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Fibre techniques in Nielsen Periodic point 
theory on nil and solvmanifolds 

Philip R. Heath Ed Keppelmann 
Presented by S. Halperin, F.R.S.C. 

Abstract 

In this announcement we outline results and methods for evalu-
ating the Nielsen type numbers JV*n(/) and NPnif) for self maps / 
of nilmanifolds and solvmanifolds (which includes the Klein Bottle). 
Through the use of fibre space techniques we relate these numbers to 
the various Nif™) for m|n. 

In this announcement we state a number of theorems that allow us to 
calculate the Nielsen type numbers N * n ( / ) and iVPn(/) (see (J.HPY.HY)) 
for self maps / on nilmanifolds (homogeneous spaces of nilpotent Lie groups), 
and solvmanifolds (homogeneous spaces of solvable Lie groups). Let A/$„( / ) 
denote the least number of periodic points of all periods less than or equal 
to n for any map g homotopic to / , and let MP„(f) denote the least number 
of periodic points of period exactly n of any map g homotopic to / . The 
numbers N*n{f) and N Pn{f) are homotopy invariants of / which provide 
lower bounds for A / * n ( / ) and MPnif) respectively. 

It is a mistake (made for example in [Halpl,Halp2]) to think that W$„(/) 
always coincides with N(fn) the ordinary Nielsen number of the nth iterate 
fn of / (see example 6 and also the introduction to [HY) for a number of 
inadequate candidates for Nin{f)). An oversimplification that can be made 
for NPn{f) i s t o express it from Môbius inversion in terms of the ^V(/m) (see 
theorem 1). However, there are cases when these oversimplifications do give 
the correct answers. For example, it was demonstrated in (HPY) and (HY) 
that they hold for tori when L{f) # 0. The proofs there nade heavy use of 
the commutativity of the fundamental groups of the space» involved. In this 
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announcement we indicate two types of results. In the first using fibration 
techniques, we extend the results given in [HPY] and [HY] for tori to the 
highly non commutative situation of nilmanifolds and solvmanifolds. Our 
second result, which also uses fibration techniques, introduces an addition 
formula for periodic points. This handles the complications which occur on 
solvmanifolds when some of the maps on the fibres have Lefscbetz number 
zero (this is explained more fully below). Many examples are forth coming 
(see [HK]), though here because of space we merely indicate the type of 
application that can be made. 

Our first two theorems are useful because canonical fibrations associated 
with nilmanifolds or solvmanifolds can, up to changes in homotopy, allow any 
map / to be realized as a fibre preserving map (/, / ) (see below). Additionally 
these fibrations satisfy the "naive conditions" which means that Nif) (hence 
also ^V(/n)) can be calculated either as a product ([A,FH]), or as the sum over 
various Nifx) for x e $( / ) . ([KMc,Mc,HKW)). (Here fx denotes / restricted 
to the fibre over x, and for any f.X ^X, # ( / ) = { i € X\fix) = x}). 

Theorem 1 Let f : X —> X be a selfmap of a nilmanifold in which t ( / n ) 5̂  
0. Then N*nif) = Nif"), and NPnif) = Ercp(n)(-l)#T^(/n:r) "here 
p(fi) denotes ihe set of prime divisors of n and n : T = nW-^p'1. Q 
Example 2 (Baby Nil) Let G be the topological group that is represented 
by matrices over the reals of the form 

\ o 0 lj 
The binary operation is matrix multiplication. Let F be the discrete subgroup 
consisting of those elements of G with integer entries, and let ^ :(?—>(? be 
the homomorphism which takes x to 2z, y to 3j/, and z to hz. Then GfT is 
a nilmanifold, and (f> induces a map f o{ N = GfT. Our aim is to calculate 
N$nif), and NPn{f). 

We note first that N can be imbedded in the fibre sequence 51 x 51 -• 
Â  —* S* where p is induced by the projection on the "y factor". Note that 
/ induces a self map / of degree 3 on the base, and a map fo, whose matrix 
representation is 

HID 
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on the fibre over the base point 0. Now the nth iterate fn of / induces a 
map whose matrix representation is An on the fibre, and is a map of degree 
3" on the base. By [FH], p is orientable and satisfies the conditions for the 
naive product formula (N(/ n ) = ^(./o ^(•T')) s o by theorem 1 

^ « ( / ) = Nir) = 1(1 " 2n)(l - 5n)(l - 3n)|. 

As an example, for n = 12, theorem 1 also says that 

NPMf) = Nif")-Nif)-Nif*) + Nif2) 
= 531,310,251,012,675,840. 

The fibre decomposition of example 2 is a special case of a general canon-
ical decomposition of nilmanifolds (called the Fadell-Husseini fibration see 
[FH]) which associates to each nilmanifold N, a fibration T *-* N -* B where 
T is a torus, and 6 is a nilmanifold of smaller dimension than N. Since in 
dimensions 1 and 2 the only nilmanifolds are tori, the proofs of known results 
for tori extend, by induction on the dimension of the nilmanifold, to proofs 
of similar results for all nilmanifolds. 

A similar "splitting" occurs for all maps of solvmanifolds. For a solv-
manifold 5 the canonical fibration is of the form N -* S ->T where TV is a 
nilmanifold and T a torus. Unlike the canonical fibrations for nilmanifolds, 
these Mostow fibrations (see [Mc]) are non orientable. In practice this means 
that when x,y € $ ( / ) one can have L{fs) ^ Lifv). We need this informa-
tion in order to state the hypothesis for the next theorem which gives a result 
similar to theorem 1, for some maps of solvmanifolds. 

Theorem 3 Let S be a solvmanifold, and N -* S -> T be a fibration se-
quence in which N is a nilmanifold and T a torus. Let f : S -* S be a fibre 
preserving map with the property that L(/n) ^ 0, and for each y € *(/") the 
map (/-)„ : Fv -» Fy has L((/n)y) ^ 0 (see [KMcJ). Then the conclusion of 
theorem 1 holds. 

There are examples of theorem 3 that have the flavour of example 2. 
The examples are more general because the non orientability of the fibration 
forces one to use the naïve addition formulas ([HKW,Mc]) in place of the 
product formulas to make the needed calculations of the ordinary Nielsen 
numbers. While there are many such examples, they are in general difficult 
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to describe briefly so we refer the reader to [HK] for more details. The one 
notable exception to this statement is the Klein bottle which we touch on now 
in Ueu of more complicated endeavors. We remark that C. You mentioned 
to the first author a number of years ago, that the calculation of 7V(/n) in 
the example below might be possible by fibre techniques. 

Example 4 Let K2 denote the Klein bottle. Then R2 is the universal cover 
and I<2 is the quotient R 2 / r where T is the group of automorphisms on R2 

generated by A{x,y) = ( i , y + 1) and B ( i , y ) = ( i + 1 , -y ) . By defining 
p : R 2 / r —» 5 l to be projection on the first factor we get the standard 
fibration 5" ^ K2 A Sx of the Klein bottle. 

Given any pair of integers (r, q) for which r is odd, or r is even and q = 0, 
the correspondence (s,<) - • (rs,q<) mod Z2 induces a well defined, fibre pre-
serving map (/ , / ) on K7. Here / is the standard map of degree r and the re-
striction fo of / has degree q. (There are actually many non homotopic maps 
with this specification but the degrees of fo and / are the only considerations 
in determining Nif).) Thus * ( / ) = {ij : j = 0 , 1 , . . . , [r - 1| - 1} consists 
of points equally spaced on the circle with x0 = {0,1} in 5' = / / [0 ~ 1]. 
Moreover each Xj is in its own Nielsen class or, in the language of [HKW], 
the set $ ( / ) is a set of essential representatives for / . The key relation-
ship between the various fXj which is of interest here, is that fXj has de-
gree (—1)̂ 9 (see [HKW;4.6]). Hence for r odd the naive addition formula 
{Nif) = Ex,6»(/) Nif;,) [Mc] or [HKW]) implies that for / = (r , 9 ) we have 
p = irn,qn) and ATf/») = ^ ( [ 1 - 9"| + jl + q*\) = |9n(r" - 1)|. In 
addition if q ^ ± 1 , one has by 3 that W $ n ( / ) = ^ ( / n ) for all n. "Môbius 
inversion gives the NPnif). 

Thus for any pair of integers (r, q) for which r is odd, or r is even and 
q = 0, our calculation of yV(/n) agrees with that of [Halpl.Har] (obtained 
by entirely different means). For this same range of integer pairs il q ^ ± 1 , 
we also agree with [Halplj that W(/ n ) is an appropriate lower bound for 
M$nif), but not as example 6 shows when q = ±1 . This latter case is 
handled by the next theorem. If x is a periodic point in the fixed point set of 
/", then let per(x) denote the smallest m|n such that x is in the fixed point 
set of fm. 
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Theorem 5 Let S be a solvmanifold, and N -* S -* T be a fibration se-
quence with N a nilmanifold and T a torus. Let f : S —* S be a fibre 
preserving map inducing J :T -*T. Ifn and f ore such that Nifn) ^ 0, we 
may assume without loss of generality that fn has exactly Nif") fixed points. 
Then 

NPnif) = E NPrfhs.)iifPe*%)andN*nif) = T,NPM)° 
k6*(/n) m l n 

If the ifk)b for 6 € $(/*) have the property that /VFm((/*)t) = 0 for aU 
but finitely many m (this occurs for example when the ifk)b are periodic) 
then the formula ofthe first part of theorem 5 simpUfies because many values 
for per(6) do not need to be considered. This is illustrated below. 

Example 6 The Klein Bottle revisited. We consider a map / of the Klein 
bottle of type (r, 1) with jrj > 1 as in example 4. Note that r must be odd. 
We wiU calculate NPnif) for n = 2fc for aU positive integers k. RecaU that 
on 51, the map of degree 1 has aU NPn = 0, whereas the map of degree - 1 
has NPi = 2 and aU other NPn = 0 (see [HPY]). Thus for aU n > 1 we 
have that NPn = 0 and so in order to compute NPnif) W theorem 5 we 
need only consider those b € *(/") with per(6) = n. Thus we need to know 
which of the Xj for j = 0 ,1 , . . . , |rn - 1| - 1 of $(/") are irreducible. RecaU 
from [HPY;1.8] that on the circle Xj is reducible if the index j is divisible 
by rm,n = 1 + rm + r2m + • • • + rn-m for some m(n. Now rm^ consists of £ 
terms all of which are odd since r is odd. With n = 2fc, ^ is even for aU m|n. 
That is, for such m, rmtn is multipUcation by an even integer. Thus every 
reducible Xj has j even. Moreover if j is even and irreducible then since from 
example 4 the degree of ifn)X} is ( -1 )^ , then NPiUf")*,) = 0. So we need 
take the sum in theorem 5 over the odd integers only. Thus we have that 

NPnif) = E NPl{{r).,)= E Nmn*,)- E ^((/n).,) = Mr) 
j o d d « , € • ( / * • ) X J ê * ! / " ) 

The second step is because over the even indices NPitt/")^) is zero, the 
third by definition, and the fourth by the naJve addition formula [HKW,Mc]. 
We note that in this case ^ ( / n ) = N(fn) = jl - rB|. 

Thus for n = 2* we get the perhaps surprising contrast to theorems 1 and 
3 that this time it is NPnif) rather than iV$n(/) that is equal to #(/"). 
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Note also that for this example 

*̂n(/) = E N(r) = |1 - H + "tir2' - 1). 
mtn i=l 
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A General Variational InequaUty With Application 

H. BEN-EL-MECHAIEKH" AND G. ISAC' 

Presented by P.A. Fil lmore, F.R.S.C. 
ABSTRACT. We present a general multivalued quasi-variational inequality involving a 

general class of multifunctions with convex as well as non-convex values. A typical application 
to a minimization problem along trajectories of a differential inclusion ia discussed. 

1991 AMS subject classification: Primary 49J40, 49J24, 471104 

The purpose of this note is to present a general existence theorem for multivalued variational 

inequalities involving upper semicontinuous multifunctions that are approachable - in the sense 

of the graph - by continuous single-valued functions. This class of multifunctions is very broad: 

it contains upper semicontinuous multifunctions with convex, or contractible, or oo-proximally 

connected values (see for instance (1), [2], and references therein). Thus Theorem 3 below uni-

fies classical theorems for convex multifunctions (see for instance [6] and problem 8.8.B there), 

as well as more recent results for contractible ones ((8|); it also applies to multifunctions with 

non-contractible values. A typical application to a minimization problem of a cost function 

along trajectories of a diflerential inclusion is briefly discussed. A detailed treatment of general-

ized multivalued quasi-variational inequalities with more applications to variational inequalities, 

romplemenlarity theory, and optimization problems ([3]) will be published elsewhere. For de-

tails concerning the types of spaces and multifunctions considered here, as well as the properties 

relating thom, the reader is referred to [I], [2]. 

