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Fibre techniques in Nielsen Periodic point
theory on nil and solvmanifolds

Philip R. Heath Ed Keppelmann
Presented by S. Halperin, F.R.S.C.

Abstract

In this announcement we outline results and methods for evalu-
ating the Nielsen type numbers N®,(f) and N P,(f) for self maps f
of nilmanifolds and solvmanifolds (which includes the Klein Bottle).
Through the use of fibre space techniques we relate these numbers to
the various N(f™) for m|n.

In this announcement we state a number of theorems that allow us to
calculate the Nielsen type numbers N&,(f) and N P.(f) (see [J,HFY,HY])
for self maps f on nilmanifolds (homogeneous spaces of nilpotent Lie groups),
and solvmanifolds (homogeneous spaces of solvable Lie groups). Let Me,.(f)
denote the least number of periodic points of all periods less than or equal
to n for any map g homotopic to f, and let M P,(f) denote the least number
of periodic points of period exactly n of any map g homotopic to f. The
numbers N&,(f) and N P,(f) are homotopy invariants of f which provide
lower bounds for M &,,(f) and M P,(f) respectively.

It is a mistake (made for example in [Halpl,Halp2]) to think that N ®.(f)
always coincides with N(f") the ordinary Nielsen number of the nth iterate
J* of [ (see example 6 and also the introduction to [HY] for a number of
inadequate candidates for N®,(f)). An oversimplification that can be made
for N P,(f) is to express it from Mabius inversion in terms of the N(f™) (see
theorem 1). However, there are cases when these oversimplifications do give
the correct answers. For example, it was demonstrated in [HPY] and [HY]
that they hold for tori when L(f) # 0. The proofs there made heavy use of
the commutativity of the fundamental groups of the spaces involved. In this
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announcement we indicate two types of results. In the first using fibration
techniques, we extend the results given in [HPY] and [HY] for tori to the
highly non commutative situation of nilmanifolds and solvmanifolds. Our
second result, which also uses fibration techniques, introduces an addition
formula for periodic points. This handles the complications which occur on
solvmanifolds when some of the maps on the fibres have Lefschetz number
zero (this is explained more fully below). Many examples are forth coming
(see [HK]), though here because of space we merely indicate the type of
application that can be made.

Our first two theorems are useful because canonical fibrations associated
with nilmanifolds or solvmanifolds can, up to changes in homotopy, allow any
map f to be realized as a fibre preserving map (f, f) (see below). Additionally
these fibrations satisfy the “naive conditions” which means that N(f) (hence
also N(f")) can be calculated either as a product ([A,FH)), or as the sum over
various N(f;) for z € ®(f). ([KMc,Mc,HKW]). (Here f. denotes f restricted
to the fibre over z, and for any f: X — X, &(f) = {z € X|f(z) = z}).

Theorem 1 Let f: X — X be a self map of a nilmanifold in which L(f™) #
0. Then N&,(f) = N(J*), and NPu(f) = Treppm(~1)*" N(f*") where
p(n) denotes the set of prime divisors of n andn : 7 = n[le,p'. O

Example 2 (Baby Nil) Let G be the topological group that is represented
by matrices over the reals of the form

1l zy
01 z|.
0 01

The binary operation is matrix multiplication. Let I' be the discrete subgroup
consisting of those elements of G with integer entries, and let ¢ : G — G be
the homomorphism which takes z to 2z, y to 3y, and z to 5z. Then G/T is
a nilmanifold, and ¢ induces a map f of N = G/T. Our aim is to calculate
N&,(f), and NP,(}).
We note first that V can be imbedded in the fibre sequence S' x S!

N B S" where p is induced by the projection on the “ y factor”. Note that
f induces a self map f of degree 3 on the base, and a map f,, whose matrix

representation is
20
4= (5%
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on the fibre over the base point 0. Now the nth iterate f* of f induces a
map whose matrix representation is A” on the fibre, and is a map of degree
3" on the base. By [FH], p is orientable and satisfies the conditions for the
naive product formula (N(f") = N(f3)N(J™)) so by theorem 1

N&.(f) = N(f") = (1 -2")(1 -5")(1-3").
As an example, for n = 12, theorem 1 also says that

NPy(f) = N(S'*)=N(f®) - N(f*) + N(S?)
= 531,310,251,012,675, 840.

The fibre decomposition of example 2 is a special case of a general canon-
ical decomposition of nilmanifolds (called the Fadell-Husseini fibration see
[FH]) which associates to each nilmanifold N, a fibration T = N — B where
T is a torus, and B is a nilmanifold of smaller dimension than N. Since in
dimensions 1 and 2 the only nilmanifolds are tori, the proofs of known results
for tori extend, by induction on ‘he dimension of the nilmanifold, to proofs
of similar results for all nilmanifolds.

