was studied in [11] from the
bi-Hamiltonian point of view. There was found the second symplectic form
wy with the Hamiltonian H;

(2.2)

n—~1

. {] : . d : 1 i
wi = 32 e g A dg™H 43 pidg’ A pi+ 53 dpi A p

i=1 i=1 i<y
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Hy(q,p) = > ZP. + Z(P. + Pis1)ezp(~(q¢'*! - ¢')).

l—l i=1

Furthemore, the corresponding operator 4 := wywg ! given by the formulae

A= zp, ©dg+ 3 ep(~(g* - q))(—@dq -;-’p—_-s«iq‘“)

i=1

a d
2Z(al® p) a,®dpl)+zpta 3?-

1<) i=1
was proved to be recursion [11]. This leads to integrability of the Toda
lattice as a bi-Hamiltonian system of the type (1.5).
We introduce the vector field Z, given by

Zy _2[2(n+1-1)a,+p.ai] (2.3)

for which one finds
LZo~Y0 = - Xo, LZowl = 2wy, LzoPo = -P,

where Py := wy! and Xp is the vector field of the system (2.2). Conse-
quently, the vector field Zp is a conformal invariance for the system. Setting

= A"Z, Xn 1= A" X, w41 := w1 A", Py := A" P, and applying Propo-
smon 1.1, we come up with the followmg exact hierarchies of higher order
invariants of the Toda lattice for all n,m € Z:

LZ.,“’m = ("l + m)-’ n+my LZan = (m - n)Z'H-mv
Lz, A=A, Lz Pn=(m-n=1)Puim,
Lz,wm =(m+n+ wngm, Lz Hm=(m+ n)Hoem.

Thus, we have constructed all the higher order invariants for the Toda lattice
using the Virasoro algebra of master symmetries Z,, n € Z.
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