Deflnition 1. (12)) Let (.V,W) and (K,V) be two uniform spaces. A mu/tiAiuction * : X —• 

ViY) is said to be approachable Hand only if Vt/ € W, VV € V, * admits a continuous iU,V)-

approximative selection, that is a continuous single-valued function s : X —* Y verifying 

s ( x ) 6 V ( * ( t / [ i ] ) l . V x€X . 

'Supported in pact by the Natural Sciences and Engineering Research Council of Canada. 
'Supported by the Academic Research Program of the Deputment of The National Defence of Canada 
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Let us mention that if Jf is a paracompact topological space equipped with a compatible 

uniformity U,Y isa convex subset of a locally convex topological vector space, then every upper 

semicontinuous (u.s.c. for short) multifunction Q : X —» PiY) with non-empty convex values is 

approachable. Also, if X and Y are two ANRs with X compact, then every u.s.c. multifunction 

$ : X —• ViY) with compact contractible values is approachable. More generally, if AT is an 

approximative absolute neighborhood extension space for compact spaces, and V is a uniform 

space, then every u.s.c. multifunction * : X —• ViY) with non-empty compact oo-proximally 

connected values in Y is approachable. It is shown in [2] that if X is an ANR, (K,V) is a 

uniform space, and $ : X — ' ViY) is a u.s.c. multifunction with non-empty values such that 

the restriction • | / > of * to any finite polyhedron P C A is approachable. Then the restriction 

$\K of * to any compact subset A' of X is approachable. The main tool used in the proof of 

our main theorem is the following generalization of the fixed point theorem of Ky Fan ([5]) to 

approachable multifunctions. 

Theorem 2. ([2]) Let X be non-empty convex subset of a Hausdorff locally convex space E, 

and let $ : X —• ViX) be a u.s.c. multifunction with non-empty closed vaiues. Assume that 

* is compact, that is there exists a compact subset Y of X such that * (X) Ç Y. If one of 

the following conditions is satisfied: (i) * is approachable; or (ii) for each finite subset N of 

X, the multifunction */v : conv{N} — ViY) defined by *Af(z) = * ( x ) , i 6 conv{N), is 

approachable. Then * has a fixed point, that is, 3xo 6 X with XQ 6 *(a;o)-

Note that Definition 1, together with a simple compactness argument, implies immediately 

that if Jf is a topological space having the fixed point property for continuous single-valued 

mappings (e.g. X is an acyclic compact ANR), and if * : Jf —• ViX) is a u.s.c. approachable 

compact multifunction with non-empty closed values, then 4 has a fixed point. 

The main result of this note is: 

Theorem 3. Let C be a non-empty compact convex subset in a locally convex space E, and let 

Y be a non-empty complete convex subset of a locally convex space F. Let $ : C —• ViY) be 

a u.s.c. muitifunct/on with non-empty compact vaiues such that one of the following equivalent 

conditions is satisfied: (i)i * is approachable, or (ih tor each finite subset N of C, the restriction 
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*|conB{iV} to fhe convex hullconv{N) is approachable. Let 9 : C —• ViC) be a continuous 

multifunction with non-empty compact convex values, and letiptCxYxC —• RU {±00} be 
a continuous extended proper real function satisfying: (ii) V(x, y) Ç C x Y, the function v>(*, y, •) 
is quasiconvex on C. Then the problem (1) below has a solution, 

{ 3xo € *(xo). 3yo € *(xo), such that 
ipix0,yo,x) > v(xo,9b,xo),Vi € *(xo). 

Proof. Define the marginal multifunction Jl/V,« :CxY —• ViC) by putting: 

Afv,.*(x,»):={«e«(x);i15(x,j/,u)= int Mx,y,2)),ix,y)Ç C xY. (2) 
ie*(x) 

The compactness of the values of <P, together with the continuity of ip, implies that M^t 

has non-empty compact values. The convexity of the values of 9, together with (ii), implies that 
Mv,v has convex values. We verify that ilf,,,* is u.s.c. To do this, observe that MVkiix,y) = 

*(x)nAf„.#(i,jO where MvMx,y) := (u 6 C;<pix,y,u) = infl6»(t)v(x,»,«)}. Since « is u.s.c. 
and has compact values, it suffices to verify that the graph of Mv<^ is closed. To do this, let 
(x™, î/o, «0)0 be a net in $raph(MVi*) converging to (x, y, u) € C x V X C. Then, 

ipix, y, u) = lim0 ipixa, ya,ua) = lima inf ,6«(ro) tpixa, ya, x) 

=lim sup infte*(lQ) v{x0, y», ^) < inf^«(r) »>(», y, «), 
a 

where the inequality above follows from the upper semicontinuity of the marginal function 
infi€*(.) V(i-.-) (th'8 follows from the facts that ip is lower semicontinuous as a real function 
and that * is lower semicontinuous as a multifunction). Hence, (x,y,tt) 6 graphiMv#). 

Now, since Y is convex and complete, c5nti*(C) is a convex compact subset of Y. Since the 
product C x c5nw*(C) is compact, the restriction of the multifunction M,,,» to C X cono*(C) 
is approachable. Define a multifunction F : C x c5nû*(C) —• ViC x co?ni»(C)) by putting: 

F(x, y) := AfVl«(x, y) x *(x), (x, y) 6 C x c5n5*(C). 

Being the product of compact-valued u.s.c. approachable multifunctions, the multifunction 

F is also u.s-c, approachable and has non-empty compact values (see [1]). All conditions of 

Theorem 2 are thus satisfied. Therefore, F has a fixed point (xo,yo) € r(xo,yo), that is, xo € 

*(xo), Vo 6 *(a:o) and v5(zo,î/o,xo) < v9(xo,yo,x),Vx e *(xo). D 
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Remarks, (a) If V x € Jf with x € *(x),Vy 6 *(x) one has v(x ,y ,x) > 0, then the 

inequality in (1) becomes v(*o.Vo.*) > 0, Vx 6 «(xo). (b) If *(x) = C, Vx 6 C, the continuity 

assumptions on ip can be slightly relaxed to: ip is /.a.e. amd v>(.,.,u) is u.s.c. (c) The following 

purely topological formulation of Theorem 3 generalizes the main abstract existence result in 

[8|. Let Jf be an acyclic compact ANR, and let Y be an ANR. Let * : Jf —• ViY) be 

a u.s.c approachable multifunction with non-empty compact values. Let * : Jf —• ViX) 

be a continuous multifunction with non-empty compact values, and iet ip : X xY x X —> 

RU{±oo} be a continuous extended proper real function. Assume that for any finite polyhedron 

P contained in Jf x V, the restriction of the marginal multifunction M^,* defined by (2) to P is 

approachable. Then problem (1) has a solution. 

A classical result of Aronszajn asserts that the solution set of the Cauchy problem with 

continuous right hand side y' = /(t ,y) ,y(0) = x, is an Rs set (i.e. a countable intersection of 

a decreasing sequence of compact contractible spaces), hence oo—proximally connected in the 

space of continuous functions (see for instance [Ij, [3] and references there). This qualitative 

property of solution sets was extended by many authors to dilTerential inclusions. Let A' be 

a non-empty subset of Rn and F : [0,T] x K —> 7>(Rrt) be a multifunction with non-empty 

compact vaiues. Denote by 5 F ( I ; K) ( 5 F ( Z ) for 5F(X; Rn)) the sets of Carathéodory solutions 

viable in K (i.e. y € Six; K) if and only if y(t) € A'.Vt € [O.T]) of the Cauchy problem with 

initial value x : 
I y'(0 6 f ( M 0 ) . r n ^ ,,v 
< a.e. in O.T, (3) 
[ »(0) = x. 

Let C be a non-empty subset of K. Assume that for any given x € C there corresponds a 

subset l'(x) C C of possible return points. Starting at an arbitrary point x e C, we travel along 

a trajectory y of problem (3). We then follow a return path to a point z 6 • ( x ) . Assume that a 

cost <pix, y, z) is associated to this journey (for instance, tpix, y, z) could be the sum of an attack 

cost ipiix,y) and a retreat cost wiyiT), z)). We are interested in the problem: 

{ Find xo € C, x© € *(xo), yo € 5F(XO; K), such that 

V?(xo,îto,xo) = inf,e*(ro)V(ïa.yo,2)-

Let us recall that F is said to be a Carathéodory multifunction if the following conditions 
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are satisfied: (i) F has convex values; (ii) y >—• F(t, y) is u.s.c a.e. t € [0,7); (iii) Vy 6 A',t i—• 

Fit,y) is measurable; (iv) sup{|w|;u 6 F(t,y),y 6 ^ } < pit) where p : [0,21 — [0,+oo) is 

an integrable function. Let us also recall that a non-empty closed subset A' of R" is said to be 

a proximate retract ([7]) if there exists an open neighborhood U of K in R" and a continuous 

mapping r : U —• Jf (called neighborhood retraction) such that the following two conditions 

are satisfied: (i) r(x) = x,Vx 6 A'; (ii) ||r(x) - x|| = distix, K) = infueK ||x - u||,Vx € U. Any 

closed convex subset of Rn, and any CJ-submanifold of Rn is a proximate retract ([7]). 

Theorem 4. Assume that C is convex compact, * is continuous with non-empty convex com-

pact values, ip is continuous on C x C([0,Tl,Rn) X C, and ip is quasiconvex with respect to the 

return variable z. Then problem (4) has a solution provided K is a proximate retract and F is 

a Carathéodory multifunction satisfying the tangency condition 

F(t,y)n7K(y) # 0,V(t,y) € [CT] x A", (5) 

where Txiy) := {v 6 Rn; lim inf div+,
t
v-K) = 0} is the Bouligand contingent cone to K at y. 

Proof. In view of Theorem 1.1 in [7], the multifunction « : A' — P(C([0,r], A-)) 

defined by *(x) := 5 F ( X ; A ' ) , X e A', has Rs values. Moreover, one can show that • is u.s.c. 

Indeed, the multifunction F extends to a multifunction F : [O.r] x R" — P(R n ) in such a 

way that 5p(x; K) = *(x) (see (7) for details). One then invokes well-known results to obtain 

that the solution set multifunction 5^ : Rn —• P(C([0,r],Rn)) is u.s.c. Being a closed-

graph multiselection of Sf-, the multifunction Sg : K —• 7>(C([0,Tl, A")) given by 5j£(x) := 

Si.(x;A") = *(x) ,x e A', is also u.s.c. Consequently, * is approachable. The conclusion 

immediately follows from Theorem 3. O 

Remarks, (a) Observe that in case K is an open subset of RB, then ÏA-(y) = Rn, the 

inwardness condition (5) being automatically satisfied, (b) Theorem 4 also holds for differential 

inclusions of order fc in a Banach space £ . 

When F is l .s.c, the multifunction 5 F ( . ) is generally neither u.s.c. or l.s.c, nor are its values 

always closed. However, 5 F ( . ) admits a u.s.c multiselection * with compact values ([4]) This 

fact leads to a lower semicontinuous version of the preceding theorem. 
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Theorem 5. Assume that C is a closed disk D(uo,6) and that K is an open subset of R" 

containing the closed disk Ditto, 6 + LT), where b,L > Ù. Assume also that 4 and <p are as in 

Theorem 4. If F is l.s.c. with values in tbe open ball 8(0, L), then problem (4) has a solution. 
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ON SOME FUNCTIONAL INEQUALITIES CONNECTED 

WITH QUASICONVEX FUNCTIONS 

Jacek Smolarz 

Presented by J. Aczel, F.R.S.C. 

Abstract. We prove that functions f,g:I • K .where 
I s IR is an interval, satisfy the inequality 

f(Xx+(l-X)y) s max(g(x),g(y)) , x.ycl, A€[0,1J 
if and only if there exists a quasiconvex function h:l — » IR 
such that f a h s g on I. Using this theorem we characterize 
solutions of a siuilUr functional inequality connected with 
quasiconvex functions. As a corollary of this result we obtain 
also a theorem on approximately quasiconvex functions. 