A similar “splitting” occurs for all maps of solvmanifolds. For a solv-
manifold S the canonical fibration is of the form N —+ S — T where N is a
nilmanifold and T a torus. Unlike the canonical fibrations for nilmanifolds,
these Mostow fibrations (see [Mc]) are non orientable. In practice this means
that when z,y € &(f) one can have L(f:) # L(f,). We need this informa-
tion in order to state the hypothesis for the next theorem which gives a result
similar to theorem 1, for some maps of solvmanifolds.

Theorem 3 Let S be a solvmanifold, and N — S — T be a fibration se-
quence in which N is a nilmanifold and T a torus. Let f: S — S bea fibre
preserving map with the property that L(f™) # 0, and for each y € ¥( J") the
map (f*) : F, = F, has L((f™),) # O (see [KMc]). Then the conclusion of
theorem 1 holds.

There are examples of theorem 3 that have the flavour of example 2.
The examples are more general because the non orientability of the fibration
forces one to use the naive addition formulas ((HKW,Mc]) in place of the
product formulas to make the needed calculations of the ordinary Nielsen
numbers. While there are many such examples, they are in general difficult
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to describe briefly so we refer the reader to [HK] for more details. The one
notable exception to this statement is the Klein bottle which we touch on now
in lieu of more complicated endeavors. We remark that C. You mentioned
to the first author a number of years ago, that the calculation of N(f") in
the example below might be possible by fibre techniques.

Example 4 Let K2 denote the Klein bottle. Then R? is the universal cover
and K? is the quotient R?/T where I is the group of automorphisms on R?
generated by A(z,y) = (z,y + 1) and B(z,y) = (z + 1,—y). By defining
p : R*/T — S! to be projection on the first factor we get the standard
fibration S' < K2 £ S! of the Klein bottle.

Given any pair of integers (r, q) for which r is odd, or r is even and ¢ = 0,
the correspondence (s, t) — (rs, qt) mod Z? induces a well defined, fibre pre-
serving map (f, f) on K2 Here f is the standard map of degree r and the re-
striction fo of f has degree q. (There are actually many non homotopic maps
with this specification but the degrees of f, and f are the only considerations
in determining N(f).) Thus &(f) = {z; : j = 0,1,...,|r — 1| — 1} consists
of points equally spaced on the circle with o = {0,1} in S' = I /[0 ~ 1].
Moreover each z; is in its own Nielsen class or, in the language of [HKW],
the set ®(f) is a set of essential representatives for f. The key relation-
ship between the various f;, which is of interest here, is that f;, has de-
gree (—1)iq (see [HKW;4.6]). Hence for r odd the naive addition formula
(N(f) = Z.,ea(7y N(fz,) [Mc] or [HKW)) implies that for f = (r,q) we have
/* = (rq") and N(f*) = EZ(11 - ¢"| + 1 4 ¢"]) = Ig*("" = 1)]. In
addition if ¢ # +1, one has by 3 that N®,(f) = N(f") for all n. “Maobius
inversion gives the N P,(f).

Thus for any pair of integers (r,q) for which r is odd, or r is even and
g = 0, our calculation of N(f") agrees with that of [Halpl,Har] (obtained
by entirely different means). For this same range of integer pairs if ¢ # £1,
we also agree with [Halpl] that N(f™) is an appropriate lower bound for
M®,(f), but not as example 6 shows when ¢ = +1. This latter case is
handled by the next theorem. If z is a periodic point in the fixed point set of
J7, then let per(z) denote the smallest m|n such that z is in the fixed point
set of f™.
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Theorem 5 Let S be a solvmanifold, and N - S — T be a fibration se-
quence with N a nilmanifold and T a torus. Let [ : S — S be a fibre
preserving map inducing f : T — T. Ifn and f are such that N(f") # 0, we
may assume without loss of generality that * has ezactly N(f™) fized points.
Then

NP()= 3 NPy ((fPO)) and N&o(f) = 3 NP(f). O

bed(fm) min

If the (f*), for b € (J*) have the property that N P.((f*)s) = 0 for all
but finitely many m (this occurs for example when the (f k), are periodic)
then the formula of the first part of theorem 5 simplifies because many values
for per(b) do not need to be considered. This is illustrated below.