In [1] K. Baron, J. Matkowski and K. Nikodem have proved 

that two real functions f,g defined on an interval ISR can be 

separated by a convex function if and only if they satisfy 

the inequality 

f(Ax+(l-A)y) a Xg(x)+(1-A)g(y) , x.yel, XelO,!]. 
In this paper we prove an analogous result for quasiconvex 
functions. We present also some applications of this result. 

Let us recall that a function f:D > IR .where D is a 

convex set, is said to be quasiconvex if 

f(Xx+{l-A)y) a max{f(x),f(y)} , x.yeD, Ae[0,l). 

Equivalently, f is quasiconvex iff for every ae!R the level 

set { xeD : f(x)aa } is convex. 

1991 Hathematics Subject Classiricatlon: 26AS1, 39B72. 
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Theorem 1. Let ISR fea an i n t e r v a l . Functions f , g : I » IR 

f u l f i l the. InegyaJUty 

(1) f (Ax+( l -A)y) a max{g (x ) , g (y ) ) , x . y e l , A 6 [ 0 , 1 ] 

if and onlv if there exists a quasiconvex function h:I — > IR 

such that f a h a g. 

Proof. Assume that f,g:I * Bt satisfy the Inequality (1) 

and consider a function h:I * IR defined by the formula 

h(x) := lnf( a: xe conv g"1(-"i,aj ) . 
The Inequality h a g is trivial. Let xel. Fix arbitrarily beIR 
such that h(x) < b. From the definition of h we have 
x e conv g"1 (_<0,b]- In view of Carathéodory ' s theorem 
(cf.[4,Th.31E]) 

X = A X + A X 1 1 2 2 

with some x ,x e g ' ^ - n . b l and A ,A e [0 ,11 , A + A = 1. !» 2 - a i r j l ' a i « J • , g 

Hence 

f(x) = fUjVVtj) s max(g(xi),g(x2)) a b . 

Thus passing to the infimum we obtain f(x) a h(x). 
Now we will show that h is quasiconvex. Let x,yel and 

AE[0 , 1 ] . Suppose that h(x) a h(y) and fix beK such that 
h(y) < b. By the definition of h we have x,y e conv g",(-<»,b] . 
Hence 

Ax+(1-A)y e conv g'^-oj.b] 

and consequently h(Ax+(l-A)y) a b . Therefore 

h(Ax+(l-A)y) a h(y) = max{h(x),h(y)) . 

The proof of the first implication is complete. The 

converse Implication is obvious. 
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The following example shows that an analogous statement la 
not true for functions defined on the plane. 

Example 1. Let K = { xeR2 : llxD<2 ) and 

e= (cos(2in/3),sin(2in/3)) , i = 1,2,3 

Define functions f,g:K — • R putting 

f(x) 
f 0 x*0 f 0 X€(e ,e ,e ) 

= \ , g(X) = j 1 2 3 
I 1 x=0 I 1 x«{ei.e2.e3) 

It is easy to observe that inequality (1) holds. 
Suppose that there exists a quasiconvex function h between f 

and g. Then conv(e .e .e ) s h'^-w.O] but that is not possible 
because h(0)Kl. 

In the same way as in the proof of Theorem 1 we can get the 

following 

Theorem 2. Let D ES a convex subset of a real linear spnce. 

if functions f,g:D * R fulfil tfcS inequalitv 
_« 

f ( 2. *,*, ) s m a x< g ( x , ) : i=l.....n } , 
I e 1 

Xi6Df A^O, X" Xl = 1 

1 = 1 
for each neW^ then there e x i s t s a quasiconvex funct ion h:D > R 
such jthat f a h a g. 

As an immediate consequence of Theorem 1 we can get the 
following theorem. An analogous result connected with convex 
functions was proved in [1] (cf also [2]). 
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Theorem 3 . Lgt T>0J. A funct ion f : [o ,a . ) • R s a t i s f i e s tlje 

i n e q u a l i t y 

(2) f(Ax+(T-A)y) a m a x ( f ( x ) . f ( y ) ) . A€[0,T] , x . y e t O , » ) 

tl and onlv if itiÊJie exists a quasiconvex function h:[0,œ) » R 

sash that 

(3) h a f a h , 

where h(x) = h(-|-x) . 

Proof. Putting TA instead of A in (2) we obtain 

f(TAx+(T-TA)y) a max{f(x),f(y)) , A€[0,1] , 

Hence 

(4) f(Ax+(l-A)y) a max(f(x),f{y)) , AelO.l] , x,ye[0.a,) 

where f is defined by the formula f(x) = f(Tx) , x€[o,œ). 

Therefore by Theorem 1 there exists a quasiconvex function 

h:[O,0D) » R such that 

f(Tx) a h(x) a f(x) . 

Putting -!—x instead of x we get also 

f(x) a h(-^-x) = h(x) . 

Conversely, if f satisfies (3) with a quasiconvex function 

h then f and f satisfy (4) which is equivalent to (2). 

As a corollary of Theorera I we can obtain the following 

(one dimensional) stability theorem for quasiconvex functions 

due to K. Nikodem [3]. 
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Theorem 4. Let ISR be ah interval and c feg a positive 

constant. i£ a function f:l — » R g^lgftgg tfae çpndittçn 

f(Ax+(l-A)y) a max{f(x),f(y)) + c , x.yeD, Ae[0,lj. 

then there exists a quasiconvex function h: I > R such that 

f a h a f+e . 

Proof. It is enough to apply Theorem 1 to the functions f 
and f+c. 

Remark. We say that a function h:I — > R is J-quasiconvex 

iff 

h(-^-) a max(h(x),h(y)) , x.yel . 

Clearly, if f a h s g on I and h is J-quasiconvex, then 

(5) f( *ly ) * inax{g(x),g(y)) , x.yel . 

However the converse implication is not true. Namely, consider 

the following 

Example 2. Let H be a Hamel base of R over ffl , h .h^h^h^ 

be different elements of H and 

X0 = -T-(hl + N + h 3 + V • 
Define functions f,g:R * R by 

{ 0 . x*x f 0 , 

0 . g(x) = \ 
1 . x=xo [ 1 . 

xeH 

X«H 

Then f, g satisfy the inequality (5) . Suppose that there is 

a J-quasiconvex function h:R » R between f and g. Then we get 
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a contradiction: 

1 = f(xo) = h( ' z
4

3 4 ) a 

a max{h(h i ) ,h (h 2 ) ,h (h : | ) .h (h 4 ) ) a 

a m a x ( g ( h i ) , g ( h 2 ) r g ( h 3 ) , g ( h 4 ) ) = 0 
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ON THE CONSTRUCTION OF BIORTHOGONAL WAVELET 
BASES OF L2(R2) BY MCCLELLAN'S TRANSFORMATIONS 

Presented by G.F.D. Duff, F.R.S.C. 

ABDERRAZEK KAROUI and RéMI VAILLANCOURT 

Department of Mathematics and Statistics, University of Ottawa 

ABSTRACT. Bidimensional wavelet bases are constructed by means of McClellan's transfor-
mation, Af, applied to a pair of one-dimensional biorthogonal wavelet filters. Under appro-
priate conditions on the transfer function F(un,wj) associated to M and on the dilation 
matrix D, one can construct symmetric compactly supported biorthogonal wavelet bases of 
L2(R'2). The method is illustrated by a numerical example. 

RÉSUMÉ. On construit des bases d'ondelettes bidimensionnelles au moyen de la transforma-
tion de McClellan appliquée à un paire de filtres unidimensionnels biorthogonaux. Sous des 
conditions appropriées sur la fonction de transfert F(UI,Uï) de McClellan et sur la matrice 
de dilatation D, on contruit des bases d'ondelettes de L2{R2) biorthogonales symétriques et 
à support compact. On illustre la méthode au moyen d'un exemple numérique. 

1. Introduction. The design of nonsepaxable multidimensional wavelets [1] is com-
plicated because many one-dimensional (1-D) techniques and results do not generalize 
to higher dimensions; in fact, 2-D wavelets are usually built by tensor product of 1-D 
wavelets. 

McClellan's transformation [2] is used to generate and implement multidimensional 
linite impulse response (FIR) filters from a 1-D zero-phase (i.e. real) FIR filter A(tj) = 
J2ke7.ck e~,ku. In this note, we report on an adaptation [3] of this transformation to the 
construction of nonsepaxable wavelet bases of R2, which preserves the number of vanishing 
moments. 

2. Biorthogonal multirésolution analysis of L2(R2). 

Definition 1. A matrix D 6 Z 2 x 2 with singular values «ri > <T2 > 1 is said to be a 
dilation matrix. 

By Definition 1, DZ2 Ç Z2, H-D-1^ = l /a j < 1, and every direction is dilated. 

1091 Malhemalics Subject Clajsification. 42C1S, 94AI2. 
Key words and phrases. Biorthogonal wavelets, McClellan transformation, zero-phase symmetric dual 

filters, nonseparablc wavelets, non trigonometric Fourier analysis. 
This work was supported in part by the Natural Sciences and Engineering Research Council of Canada 

under grant A 7691 and the Centre de recherches mathématiques of the Université de Montréal. 
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Definition 2. A 2-D multirésolution analysis is a decreasing sequence of closed linear 
subspaces of L2(R2), 

{0} C ••• C 1̂2 C Vi C Ko C V-i C K-2 C ••• C L2(R2), (2.1) 
with the following properties: 
iPl) V / 6 L2(R2) and V j e Z, fix) e Vj+l «=> / ( D x ) G Vy, 

(P2) 3 0 e Vb C L2(R2) such that, V fc € Z2, <po,kix) = ^(x - fc) is an orthonormal 
basis of VQ. 

Scaling functions are defined by 

0i,*(«) = | d e t D | - j / V ( D - > x - f c ) , j 6 Z . fc 6 Z2, (2.2) 

By Definition 2, for fixed j € Z, the family < .̂fc(x), fc e Z2, form an orthonormal basis of 
Vj, and a sampling rate of |det D | has to be achieved in order to go from one approximation 
level to the next, because of the geometry of the sampling grid, V = Z2/DZ2. Thus, to 
achieve exact reconstruction, one needs to construct one scaling function and d elementary 
wavelets ^ ( x ) , I = 1,2,. . . , d - 1, where d = |det D | - 1. 

If |detD| = 2 and if in (P2) we take / = ^, then there exists a finite sequence of real 
numbers a^ such that ^(x) satisfies the multiple-scale identity 

0(x) = ^ afc^(Dx - fc). (2.3) 
fcez» 

In this note, we consider only the dilation matrbc 
"1 1 D^ with |detDi| = 2 , (2.4) 1 - 1 

which generates the quincunx decimation with sampling sublattice 
Q = Z2/DiZ2 = {(a, b)1 G Z2; a, b have the same purity}. 

To use different analysing and synthetizing families of biorthogonal wavelets we use a 
2-D biorthogonal multirésolution analysis. 

Deflnition 3. A 2-D biorthogonal multirésolution analysis is a decreasing pair of families, 
(^i)jeZi and (V )̂j6Zi of linear subspaces of L2(R2), each satisfying (2.1) and property (Pl) 
of Definition 2, and the following biorthogonality conditions: 

WjlVj, WjlVj, (2.5) 

where Wj and Wj are the (generally non-orthogonal) complements of Vj and V̂  in V _̂i 
and Vj-i, respectively. 

The elementary biorthogonal wavelets for the quincunx decimation [5] are given by 

^(«) = 5 3 (-l)fc ,Si-fcl,-*20(Dx - fc), ^(x) = J2 (- l) f c 'a,_f c l (_ f c^(Dx - fc). 
fceZ» fc6Za 
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3. Designing 2-D Nonsepaxable Wavelets. 

Definition 4. Let 
N N 

/»(u;) = ^ a„ cos(na;) = £ ] anrn(cos(w)) 
n=0 n=0 

be the frequency response of a 1-D zero-phase FIR filter, where Tn is Chebyshev polyno-
mial of degree n. If F{u) is the frequency response of a 2-D zero-phase FIR filter, then 
McClellan's transformation associated to F(u;) and applied to h(uj) is 

N 
A/h(uO = X>nrn(F(w)). (3.1) 

n=0 

Given the Fourier transforms, 
N N 

/i(w) = 5 3 Q»« cos(nu;), hiu) = 5 3 "n cos(nw), (3.2) 
n=0 n=0 

of a pair of dual filters, then Mh(u') satisfies the following two properties: 
(a) The identity 

h(u>)hiLi) + hiu + 7r)ft((j + ir) = l, Vw G [0,ir], (3.3) 

holds if and only if, for all CJ G [0, TT], 

| ^ a „ r n ( c o s w ) | | ^ à n r n ( c o s w ) | + |^onr„(cos(w+7r)) | [^5nrn(cos(u;-Hr))l = 1. 

(3.4) 
(/?) The function hiw) has a zero of order 2m at n if and only if, for 0 < x < 1, 

N 
5 3 anTn(2x2 - 1) = x2mP2lN.m)ix), (3.5) 
n = 0 

where /^(/v-nofa) is a polynomial of degree 2(JV - m). 
Property (a) provides necessary conditions on F(a>) to have exact 2-D reconstruction. 

Property (/?) shows how to preserve the number of vanishing moments. In fact, if 

F(w) = 2/2(u>) - I (3.6) 

and /»(w) has a zero of order 2m at n, then the corresponding filter factors as 

H{u,) = /2 m(W)F2 ( W_m ) ( / M ) , (3.7) 
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where / m (w) := (/(w))m. By choosing an appropriate auxiliary transformation function 
/(<•>), the 1-D and corresponding 2-D wavelets will have the same number of vanishing 
moments. 

We now assume that |det D\ = 2. For quincunx decimation, the construction of 2-
D biorthogonal wavelets reduces to the design of a pair of 2-D low-pass filters whose 
frequency responses, H{u)\,uj2) and H(UJI,U)2), satisfy the identities 

Hiwi,(1)2)11^1,^2) + Hiwi +n,U2 + Jr)ff(ui +7r,a>2 +7r) = 1, Va;i,W2 G [0,7r). (3.8) 

Note that H and H are obtained by applying McClellan's transformation on a 1-D 
biorthogonal filter and its dual, respectively. If (3.2) denotes the Fourier transforms of 
the 1-D filter and its dual, respectively, then (3.3) is satisfied. In this case, H and H will 
satisfy (3.8) if the transformation function F ^ i . o ^ ) satisfies 

F(wi + 7r,u;2 + TT) = - F ^ i . t ^ ) . (3.9) 

The wavelets will be in L2(R2) only if the infinite product YYjLi # ( [^~ J l ' ' J ) i converges; 
thus necessarily 

F ( 0 , 0 ) = l . (3.10) 

In terms of the auxiliary transformation function /(wi,012)1 conditions (3.9) and (3.10) 
are written as 

/2(u;1+7r,u;2+7r) = l - / 2 ( u ; „ W 2 ) , /(0,0) I. (3.11) 

Conditions of type (3.11) are necessary, but not sufficient, for exact roconstruction. In 
fact, they do not ensure that the constructed wavelets are regular or even in L2(R2). 

The construction of 2-D biorthogonal wavelets bases is ensured by the following theorem 
[5] which generalizes Theorem 3.2 of (6) to n dimensions. 

Theorem 1. Let D e Zn*n be a dilation matrix whose n singular values satisfy ffj > 1, 
( = 1 , . . . ,n, ond set d = 0102 •••on. Assume that for some positive numbers, e,ë > 0, 
the dual scaling functions, ipw, ijim, and the id-I) different dud mother wavelets, V(,). 
tpW, i= 1, . . . , d—1, satisfy the inequalities 

H^V)!! < (1 + IMIT*"n/4. ll?(i)MII < (1 + IMI2r"n/4 • (a-12) 
For j G Z, fc G Zn, and t = 0, . . . ,d - 1, de/mc 

^ > ( x ) := I d e t D j - J / V ^ D - ' x - fc), tf£i(x) := | d c t D r ^ 2 ^ ( i ) ( D - > x - fc). 
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Moreover, assume that 
d-l 

EEa{-W-)Dfc=«i-fc- (3.i3) 
i=oiezn 

Tften, if < -,- > denotes the scalar product in I,2(Rn), we have the wavelet expansion 

i=i >ez fcez" t=i jez fcez* 

where the series converge in Uie L2 norm. 

A trivial choice for the auxiliary transformation function /Q(a;i, W2) for the construction 
of 2-D biorthogonal wavelet bases associated to matrix (2.4) is 

fcjiUl,^) = Oo + «1 COSWi + 03 COSW2 + O3COSW1 COSW2, 

where the coefficients 00,01,02 and 03 axe to be determined. For quincunx decimation, 
fq needs to satisfy the identity 

/Q(Wi,a>2) = 1 - fqiwi + TT,(4/2 + ir), 0 < Wl < ir, 0 < W2 < IT. 

By direct computation, Oo = | and 01 +02 = 5, and, consequently, 

FQ(WI,W2) = 2/Q(WI,U;2) - 1 = «M coswi +(1 -oi)cosai2, ai G 0, - . 

Choosing «i = | for symmetry, we finally obtain 

/*(„„.*,. 1-Irf^)-!*. (2). 
4. Numerical Results. The 2-D biorthogonal scaling functions 0(x) and <t>{x), and the 
corresponding wavelets, \p(x) and ^(x), shown in Fig. 1, for the quincunx decimation, 
with Di given in (2.4), were approximated numerically by six iterations of the cascade 
algorithm given in [5]. McClellan's transformation function is 

F<3(a;i,W2) = -(coswi +coswt). 

The coefficients of the 1-D biorthogonal wavelet filters, h{u)) and h{uj), used in this exam-
ple, are given in Table 2 in [3]. 
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A GENERALIZATION OF NAPOLEON'S 
THEOREM TO n-GONS 

J. A. Lester 
Presented by H.S.M. Coxeter, F.R.S.C. 

On the sides of an arbitrary triangle in the Euclidean plane, construct similar 
copies of an equilateral triangle and its centre. Napoleon's theorem then states that 
the copied centres form an equilateral triangle. 

The Napoleon-Barlotti theorem (2] generalizes this result to polygons. 
Construct similar copies of a regular n-gon and its centre onto the sides of an affinely 
regular n-gon; then the copied centres form a regular n-gon. (An affinely regular 
n-gon is an affine transformation ol a regular n-gon.) 

A theorem of Rigby [4] generalizes Napoleon's theorem in a different direction: 
replace the equilateral triangle and its centre by an arbitrary triangle A|km and an 
arbitrary, non-vertex point e. On the sides of a variable triangle Aabc, construct 
triangles Apcb, Aaeq and Aarb all similar to Aikm. and points s. t and u in the same 
position relative to these triangles that e is to Aflcm. Then for all triangles Aabc, the 
triangles Astu are similar. In fact, they all tum out to be anti-similar to the pedal 
triangle of e with respect to Aikm [3]. 

We prove here a further generalization of Napoleon's theorem which 
encompasses both the Barlotti and Rigby theorems. The theorem deals with similar 
copies of one polygon plus an arbitrary non-vertex point constructed on the sides of 
another polygon. The polygons need only satisfy a very weak form of affine regularity -
in fact, they need not even be closed. 
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To begin with, some terminology. We take a polygon to be a finite sequence of 
points (vertices) in the Euclidean plane such that any two consecutive vertices are 
distinct. Its sides are the lines joining consecutive vertices; it is non-degenerate 
whenever no two consecutive sides coincide. (We do not assume that polygons are 
necessarily closed; if they are, we interpret the word "consecutive" cyclically.) The 
pedal polygon of any non-vertex point with respect to a given non-degenerate 
polygon has as vertices the feet of the perpendiculars from the point to the sides of the 
given polygon. 

A polygon will be called trapezoidal if for every four consecutive vertices a, b, c 
and d, the first diagonal ad is parallel to the side be. This relation is preserved by 
affine transformations, thus since regular polygons are trapezoidal, so are affinely 
regular polygons. We illustrate some trapezoidal polygons which are not affinely 
regular; any affine transformation of these is also trapezoidal. 

I 
Our theorem is as follows. 

Theorem. Let d be a non-degenerate trapezoidal polygon, m any non-vertex point 
and 9 an affina transformation of CL. On the sides of T, construct appropriately 
oriented copies of CL and m, i.e. constnict for each side ol P a polygon similar to OL so 
situated that the corresponding sides of 9 and CL are coincident, and a point in the 
same position relative to the copy of CL that m is to the original. Let A be the polygon 
formed by joining tho copies of m in order. Then R is anti-similar to the pedal n-gon of 
m with respect to CL. 

We prove this theorem by extending the notion of the shape of a triangle 
developed in [3] to polygons. Some notation. For any complex number z different 
from 0 and 1. define t - i l - z)'\ This "cycle notation" obeys the following calculation 
rules: 

^ z" = z-1 2- = Z. zz-r = -1. 



J.A. Lester 255 

Another useful rule, which we leave to the reader for verification: for any non-zero 6, «p. 
pando, 

e + q r ^ p + o'1 if and only if f f i W Î V e - p o . . 

Identify the Euclidean plane with the complex numbers C. The shape of any 
triangle Aabc is defined to be the complex number 

"•«* a - b 
The argument and modulus of &&. give the angle between sides ab and ac and the 
ratio of their lengths, so two triangles are similar whenever they have the same shape 
and anti-similar when they have conjugate shapes. The cycle notation gives the effect 
of cycling the vertices of the triangle: if l^, = h, then Afe, = A' and 4 , * = A" (an easy 
calculation). 

The shape of a polygon can be defined in terms of the shapes of its sub-
triangles. There are various ways to do this: see (1] for an altemative. Here, we define 
the shape of a polygon to be the sequence of shapes of the triangles formed by triples 
of consecutive vertices: if ( . . . , a, b, c , . . . ) denotes a polygon with typical consecutive 
vertices a, b, c. then the shape component of the polygon at vertex b is the number 
p » Abe,. We denote the shape component at each vertex by the corresponding 
Greek letter, so a typical polygon ( . . . , a, b, c , . . . ) has shape ( . . . , a, f), y , . . . ). 
(Note that open polygons have no shape components at their end-points. Since we 
use only "local" arguments below, this does not affect the proof.) As with triangles, 
shapes determine polygons up to similarity: similar polygons have the same shape 
and anti-similar polygons have conjugate shapes. Note that, as a polygon, a triangle 
with shape A has polygon shape (4 A', A"). 

The effect on shapes of adding and deleting vertices is easy to determine. 

Lemma. Let ( . . . a, b, c, d, e , . . . ) be any polygon with shape ( . . . ,a . p.y, 6, e , . . . ). 
a) If a vertex p is added between b and c, then for p » A ^ , the resulting 

polygon has shape 
( . . . . a. Pp", p. p'Y, 6, e, . . . ). 

b) If vertex e is deleted, then the resulting polygon has shape 
(. . . .a.p/Y". W , e, . . . ) . 

Proof, a) Only the shape components at b and c change; these become 
A|l„ = AHaAb(I0 = pp" and Ax^AcbpAd^PY 

b) Only the shape components at b and d change; these become 
AKb = Al«/Abed = p/y' and A i * = A*cA*c = ô/r. i 

A few words about trapezoidal polygons and their shapes. For an arbitrary 
polygon ( . . . a, b, c, d , . . . ), a simple calculation shows that 

^ = 1-(P + Y-1). 
D -C 
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The argument of the left-hand side gives the angle between side be and diagonal ad, 
while its modulus gives the ratio of their lengths. Thus the polygon is trapezoidal if 
and only if for every two consecutive shape components p and Y. P + Y'1 is real, i.e. if 
and only if p + Y ̂  = P + v"1- From fuie *. then, a polygon is trapezoidal if and only if 

(P/Pm/y)" = - PY 
for every pair p, Y of consecutive shape components. Furthermore, since any affine 
transformation preserves parallel line segments and the ratio of their lengths, 
if ( . . . . a ,b ,c ,d , . . . ) is an affine transformation of the trapezoidal polygon 
( . . . a. b, c, d , . . . ), then for corresponding pairs of consecutive shape components 
p. Y and $, Ç. we have p + Y"^ P + Y'1 . or equivalently (from rule.), 

(M'(Y/Y)' = -PY-

We begin the proof of the theorem by finding the shape of the pedal polygon of 
m with respect to Q. = ( . . . a, b, e, d . . . . ). The pedal polygon is similar to the polygon 
( . . . . s. t. u , . . . ) obtained by reflecting m through the sides of Q. (dilate the pedal 
polygon by a factor 2 about centre m). We use the lemma to find its shape: we add 
the vertices..., s. t u , . . . tod and then delete the vertices..., a. b, c, d, . . .. 

t a ^ 

^ 1*1 •• ;:' 
;:; 

a 
•-. u •v ': .::'• ^ "in a •.:••*• 

% ; ;. * ' .i i ^ •:::: i - „•' • '!'„•%. •• :^^y-f i 

Set X := Ant,, n = Araej, and v ••= 4 , ^ ; then 4 ^ = X, 4^, = ji and 4 ^ = v. 
since the reflected triangles are anti-similar to their originals. A simple calculation 
relates K, p and v to p and y: Kp" = p"1 and n'v" = Y'1. Then (lemma) since GL has shape 
( . . . , a, p, y, 6 , . . . ), the "star-shaped" polygon ( . . . . s. b, t. c. u . . . . ) has shape 

( . . . . X, Iffir, p, ii'Yv". v, . . . ) = ( . . . . X, p/p. i», Y/Y. v , . . . ). 
Now delete . . . , a, b, c, d At vertex t, the resulting polygon has shape component 
(lemma) 

H = .i.l 
(P/P)'(Y/Y)" PY 

since CL is trapezoidal. 
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We now find the corresponding shape component of the polygon ll. Suppose 
â, b, c, etc. are the vertices of 9 corresponding to the vertices a, b, e, etc. of tt. The 

only parts of the copies of tt and m that matter are the triangles with bases on 9 and 
apex vertices at the copies . . . , 8 , t u , . . < of m. These triangles have shapes 
AJSS =At-b, = X,A{K = |iand A585=v. We find the shape of tt by adding the vertices 
. . . , 8 , t u , . . . to? and then deleting . . . ,a ,G,c ,d 

From the lemma, since 9 has shape ( . . . . a ,^ ,Y ,S . . . . ) , the star-shaped 
polygon ( . . . , s, b, t, c, u . . . . ) has shape ^ 

(. . . ,X. K$\i'. p. ii'r^. v , . . . ) = i...,K P/P. I*. Y/Y. v , . . . ) . 
Then at vertex Î , tt has shape component 

I* = _ J i 
(P/P)'(Y/Y)' PY' 

since 9 is an affine transformation of the trapezoidal polygon tt. 