Example 6 The Klein Bottle revisited. We consider a map f of the Klein
bottle of type (r,1) with |r| > 1 as in example 4. Note that r must be odd.
We will calculate N P,(f) for n = 2* for all positive integers k. Recall that
on S!, the map of degree 1 has all NP, = 0, whereas the map of degree —1
has NP, = 2 and all other NP, = 0 (see [HPY]). Thus for all n > 1 we
have that NP, = 0 and so in order to compute N P,(f) by theorem 5 we
need only consider those b € &(f) with per(b) = n. Thus we need to know
which of the z; for j =0,1,...,|r" = 1| — 1 of &(f") are irreducible. Recall
from [HPY;1.8] that on the circle z; is reducible if the index j is divisible
by fme =14 r™ 4+ r?*™ + ... 4+ "™ for some m|n. Now rp,, consists of -
terms all of which are odd since r is odd. With n = 2¥, 2 is even for all m|n.
That is, for such m, r,,, is multiplication by an even integer. Thus every
reducible z; has j even. Moreover if j is even and irreducible then since from
example 4 the degree of (f*),, is (—1)’q, then NP((f*):,) = 0. So we need
take the sum in theorem 5 over the odd integers only. Thus we have that

NP(f)= X NPR((f"):,)= X NA((/M),)= X N(/M)s)=N)
j odd z,e9(/") €00/

The second step is because over the even indices N Py((/™):;) is zero, the
third by definition, and the fourth by the naive addition formula [HKW,Mc|.
We note that in this case N(f") = N(f*) =1 -r"].

Thus for n = 2* we get the perhaps surprising contrast to theorems 1 and
3 that this time it is NP,(f) rather than N®,(f) that is equal to N( m.
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Note also that for this example

k .
N&.(f)= T N(™) =1 —r|+ 3% - 1).

min i=1
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A General Variational Inequality With Application

H. BEN-EL-MEcBAIEKE® AND G. Isact
Presented by P.A. Fillmore, F.R.S.C.

ABSTRACT. We present a general multivalued quasi-variational inequality involving a
general class of multifunctions with convex as well as non-convex values. A typical application
to a minimization problem along trajectories of a differential inclusion is discussed.

1991 AMS subject classification: Primary 49140, 49324, 4TH04

The purpose of this note is to present a general existence theorem for multivalued variational
inequalities involving upper semicontinuous multifunctions that are approachable - in the sense
of the graph - by continuous single-valued functions. This class of multifunctions is very broad:
it contains upper semicontinuous multifunctions with convex, or contractible, or oo—proximally
connected values (see for instance [1], [2], and references therein). Thus Theorem 3 below uni-
fies classical theorems for convex multifunctions (see for instance [6] and problem 8.8.B there),
as well as more recent results for contractible ones ([8]); it also applies to multifunctions with
non-contractible values. A typical application to a minimization problem of a cost function
along trajectories of a differential inclusion is briefly discussed. A detailed treatment of general-
ized multivalued quasi-variational inequalities with more applications to variational inequalities,
complementarity theory, and optimization problems ([3]) will be published elsewhere. For de-
tails concerning the types of spaces and multifunctions considered here, as well as the properties

relating them, the reader is referred to [1}, [2].

Definition 1. ([2]) Let (X,U) and (Y, V) be two uniform spaces. A multifunction & : X —
P(Y) is said to be approachable if and only if VU € U, VV € V, ® admits a continuous (U, V)-
approximative selection, that is a continuous single-valued function s : X — Y verifying
s(z) € V[®(U[z)])), Vz € X. '

*Supported in part by the Natural Sciences and Engineering Research C il of Canad
'Supported by the Academic Research Program of the Department of The National Defence of Canada
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Let us mention that if X is a paracompact topological space equipped with a compatible
uniformity U, Y is a convex subset of a locally convex topological vector space, then every upper
semicontinuous (u.s.c. for short) multifunction § : X — P(Y) with non-empty convex values is
approachable. Also, if X and Y are two ANRs with X compact, then every u.s.c. multifunction
® : X — P(Y) with compact contractible values is approachable. More generally, if X is an
approximative absolute neighborhood extension space for compact spaces, and Y is a uniform
space, then every u.s.c. multifunction ¢ : X — P(Y) with non-empty compact co—proximally
connected values in Y is approachable. It is shown in [2] that if X is an ANR, (Y,V)is a
uniform space, and ¢ : X — P(Y) is a u.s.c. multifunction with non-empty values such that
the restriction ®|P of ® to any finite polyhedron P C X is approachable. Then the restriction
@|K of & to any compact subset K" of X is approachable. The main tool used in the proof of
our main theorem is the following generalization of the fixed point theorem of Ky Fan ([5]) to

approachable multifunctions.