Thus, since they have conjugate shape components at typical corresponding 
vertices t and Î . the pedal polygon of m with respect to tt and the polygon tt are anti-
similar, and we are done. 

If tt is a triangle, we recover Rigby's theorem (triangles are trapezoidal by 
default). If tt is regular and m is its centre, we recover Barlotti's theorem (the 
orientation of tt is irrelevant and the pedal triangle of m with respect to tt Is regular). 
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Résolution des énnatiniK aiiarirntmiiPs 
sur les corps F2((G)) 

Ali BENHISSI 

Presented by P. Ribenboim, F.R.S.C. 

Introdticlion ; 
Dans la suite G est un groupe commutatif totalement ordonné. G* = | a e G ; a > 0 | , 

F q le corps fini à q éléments et F()((G)) le corp.s des séries fonnelles généralisées. Un 

élément de Fq((G)) sera noté f = S fa T " a v e c SuPP f = I « e G : fn * 0 |. On 

considère l'équation : aY2 + bY + c = 0 . où a * O.b .c e F^UG)). Si b = 0 . cette équation 

admet une solution dans F2((G)), définie par ^T ( £ . ) , a T a , ssi pour tout a € G non 

2-divisible, on a (—)„ = 0 . a " 

Si b»s0 .en posant: X= -̂ -Y et d= — , l'équation devient : X2+X+d = 0. 
b b2 

Plus généralement, on s'interresse à l'équation : (*) Xq-X-d=0 avec de F ((G)). 
I- Remaroues : 

-Si (*) admet une solution f dans F(] ((G)). les aunes solutions sont f-.\ . où xeF, . 
L'une d'entre elles est de tenne constant nul. On la noiera ld . 

-Si d et e existent dans F(]((G))et xe F^ . alors | xd = x|d et |d+e = Ld +Lç.. 
1- Proposition : 

a) Si Supp d C G* . alors [d = J ] d'"" e F ((G)}. 

b) Si les éléments de Supp d sont < 0 et de q-hauteurs infinies, alors : 

Ld.= U d 1 ""6Fq((G)). 
ti=i 

Démonstration : 
ao 

b) Supp Li! C U — Supp d , qui est bien ordonné . d'après le cas particulier q 
ii=l q" 

premier. Voir f 2] p. 133. 



A. Benhissi 259 

Exemples : 

-Uneracinede Xq-X+T = 0 dans Fq((T))esi - [ j = J ) T»" . 
n=0 

- On suppose que q est premier. Soit f = J ] fn Tne Fq((T)) avec f,, la somme des 
n=0 

chiffres de n en base q. D'après (lj p. 281 , on a : L-^- = (X-1) f. 
3- Corollaire: 

Toute extension quadratique de F-, ((G)) est obtenue par adjonction d'un élément de 
l'une des formes suivantes : 

a) yfï avec f e F , ((G)) tel que pour tout a e Supp f, a n'est pas 2-divisible. 

b)[d avec d e F-, ((G)) tel que pour tout a 6 Suppd, a < 0 et de 2-hauieur finie. 
4- Lsuuiifi: 

Si Suppd est une partie finie de G~. dont les éléments sont de q-hauteurs finies, alors 
n 

|_d existedans Fq((G)) ssi d = J ] at{ J1*1' -T ' ),avcc n e N , ^ e F q et a^ G. 

Démonstration: 
n 

i = l 

" => " Remarquons que si de F ((G)) est de valuation v(d) < 0 tel que 

[de F q ((G)), alors v(d) e q G. Posons: d = aTqn+... et d, =d-aT'," + aTa . 

Ona: Id, =|_d - a f " . Si v(d | )<0 , on recommence . L'opération doit s'arrêter après 
un nombre fini d'étapes à cause des hypothèses sur Supp d. D'où le résultai. 
5- Lemuifi: 

Soient C et D deux parties non vides de G. On suppose que D est une partie bien 
ordonnée de G', et que pour tout de D. la partie : 
Vd = (ce C ; 3 ie N, d = q'c ) est finie non vide. 
On pose: X d = ( J (q'c ; 0 < j Êi . q'c =d | . 

cevd 

Alors : X = U Xd est une partie bien ordonnée de G. 
d€[) 

Démpnstralipn ; 
Supposonsque X contient une suite (x^ strictement décrctssanie. 
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On a : x, e X j , dj e D , pour i S I. L'ensemble Idj. i â I ) est infini car les Xd sont 

finis. Comme D est bien ordonnée, quitte à considérer une sous suite extraite, on peut 
supposer que d, <d2<. . . Ona: djSXj .pour tout i . L'inégalité est toujours stricte car si 

d n =x n , alors xn+I < x,, = dn < dn+1 Sx n + I : absurde. Pour tout i S I . ilcxiste Cje C 
et des entiers 0 £ ^ £ nij tels que : 

n. m. m . - n . 
X; = q ' Cj et d; = q ' Cj = q ' ' Xj. Il résulte que mj - n; > I. Les inégalités : 

m. . - n . . n i . .n . 
0>Xj > x j + , > d i + I > d i s'écrivent: 0 > x j > x i + 1 > q '*' , + l Xj+1 > q ' ' Xj. 
Donc : 'Tii+|-nj+, < mj-iij. On obtient une suite d'entiers : m | - n | > m , - n , >...S I: 
absurde. 
Notations : 

On désigne par G l'ensemble des éléments de G' qui ne sont pas q-divisibles. Si 

de Fq ((G)), on désigne par d la partie de d dont le support est formé par des éléments 
a < 0 et de q-hauteurs finies : et pour tout a e G . on pose : 

ta(d) = card ( i > 0 ; q' a Supp d 1 e N . 
6- Théorème : 

[d existedans Fq((G)) ssi d0 = 0 et d = ] £ J ] a, (T9'" -T^11 ) . avec 
n e P i E l n 

P C G ; Ia une partie finie de N ; i < i* et aj e F . 
Démonstration : 
" =» " D'après remarque I et proposition 2, ont peut supposer que : 

d = d = 2 j E d j T q a . Par identification, pour tout ot e G Z dj T"" 
a€G q ieH q n 

existe dans F ((G)). On conclut par le lemme 4. 

i - l k 

"«=" 11.= - Z L ai Z T*' a eFq((G)).d'aprèslelemme5. 
neP i c l n k:' 

7- Corollaire: 
[d existedans F , ((G)) ssi d0 = 0 et pour mut cte G , ona : tf|[(d) s (I (mod 2). 

Définition ; 
On pose : q = pc , ou p est un nombre premier. 

n 
v ^ ni 

Pourtout nâO . on définit le polynôme : Pn(X)= Z ( -OC™ X'1 e F p [Xj. 
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Ona: Pq . - P n l = - P n . 
n-l n-l n 

8- Lemme : 
Soient K un corps de caract p et a e K. On définit la suite (a,,) par a,, = a et a une 

racine du polynôme : Xq - X - an , dans une clôture algébrique K de K. 

Alors an est aussi racine du polynôme : Pn(X) + (- l)n* ' a. 
Démonstration : 

PA) + (-l)"'' « = - P -̂l ̂ H Pn-A) + ( ' ^ * 
= - P n - | ( ^ - a n - a n . I ) - P n . 1 ( a n . 1 ) + . ( - i r , a = -P n . i ( a n . l ) - ( - l ) n a. 

On termine par récurrence. 
9- Remarques : _ 

- Notons par Sn l'ensemble des racines du polynôme Pn(X) dans K , alors l'ensemble 

des racines de Pn(X) + (-l)"*1 a estégal à 1 an + 8 ; 8 e Sn |. 
n-l 

- On a : P^^l - P*\ ) = Pn. Donc Pm divise Pn pour m < n et Pn = X O ^ Pm' )-
in:l 

k i" 
En particulier, si n £ q ,1e polynôme P divise P k = X - X q 

M 

Donc : Sn = (0 ; 8 = 0 ou P^1 (8) = I ; I 5 m < n ) C F k avec égalité si n = qk. 
Définition : 

Pour d e F1((G)). on pose 1 ' d =l_d et [jVd = H " ' d . 
On suppose dans la suite que q est un nombre premier. 
10- Lemme: 

Soient F un sous-corps de F ((G)) et d e F tels que \j_d existe dans F ((G)). 

Si [ F(|_d ) : F1 = q . alors [ F(Lid ) : F( U ) 1 = q • 
Démonstration i 

Supposonsque l_ide F(Ld ). Alors il existe P(X) e F[X] telque [̂ d = P(l_d ). 
Donc : P'V Ld ) - P( M ) - Ld = 0 . Puisque Xq - X - d est irréductible sur F et admet 

[d et |_d -1 comme racines, alors l'application |_d > |_d - I définit un F-
automorphisme (j) de F( Ld ). En appliquant <t> à l'égalité précédente, on trouve : 
P'k Ld -I) - P( Ld -U - Ld +1 = 0. Or puisque ( [d - l ) 0 * 0 . d'après le théorème 6 , 

l'équation X q - X - |_d + 1 = 0 n'a pas de solution dans Fq((G)). 
11- Théorème : 

Soient n e N . F un sous-corps de Fq((G)) et d e F tels que [^d existe dans 
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Fq((G)) et Lde F. 

Alors le polynôme minimal de I "d sur F est égal à : 
n 

PnOO + M)"*1 d = Z (-l)mC^ Xqn, + (-l)n+,d. 
m:0 

12- Remarflue : 
Si Supp d c G+ ou les éléments de Supp d sont < 0 et de q-hauteurs infinies, alors 

| n d existedans F ((G)), pour tout n > l . 

Exemples : 
a) La série de Morse f e F2((T)), définie par f, = 0 , f, = 1 et les formules : 

f2i-l = fi • f2i = f;+1.Pour i S I .satisfait: (I+T)3 f3 + (I+T)2 f + T3 = 0 . 
Î4-X i T" I X 

Posons : g = —— f. Alors g* + g + —— = 0 . Lc polynôme minimal de I " ( - — - ) 

c;; x2 + - - i - . 
m:0 ' 

b) La série f= Z T q ' d e PqK^» est racine du polynôme : X q - X - T ' 5 
1:1 

n 

Le polynôme minimal de | "T"' sur Fq((T)) est égal à: Z (-l)m C™ Xqm •i-(-l)nt'T" 
m:0 
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A N E M B E D D I N G I N V A R I A N T FOR O P E R A T O R S P A C E S 

Florin Pop* and Roger R. Smith* 

Presented by M.-D. Choi, F.R.S.C. 

A b s t r a c t 

We investigate the question of whether the ninximal and minimal C*-iiorms agree on 

the tensor product of two C'-nlgcbrns .4 and D. An isomorphism invariant u)(£) for an 

operator space is introduced, and we show that these C*-norins are distinct when wiA) 

and w(2?) are finite. In particular our results apply to the tensor product of von Neumann 

algebras. 

Introduction. It is well known that if .-l and D are C*-algebras then there are two 

distinguished C*-nornis on tlie algebraic tensor product A ® B: 

£ ". '3 6i = sup £*(«,) ©/KM 
i = l D(I10I<) 

over all representations ir: A —* D(H), p: B -* D{K) and 

Z]"'®''» sup 
I = I 

^T ff(rti)/5(6i) I 
i = l 

over all commuting representations it and p of .4 and B. For every other C*-norm fi on 

A® D one has 

l|-|Un</J<||-|Ux. 
A C*-algebra is called nuclear if for every C*-algebra B 

II • llnm. = II • ||...ax On A 0 B. 

* Partially supported by a grant from NSF 
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Although the theory of nuclear C*-algebra has had a deep and broad development, the 

problem of deciding whether the min and max norms are equal on A 0 B for a given pair 

of C'-algebras A and B is still not well understood. 

S. Wassermann proved [Gj that if CiH) denotes the Calkin algebra, then on CiH) ® 

CiH) the min and max norms are different. E. Kirchberg (3) showed that the min and 

max norms are equal on B{H) 0 C'fF,,,) where C*(Foo) is the full C*-algebra of the free 

group FQ,, on countably many generators. We refer to [4] for more results on equality of 

the two tensor norms. 

An old question of Guichardet concerned the case BiH)QBiH) aud recently M. Junge 

and G. Pisier (2) proved that the min and max norms are different on BiH) ® BiH). 

In this note we prove a similar result for M 0 Ar where M and N are von Neumann 

algebras not finite of type / . Our result is in fact a consequence of a more general one 

(Theorem 3) which involves an embedding invariant for operator spaces and it is our belief 

that this invariant is likely to have further applications. 

P r e l i m i n a r y results. Denote by 0S„ the set of all n-dimensional operator spaces. We 

identify two operator spaces if they are completely isometrically isomorphic. For E and F 

in OSn define 

dc(,iE,F) = mf{||ti||c( • | | i i - , | | c6 : u: E —* F completely bounded isomorphism}. 

It has been shown [5] that 0Sn together with 6ch(E,F) = \ogdcbiE,F) is a complete 

metric space. Moreover ([2|), this space is nonseparablc for n > 3. 

Proposi t ion 1 ([2]). Let Abe a separable, infinité dimensional C'-algebra A. For every 

6 > 1 there is an integer n(tf) such tiiat for every n > n{S) there exists an operator space 

EQ 6 O S n such that for any n-dimensional subspace E C A we have d^E, £„) > 6. 

Lemma 2 ([1], 5.2). Let E and F be operator spaces. If E is finite dimensional, then 

the operator spaces CBiE, F) nnd E' O F are completely isometrically isomorphic. 
min 

Here CBiE, F) denotes the space of all completely bounded linear maps between E 

and F. Let us now define the embedding invariant. Let E be an infinite dimensional 
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operator space. Define 

u>(£?) = sup sup inf{||u||c( • | | « - , | | c t u:F—* 11(F) C E completely bounded embedding.} 
n F€O S n 

It is clear that w is invariant under completely isometric isomorphisms. Proposition 1 

shows that for every separable infinite dimensional C'*-algebra A, LJ{A) = oo. It is obvious 

that uiBiH)) = 1. We obtain more properties of w in Proposition 4. 

The m a i n result. 

Theorem 3 . Let A nnd B be infinite dimensionaf C*-algebras. Jf u;(A) < oo and u^fl) < 

oo tlien A 0 fl ^ A 0 fl. 
min max 

Proof: To get a contradiction, assume that .4 0 fl = .4 0 fl. Fix 6 > 0 and choose, 
min max 

by Proposition 1, Eo 6 OSn such that <lei,{Eo,E) > S for all n-dimensional subspaces 

E C C*(F0 0), where F » denotes the free group on countably many generators. It is 

easy to see that if A is any infinite set. then also dri,{E,Eo) > 6 for all n-dimensional 

subspaces E C C ' ( F A ) . Let then A be such that there exists a surjective «-homomorphism 

n: C ' ( F A ) - • fl. If J = kern then fl = C'if\)fJ. The complete contraction 

-4 0 C"(FA ) —* .4 0 C ^ F A ]/J = .4 0 fl 
min min min 

vanishes on A 0 Jy therefore it iiuluces n complete contraction 
min 

.4 0 C*{FA)/.4 Ç J—».4 © fl. 
min min min 

It follows that the quotient norm on .4 3 C * ( F A ) / . 4 0 J induces a C*-norm on A 0 fl. 
min min 

Uniqueness of the norm on ,4 0 fl implies that the C*-algebras 

A 0 fl and .4 0 C * ( F A ) / . 4 0 J are isomorphic. 
min min min 

There is a completely bounded embedding j : E0 —» j ( £ o ) C B such that both ||i||c6 and 

Ili- I | |c6 are at most w(fl)1/2 . By Lemma 2, j can be viewed as an element jo € EQ <8 B 
mm 

of norm ||jo|| < w(B)1/2 . Moreover, jo can be viewed as an element ji € -A 0 B of 
min 

norm | | j | | | < (u;(A)u;(fl))l /2. We claim that for every ï > 0 there is a lifting jo oî jo to 

E; 0 C ^ F A ) of norm ||;o|| < M A M ^ ) ) , / 2 +£ and ( /d E . 0 i r ) ( jo) =>o. 
min 
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Indeed, if jo = E ei ® ^n then j , has a lifting j , = £ e, 0 T, 4- £ a; 0 lij of norm 
'=l i= l i = l 

Ijjill < (w(A)w(fl))1/2 + e such that (/d,4 © T ) ( J , ) = j , , where 

e.ejBo*, n,e.4, .^ 6 C*(FA), hi£j. 

Le* («o) C J^ be an approximate unit for J. Then 

||Ji(/ 0 (/ - «„))|| < MAMfl)) ' /2 + e 
m r II 

J^Ci 0Xi(/ - H„) + j ^ a , 0 M / - «„) < MAHfl)) ' / 2 +e. 

For a large enough we get that 

m 

53ej0.Tj(/-i '„) 
I = I 

m 
If we denote jo = £ e, 0 x , ( / - »„) then 

i=l 

llJoll < (a;(A V ( f l ) ) , / 2 + £ and iIdE. 0 ,r)(jo) = jo. 

Let j : Eo -* C * ( F A ) be the operator associated with jo (Lemma 2). Then [|ji||cj < 

(w(AMfl ) ) 1 / 2 + £ and n- o J = j . It follows that ] is an embedding and 

ddiEoJiEo)) < |MU • IIJIUHJ-'IU < (MAMfl))'/2 + eMfl)" 2 

which is a contradiction if we choose S > w(.4)1/2w(fl) and s small enough. This concludes 

the proof. 

Proposition 4. 

a) Let A he an infinité dimensional C*-nlgchin. Then u:{A) = oo if .4 is cither separable, 

nuclear or the full C" -algehra of a free group. 

b) w(C(fl)) = 1 u-liere C{H) is the Calkin algebra. 

c) w(A) = 1 if .4 is a von Ncwnaun algebra not finilc of type I. 

Proof: Note that A C fl implies u,(fl) < u;(.4). 

<(a..(.4MB)),/2+t-. 
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a) This was proved earlier for separable C'-algebras, the nuclear case follows from Theo-

rem 3 and for free group algebras it follows from Kirchberg's result and the above remark. 

b) Let (p„)„>i be an increasing sequence of finite dimensional projections in BiH), 

limpn = / . Since for every T Ç BiH) one has 
FI 

||T|| = sup||p,,Tp,D 
n 

it follows that the map T —• Qip„Tp„ establishes a completely isometric embedding 
n 

BiH) —* QiM„ C BiH). The distance from tî>PnTpn to the compact operators is equal 
n n 

to | |®PnTpn|| = ||T||, therefore fl(fl) embeds completely isometrically into CiH), hence 
n 

uiCiH)) = 1. This recaptures Wassennann's result on CiH) 0 C(fl) [6]. 

c) Let i î be the hyperfinite type f/j factor. We first show that ui(iî) = 1. Let (en)„>i be 

a sequence of mutually orthogonal projections in R, ]£ en = I. Then fl(/f) C ® M B C 
n > l » 

(BenRen C R where the above inclusions are completely isometric embeddings, therefore 
n 

a>(iî) = 1 . If A is of type locllgo or / / / , then .4 contains a copy of B(H) so u;(A) = 1. 

If A is of type / / ] then A contains a copy of R and since UJ{R) = 1 we get ar(A) = 1. 

Remark. In all known cases the value of a.* is cither oo or 1. Is there any C*-algebra A 

tor which 1 < w(A) < oo? 
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On positive solutions of Emden - Fowler 
equations 

ADRIAN CONSTANTIN 
Presented by G.F.D. Duff, F.R.S.C. 

Abstract. We present a necessary and sufficient condition for the 
nonexistence of any positive solution ofthe equation Au-|-p(z)|u|1r5<;n(u) = 0 
in exterior domains of B?. 

Let us consider the Emden-Fowler equation 

(1) Au + p(i)|u|1ai!in(u) = 0, 7 > 0, 

where p : 12 —» iî+ is continuous and nonnegative in some exterior domain 
Il C -R' (ft is called exterior if {x £ S? : | i | > a} C fi for some o > 0). A 
solution of (1) is a function u € C2(n, R) satisfying (1) in fi. 

Since the linear case 7 = 1 is well-understood (see [1]), we will consider 
the problem of the nonexistence of positive global solutions of (1) in the 
sublinear (0 < 7 < 1) and superlinear (7 > 1) case. 

Let us denote 

p, (0 = Inf {;>(«)}, p*(0 = sup {p(x)}, t > 0 . 
kl=« |x|=< 

Theorem 1 [2]. If equation (1) has no positive solution, then 

(2) J00 tilog «)V(0* = °°. 0 < 7 < 1. 

(3) f"0 tilog t)p*it)dt = 00, 7 > 1. 

It turns out (see again [2]) that these conditions are also sufficient if 
Umsup^^ {^[{j} is finite. 

Key Words and Phrases: Emden-Fowler equation, positive solution. 
1991 Mathematics Subject Classification: 35B. 
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This assumption permits only small fluctuations of p on the sphere 5r = 
{z 6 /Z3 : | i | = r) as r -> oo, and we would like to show that one can allow 

lJn»8up{^7-r} = oo 

provided we control the growth. 
Let S be the class of nondecreasing functions w £ CiR+,R+) with 

ui(l) > 0 for t > 0 and lim,_0o ui(«) = oo, satisfying Z,00 ^ y = oo. Ex-
amples of functions w € Sl are linear functions and w(() = t /n(( + 1), t > 0. 

Theorem 2. Let 7 > 1. / / there is a K > I and a function w eUt such 
that 

(4) ; ^^ <P*(0. « > * • . 
y ) wiSl3ilog3)p*is)ds)-y*Kh -
then (3) is the necessary and sufficient condition for the nonexistence of 
positive global solutions to (1). 

Proof. The necessity follows by Tbeorem 1. 
In order to prove the sufficiency, we intend to show that if (3) holds, 

then 

(5) J"0 tilog t)ptit)dt = 00. 

Let us denote 

Vit) = f silog s)p*is)ds. Wit) = / silog s)p*is)d3, t > K. 

By (4) we deduce that 

V'ii)> Hlog t)Ptit)> « g g S i g g ^ . t>K, 
ii>(/1 silog s)p*is)ds) + 1 

and an integration yields 
rWH) fa 

V(t)>V(K)+ . r—, t>K. 
Jw{K) H3) + * 

Let A > WiK) be such that «;(<) > 1 for t > A. Since lim,-,,» Wit) = 00 
in view of (3), there is an Af > iif with WH) > A for < > M. We obtain 

/WW ds 1 /^W ds Vit)>ViK)+ j ^ — >V(K)+U "TT. *>**. w v ' JA «'(J) +1 UA Ha) 
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Remembering the fact that in 6 Sl, this yields (letting ( - • oo) l i m , . ^ V(t) = 
oo, so that (5) holds. W 

Referlng now to another result of [2], condition (5) is sufficient to guar-
antee that there are no positive global solutions to (1).D 

Similarly, we can prove 

Theorem S. ie t 7 G (0,1). / / Mere is a K > e and a function u» e Sl 
such that 

wif: silog a)yp*is)da)-Mt)' *-*' 

then (2) ts (Ae necessary and sufficient condition for the nonexistence of 
positive global solutions to (1). 
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SERIES SOLUTION OF FORWARD EDDY CURRENT PROBLEM FOR A 
CYLINDER WITH NONCONSTANT WALL PROPERTIES 

A.A. KOLYSHKIN AND RÉMI VAILLANCOURT 

Presented by K.B. Ranger, F .R.S .C. 

ABSTRACT. The change of impedance In a double conductor line parallel to an infinitely 
long metallic circular cylinder consisting of a homogeneoua Inner core and an outer layer is 
found in the form of an infinite series. The relative magnetic permeability, /i(r) = r", and 
the conductivity, a(r) = (T^'r*, of the outer layer vaiy with respect to the radial coordinate, 
r, and a and K are real constants. Numerical results are presented in the form of figures. 

On exprime le changement d'impédance d'un double fil conducteur parallèle à un cylindre 
circulaire infiniment long formé d'une double couche métallique au moyen d'une série infinie. 
Le noyau cylindrique est homogène, mais la perméabilité magnétique relative ji(r) = r" et 
la conductivité o{r) = a^r* de la couche extérieure sont fonctions de la coordonnée radiale 
r, où a et K sont des constantes. On présente les résultats numériques sous forme de figures. 

1. Introduction. Since analytical solutions to eddy current testing problems usually as-
sume constant properties of materials (l), analytical solutions are needed for media with 
spatially varying properties. Particular cases are solved in [2]-(4]. 

This note reports on a series solution [5] for the change of impedance in a double conductor 
line parallel to a double-layered metallic cylinder for which the magnetic permeability, /i(r), 
and tbe conductivity, <r(r), of the outer cylinder are functions of the radial coordinate, r, of 
the form /i(r) = r", ff(r) = a<0)r*, where a and K are arbitrary real numbers. The solution is 
found for single wires and then superposed for double wires. Numerical results are presented 
in tbe form of curves in Fig. 2. 

2. Governing equations. Consider a double conductor line, wi and W2, parallel to a two-
layered metallic cylinder. The radii of the inner core and outer annular shell are P2 and pi, 
respectively, as shown in Fig. 1. The conductivity, «rj, and the relative magnetic permeabihty, 
P2, of the inner cylinder are constant, but for the outer sheU, 

^ i ( r )=«T ' 0 ' ( j ) " , / i , ( r ) = ( I ) 0
> (1) 

where a, K € R, <7(0) = const and I is the distance between the wires. A solution to a similar 
problem for constant <7i and pi is found in [6]. Let (r, ip, z) be cylindrical polar coordinates 
centered at 0 with the z-axis parallel to the cylinder axis. 

Since we neglect the displacement current. Maxwell's equations reduce to 

(a) curl E = ~ , ih) curl H = oir)E + P, (c) B = poPir)H, (2) 

where E and H are the electric and magnetic field strengths, respectively, B is the mag-
netic induction vector, P is the external current density, o(r) is the conductivity of the 

Key wonts and phrases, nondestructive testing, vector potential, Bessel functions.. 
This work was partially supported through NSERC of Canada, Grant No. A7916 and the Centre de 

recherches mathématiques of the Université de Montréal. 
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; 

FIGURE 1. Double conductor line, in free space, lying in a horizontal plane 
above, and parallel to, a two-layered conducting circular cylinder. 

medium and po and /i(r) are, respectively, the magnetic constant and the relative magnetic 
permeability of the medium. 

Introducing the vector potential A by the relation B = curl A and using (2) (a) we obtain 

^ 9A 

E= — ^ - - g r a d ^ . 

where rp is the scalar potential. We assume that A, rp and P are periodic in t, 

A = Air, ip, z) e"", rj, = ^(r, ip, z) e"*, P = Je(r, V, z) <**, 

where j = v / ^ . By symmetry, A is parallel to the z-axis and independent of z, 

Â(r1i5,z) = (0,0,A(r,V>)). 

Using (2)-(5) and basic formulae of vector calculus we obtain 
grad div A r r AA j-r? — er x curl A 

(3) 

(4) 

(5) 

poPir) PoPir) Popir)2 dr 
= -jwCT(r)A — or(r) grad t/> + / . (6) 

We need to solve equation (6) in three cylindrical regions (see Fig. 1), free space Ro:pi< 
r <oo, outer metallic layer Ri : pi < r < pi, and inner metallic core i?2 : 0 < r < ^2. 

Taking the z-component of (6), using the gauge 

1 
Pol*ir) 

grad div A = —cr(r) grad rji. 
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and denoting A(r, ip), by A<(r, ip) in R, i = 0,1,2, we obtain 

^ r + ; ? £ + ^ ^ r = -w>w(r - nW* - vO + ^ / 5 ( r - r»)«(v - w). (7) 
a2Ai fi i d/nl aA, i a2A, . . . , . . , „ 

a2A2 i aA2 i a2A2 . , n ,„x 
1^-+ ; IT + T w " ̂ ^ ^ =0- (9) 

3. Mathematical analysis. We introduce the dimensionless variable rj = r/Z, where the 
distance, I, between the wires is chosen as unit length, and note, from (1), that /^(r*) = 
rj and ffifo) = a(0,r5. Henceforth, the subscript d will be omitted, and n and rj are 
dimensionless variables. 

FVom (7)-(9), we obtain the following system of equations: 

^ T + ; 1 ^ + ^ l ^ T = -*>Il'6(r - '•>)«(*'" Vi) + » ) / ^ ( r " rtWrp - W ) . (10) 
a^A. + l_-adM + 1 ÇA, _ . ^ r < . + M i = 0 j ( 1 1 ) 

ar2 r dr r2 a^2 

+ lM2+l*A*_jPlA7 = 0t (12) a2A2 i a A j i a 2 A 2 
ar2 + r ar + r2 a^2 J^ 

where fii — iJua^po and ft = l^/ûâ^pôpi. The boundary conditions are 

•rto|r=pi — " i j rcp i i 
aAp 
ar 

. i _ . i i aAi 

i aAi 
r=pi Mil ^ r=pi 

1 gAal 
r=pi MJ OT l^=pl, 

(13) 

(14) 

where jin = p?, /in = /»f and pi = pi/Z, pt = ft/Z. 
Since system (10)-(14) is hnear, its solution can be expressed as the sum of two solutions. 

For the first solution, only the first term on the right-hand side of (10) is present. For the 
second solution, only the second term on the right-hand side of (10) is present and we replace 
Ti by rj, ipi by ip2 and / by —/ in the first solution. 

Since we are interested in the change of impedance in the double conductor line due to tha 
presence of the conducting cylinder, we shall consider only the induced potential, Ajj1 (r, vOi 
which, in RQ, can be written as the sum of two parts: 

A^r. V) = A^ W ) + A^O-, v), 
where the first and second terms on the right-hand side correspond to the wires xui and tuj, 
with coordinates r = n, v» = Vii -<» < z < oo for i = 1,2, respectively. 

To obtain the first solution, we expand Dirac's delta function in a Fourier series. 

«(V - V i ) = - 5 Z f i " c o s n ^ - , ' ' 1 ) • where &. = ] J'M n = : 0 ' 
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and seek the solution to (10)-(14) in a Fourier series, 

1 S 
Mr, V») = - 51 SnOinir) cosniip - ipx). (15) 

" n - O 

Substituting (15) into (10)-{14) we obtain a system of ordmary differential equations, 

dPaon , 1 dapn n2
 2 

(Pain _ 1 dain n2 

+ --f---îa2n-j0ïa2n~O, (18) 

with the boundary conditions 

1 dam I 
"Onlropi — a l n | r = p 1 i —J— 

a ln | r=p ï — a2n|r=pai 
1 doln 

r=pi Mil dr lr=p1 
1 d02n 

r=)>j P2 dr 

(19) 

(20) Mu dr 
The structure of the solution to equation (16) depends on the value of n. 

It is convenient to consider two cyUndrical subregions, Hoo : Pi < r < n and floi : »* > n , 
of region Ro, where 0 < v < 2n-, —oo < z < oo. 

First, if n = 0, we denote the solution of (16) in Roo and Roi by a§? and o^, respectively. 
Bounded general solutions of (16) in Roo and RQI are 

aSV) = Co In r + (7», a&V) = CM. (21) 

respectively. Second, if n ^ 0, bounded general solutions to (16) in Rco and iîoi are 

^'(r) = Cinrn + C2nr-n. a^(r) = C73nr-n, (22) 

respectively. The general solution to equation (17) is (see [?)) 

ain(r)=C4BrVp(6re)-|-CSnr0yp(6re), (23) 

where Jp(s) and Yp{s) are Bessel functions and 

"-?. - ^ - ' . " ^ 
A bounded general solution to (18) is 

02(r) = ConJnikr), 

Va2 + 4n2 
p = 

K + a + 2 

(24) 

where A: = (hyf—j. The structure of (23) and (24) remains the same for n = 0,1,2, . . . , 
except for the case Q + K= -2 where (17) degenerates into Euler's equation. 

Wc solve (16)-(20) in the case n = 0. Since the vector potential is continuous at r = n 
we have aS?(ri) = a^in), that is 

Cio In ri + C20 = C30. (25) 
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Multiplying (16) by r, integrating with respect to r from ri-etori+e and taking the limit 
as e —» +0, we obtain 

^ 1 _ * H ^-Kii7. dr |r=ri dr lr=T| 
(26) 

Using (21), (23) and (24) (for n = 0) and determining the constants Cio,CM,.• .,Ceo from 
(19), (20), (25) and (26), we obtain the first term of the Fourier series of A^'V, v) as 

J - M ) , ^ = PoPnIl7riP2afii[doJp m + Yp (tgf)j 
0 0 ^ ' dolaJp (fcpj) + bepf j ; (tpf )] + aY, ibfi) + bcpiV; (tpf) ' V 

where 
. Pi2kp2Jl)ikp2)Yp jbpl) - p2Joikp2)[aYp (Z.p|) + bcp^Y; (fcpg)) 

Pi2kp2J'oikp2)Jp (6p5) - P2Joikp2)\aJp (6p§) + bcp^J' (6pS)| ' 
and ' denotes ordinary derivative of a function of one variable. 

The solution to {16)-(20) for n = 1,2,..., can be found in a similar way. Thus, 
.C»1")/^ „.Tli~. oo n2n ^r,v)^+^t^«*^, m 

where 

bn = MimK^p ibp\) + Yp ibp\)] - (̂ [oJp ibpX) + bcp\J'p ibp\)\ 
-aYPibpX)-bcp\Y;ibp\), 

bi2 = Piin[dnJp ibp\) + Yp ibp\)] + «i.loJp ibpX) + bcp^j; (6pf)] 
+arp(6pî)+bcpîy;(bpî), 

Pi2kp2J'nikp2)YP ibp%) - P2Jnikp2)\aYp ibp%) + bcfiYj (bggjj 
Pnkp2J'nikp2)Jp (6pS) - ii2Jnikp2)\aJp (6p5) + bcfiJ'p (6pi)| ' 

and a, 6, c and p, in the first term (27) on the right-hand side of (28), correspond to n = 0. 
To obtain AQ (r,^), we replace n, fi and / in (28) by r2, v?2 and —/, respectively. Adding 
A^x)iT,ip) and A^i^ip) we have 

A^lr ^ = ^ ^ 2 ( r ' - r2) MufeVî^Jpm) ± YP(bp^)l 
^ Kr^} 2* do[aJp(6pf) + M^(«'P!)l+al'p(i'Pf) + 6cpfi;'(6pf) 

, /io/Z2r ^ pf hu . , ~ p2" 6,, . .] 
+ £-7— n y -^—-r1 cosn(u» — w O - r a V - i - ; — r - cos n(vJ - ^2) • 

27r I ' ^ n r f r » ^ ^ ^ l ' ^ n r f r " ^ ^ ^ ;J ( 2 9 ) 
The induced change of impedance is given by the formula 

Zfad = f jf AS-^r, V) «« = ^ Zb. (30) 

where L is the contour of integration along the two wires in the opposite directions over one 
unit of length. Hence, from (29) and (30) we obtain 
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FIGURE 2. |Zb| against x (a) for magnetic permeability Mi(r) = r" and (b) 
for conductivity oï(r) = ff^'r", of medium Ri. 

4. Numerical results. Formula (31) was used for computing Zo for different values of the 
parameters of the problem by means of Mathematica, version 2.2.2, on a Sun Microsystem 
Sparc 10, which can evaluate Bessel functions of fractional order and of a complex argument. 

In Fig. 2, Mi(r) = ra, a^r) = a^r*, pu = p», Ml2 = pf, /^ = 1, A = #1 = 1 and A = 0.1, 
and \Zo\ is plotted against the horizontal shift, z = ri sin ̂ i +1/2, of the centre of the double 
conductor Une measured from the vertical axis tp = 0. In Fig. 2(a), n = 0, pi — 0.4 and 
P2 = 0.3. It is seen that \Zo\ increases as the change of magnetic permeabihty across the 
layer P2 < r < pi becomes stronger, a fact which is important in qualitative analysis of eddy 

r , Pi = 0.3 and current testing of media with varying properties. In Fig. 2(b), Mi(r) 
P2 = 0.2. It is seen that \ZQ\ decreases with a and increases with K. 
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QUASI-HEREDITY OF ENDOMORPHISM ALGEBRAS 

V. Dlab, F.R.S.C, P. Heath and F. Marko 

ABSTRACT. Quasi-hereditary algebras were introduced by Cline-Parahall-ScoU (tee 
[CPS] or [PS]) to deal with highest weight categories which occur in the study ol 
setm-stmple complex Lie algebras and algebraic groups. In fact, the quasi-hereditary 
algebras which appear in these applications enjoy a number of additional properties. 
The objective of this brief note is to describe a class of lean quasi-hereditary alge-
bras [ADL] which possess sudi typical characteristics. The complete proofs of the 
statements will appear elsewhere. 

Let yl be a finite dimensional (associative) algebra. Let {5(A)|A € A) be the 
set of all non-isomorphic (left) simple A-modules indexed by a partially ordered 
set A. For every A, denote by P(A) the projective cover of S(A) and by A(A) 
the corresponding standard module, i.e. the maximal factor module of P(A) with 
composition factors of the form 5(K) for K < A. 

We say that A is quasi-hereditary with respect to A if there is a linear order 
Ai < A2 < • • • < An on A refining the given partial order and satisfying the 
following conditions: for each 1 < > < n, 

(i) the standard module defined above equals 

^(Aj) = PiXMlracei ® P ^ ) - P(Aj)). 
}>' 

(ii) the endomorphism algebra of A(A,) is a division algebra and 
(iii) P(Ai) can be filtered by ^(A^'s, j > i. 

Here, trace(X — Y) denotes the submodule of Y generated by all homomorphic 
images of X in V. The latter condition is equivalent to the fact that the factors 

frace(® P(A>)^P(Al))/trace( ® P(A J )- . P(A,)) 
i=k j=t+l 

of the trace filtration of P(Ai) are direct sums of A(At )'s ii < k <n) (D). 
Throughout the note, R denotes a (finite dimensional) commutative local self-

injective /f-algebra with a splitting field ft", and A the endomorphism algebra of a 
(finite) direct sum X = ® X{X) of pair-wise non-isomorphic (finite dimensional) 

AC A 
local-colocal A-modules A'(A), i.e. such that both X{X)/radX(X) and soc.Y(A) are 
simple. Write, for each A, eji = nup^, where px : X — X{X) and m» : ..Y(A) -» X 
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are the canonical projection and embedding, respectively. Thus, for all A £ A, 
5(A) = AexfradAex are the (pair-wise non-isomorphic) left simple A-modules, 
P(A) = Ae* their projective coven and /(A) = HomK(exA,K) their injective 

n 
hulls. Write also Ci = J^ e,- for 1 < t < n and e„+i = 0. 

<sl 
Observe that, for each X(X), there is a (unique) embedding into R and lhat every 

/Miomomorphism / : X(A) — X(K) is induced by multiplication by an element 
r € A : Given / , there is an extension f : R— R and every endomorphism of RR 
is given by multiplication, 

0 • XiX) . RR 

,[ l7_. 
0 • Xi*) . RR 

Thus, in particular the image Imf is isomorphic to a submodule of X(X). As a 
result, the following three statements are equivalent: 

(a) R D *(*) D XiX); 
(b) there is a monomorphism from .V(A) to A'(K); 
(c) there is an epimorphism from A'(ic) lo A'(A). 

Furthermore, each X(X) is a factor module of R and as such has a natural struc-
ture of a local commutative selfinjeclive A'-algebra; tirasHomxiX(X), A) ~ X(X). 
As a consequence, A = EndnX is an algebra wilh involution and thus there is a 
duality functor D : A-mod — A-mod satisfying D{S) as 5 for all simple .4-modulcs 
S. Indeed, the map * : A —* A defined for 

f-.X-Zl* XiX) -^i . X(K) -2i» X 

by 

f'-.X-^ XiK) ~ HomK{X[K), A) "'"n( / , 'K>
l HomKiX(X), K) ~ X{X) -=i- X 

is an involution. In addition to the relations {ab)' = b'a' and (a')' = a, we have 
also e\ = ex (ot all A € A. Hence, ive gel a duality functor D if. for every right 
A-module V̂  wc define the left module ,1V" by putting Y' =Y and ay = ya*, and 
set ^(y,,) = HomKiAY', K). Thus D(P(A)) ~ /(A) and D(5(A)) ~ 5(A). 

The main result of this paper is the following theorem. 

THEOREM. Lei R be a commutative local selfinjeclive K-algebra over a splitting 
field K; dimKR = n. Let X = {.Y(A)|A g A] ie a set of local ideals of R indexed 
bg a finile partially ordered set A reflecting inclusions: X(X') C •Y(A") if and only 
if X' > A". Let R = /Y(Ai) belong to X. Thea A = Endi ® X{X)) is a quasi-

ACA 
hereditary algebra with respect to A if and only if 

(i) carrf(A) = n and 
(ii) radAf(A) = £ .Y(K). 

A<« 
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Let us add that under the condilions of the theorem, we can easily verify the 
following facta: 

(a) as mentioned earlier, there is a duality functor on the category of /(-modules 
which fixes the simple modules 5(A), A € A; 

(b) the algebra A is lean (see (ADL]) and every standard module A(A) has a 
simple socle isomorphic to 5(AI); 

(c) |A(A) : 5(K)1 < 1 for all A, « € A; in fact, [A(A) : 5(»c)l = 1 if and only if 
«c < A, and thus dim/f A(A) = card{K\K < A); 

(d) R/radR~X(Xn) e X, dimKP{Xn) = n and generally 

dimKP(ic)= ]£dimKA(A); 
A<« 

lhusdimK>l= 53(dim/f AfA))7; 
AC A 

(e) the dominant dimension of Aia > 2 (see (TJ). 

The proof of the sufficiency of the theorem is based on the following four lemmas: 

Lemma 1. The set {IA|A € A), where A'(A) = zxR, is a K-basis ofthe vector 
space RK, and the set of all ideals X{1) Ç R generated by {xx\X € / ) , for every 
subset / of A, forms a distributive lattice with respect to addition and intersection. 

Lemma 2. Every R-homomorp/iism / : X(A) — J2 Xit*) ^ ^ for some f Q &< 
ce/ 

factors through the canonical (summation) map p : ® Xip) — X) X(/i). fn par-
fil làÇl 

ticular, every R-homomorphism f : X(X) — radX(/c) factors through the canonical 
map ffi Xifi) —» radXiit). 

Lemma 3. For every A € A, 

{m.m,xPAl-Y(A) Ç XOO), 

where m,* denotes the embedding X( A) Ç X(K) . is a /{'-basis for the (left) standard 
module A(A). In fact, 

A(A) = PiXytraeei ffi Pip) -> P(A)). 
OA 

Let us point out that Lemma 3 describes the structure of the standard modules: 
the factorizations m,A = m^m,,* correspond to the embeddings X(A) Ç Xip) Ç 
Xi*). In particular, every standard module A(A) has a simple socle generated by 
mx,x, and hence is isomorphic to 5(A1). 
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Lemma 4. IfXU) Ç X(i), then AejAc/Aej+iAet a A(i). If XO) g X(t). then 
AejAei = AeJ-+1Aej. 

On the other hand, the proof that the conditions (i) and (ii) of the Theorem 
are necessary uses the following lemma together with the previously mentioned 
duality D : A-mod -* A-mod fixing aimple modules and Bernstein-Gelfand-Gelfand 
reciprocity law. 

Lemma 5. tet / : X(i) —» X(t) be an R-homomorphism. Iff is a monomorphism, 
then mtfpi $ Ad+jAei. If f is not a monomorphism, and A is quasi-hereditary, 
then mifpi g Ae<4.iAei. Therefore, if A is quasi-hereditary, then the multipUcity 
[A(i) : 5(*)] = I for X(«) Ç X(*) and (A(i) : 5(fc)l = 0 otherwise. 

Remarks 
Let us conclude this note with a few observations and examples. 
First, the (ordered) quiver QA of the algebra A is given by the monomorphisms 

and epimorphisms between the direct summands of X. To be more explicit, let 
( 1,2,. . . , n) be the sequence of the vertices of QA corresponding to a (linear) order 
of the direct summands X(l) = R,X(2),. . .X(n) = R/radR of the module X 
(which refines the partial order A of the theorem). Then, for t > j , there is an 
arrow i — j in QA if and only if X(i) C X(i) Ç R and there is no X(i) satisfying 
X(t) C X(t) C X(j) Ç R for it ^ i,j. Furthermore, in that case, there is an arrow 
i «— j corresponding to an epimorphism X(j) —• X(i) which cannot be factored 
through any X{k), k £ i,j. Thus, QA is a connected quiver wilh single arrows 
which appear in pairs: either there are no arrows between two vertices i and j of 
QA or there is a pair of arrows, i ^ / . From here, we can easily read the structure 
of the standard modules established earlier: each A(i) is given by the subquiver of 
CA consisting of all sequences of arrows 

« = io — ji — >ii-i — jt = j , i = ie>it > •••> i«-i > jt = j , 

and the respective vertices. 
Recall that the trace filtration of the projective-injective indecomposable module 

P(l) = Aei = ylci Aei 3 AcjAei D-D AcAei D 0 

has the property that Act-i4ei/Aei+iAei ~ A(i) for every 1 < t < n. Here, the 
extensions 

0 —» Aci+xAei —» AdAcx — A(i) —> 0 

are determined by the arrows of QA corresponding to the epimorphisms. Observe 
that there is a (unique) embedding of P(t) in P(l), for every I < i < n. 

The following examples should serve as simple illustrations of the theorem, as 
well as indications of its limitations. 
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1. A = K[x]/{x'), l > 1. There is a unique choice of X (the direct sum of all 
indecomposable À-modules) and thus A is the respective Auslander algebra. The 
quiver QA is aa follows: 

l = î 2 « . . . î = t - l s S | . 

2. R= Klx,y]/ixy, *' - y') . ' 5 2- H « e i t o t < > 3, we have several choices for 
X; for instance, we get the following forms of QA : 

2 ss 4* i . . . 5S 2« ^ 2« + 2 ^ 2» + 4 =î . . . ^ 21 

ti ti ... tl ••• tl 
1 S S 3 ^ . . . = 2 « - 1 = î 2 « + 1 P î 2 « + 3 P î . . . ^ 2 1 - 1 , 

1 < « < ' 
3. R = Klx.yl/ix'-y*, xa-yA, x1). Here, the algebra is 8-dimensional. Write 

p for the canonical image of p g /<f[x,y] in R, and consider 

X = R ffi ï R ffi yR ffi îyR ffi j^R © xy^R ffi x'R © t5^ 

(in that linear order). Then A = EndnX is a 159-dimensional algebra whose quiver 
QA has the form 

2 ^ 4 » 6 =2 8 

1 s 3 » 5 ^ 7 . 

4. Consider again the 4-dimensional algebra R = I<[x,y]/ixy, x1 - y2). Taking 

X = R ffi R/i 'R ® ^R 

(thus only 3 direct summands, not all local-colocal), or 

X' = R ffi ( ï R f f i R / ï î R ) / ( ï î - ( y + ï î R ) ) ffi xR ffi ^ R 

(thus not all direct summands are local-colocal), the respective endomorphism al-
gebras are still quasi-hereditary. The firet one A = EndnX is a 19-dimenaional 
algebra (without duality) whose quiver QA is 

I H 2 t 3 . 
The algebra A' = EndnX' is a 39-dimen8ional algebra with duality (and uniserial 
standard modules whose socles are isomorphic to 5(1), (A(4) : 5(2)) = 2) with QA-
of the form 

1 •* 2 î* 4 
tl 
3 
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