Theorem 2. ([2]) Let X be non-empty convex subset of a Hausdorff locally convex space E,
and let ® : X — P(X) be a u.s.c. multifunction with non-empty closed values. Assume that
® is compact, that is there exists a compact subset Y of X such that &(X) C Y. If one of
the following conditions is satisfied: (i) ® is approachable; or (ii) for each finite subset N of
X, the multifunction $n : conv{N} — P(Y) defined by ¥n(z) = &(z),z € conv{N}, is
approachable. Then ® has a fixed point, that is, 3z0 € X with o € ®(zo).

Note that Definition 1, together with a simple compactness argument, implies immediately
that if X is a topological space having the fixed point property for continuous single-valued
mappings (e.g. X is an acyclic compact ANR), and if ® : X — P(X) is a u.s.c. approachable
compact multifunction with non-empty closed values, then & has a fixed point.

The main result of this note is:

Theorem 3. Let C be a non-empty compact convex subset in a locally convex space E, and let
Y be a non-empty complete convex subset of a locally convex space F. Let & : C — P(Y) be
a u.s.c. multifunction with non-empty compact values such that one of the following equivalent

conditions is satisfied: (i), ® is approachable, or (i); for each finite subset N of C, the restriction
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&|conv{N} to the convex hull conv{N} is approachable. Let ¥ : C ~— P(C) be a continuous
multifunction with non-empty compact convex values, and let 9 : C x Y x C — RU {00} be
a continuous extended proper real function satisfying: (ii)V(z,y) € C x Y, the function ¢(z,y,.)

is quasiconvex on C. Then the problem (1) below has a solution,

3z¢ € ¥(20), Iyo € $(20), such that )
\0(30' Yo, I) 2 9”(1'0, Yo, 1‘0),Vt € W(’O)‘
Proof. Define the marginal multifunction M, : C x Y — P(C) by putting:
M, u(z,y):= {u € ¥(z)i¢(z,y,u) = inf o(z,9,2)}(2,9) €C X Y. (2)

ze¥(z)

The compactness of the values of ¥, together with the continuity of , implies that M,
has non-empty compact values. The convexity of the values of ®, together with (ii), implies that
M, ¢ has convex values. We verify that M, ¢ is u.s.c.. To do this, observe that Moe(z,y) =
Y(z)N M, 4(z,y) where M, g(z,y) := {u € C; p(z,y,u) = inf,cq(s) P(2, ¥, 2)}. Since ¥ is u.s.c.
and has compact values, it suffices to verify that the graph of M, ¢ is closed. To do this, let
(Zer» Yorr o) be a net in graph(M,, ) converging to (z,y,u) € C X Y x C. Then,

(2, ¥, 8) = limg ©(Za, Yo, ¥a) = lima inf,e9(z.) P(Zas Yas 2)
=limasup infe9(zq) P(Tas Yas 2) < infreu(z) P(2, 95 2),
where the inequality above follows from the upper semicontinuity of the marginal function
inf,eg() (.- 2) (this follows from the facts that ¢ is lower semicontinuous as a real function

and that ¥ is lower semicontinuous as a multifunction). Hence, (z,y, u) € graph(M, ).

Now, since Y is convex and complete, €antd(C) is a convex compact subset of Y. Since the

product C x Zono®(C) is compact, the restriction of the multifunction M,0 to C x convd(C)
is approachable. Define a multifunction I : C x e@nvd(C) — P(C x €onvP(C)) by putting:

I(z,y) := M,9(z,y) x ®(z),(z,y) € C x cons®(C).

Being the product of compact-valued u.s.c. approachable multifunctions, the multifunction
T is also u.s.c., approachable and has non-empty compact values (see [1]). All conditions of
Theorem 2 are thus satisfied. Therefore, T has a fixed point (zo,%) € I'(zo, o), that is, zo €
¥(z0), Yo € ¥(z0) and @(Zo, Y0, Z0) < ¥(zo, ¥0,2),Yz € ¥(z0). O
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Remarks. (a) f V z € X with z € ¥(z),Vy € &$(z) one has ¢(z,y,z) > 0, then the
inequality in (1) becomes ¢(zo, ¥0,2) 2 0, Vz € ¥(z0). (b) if ¥(z) = C, Vz € C, the continuity
assumptions on ¢ can be slightly relaxed to: ¢ is l.s.c. and ¢(.,., ) is u.s.c.. (c) The following
purely topological formulation of Theorem 3 generalizes the main abstract existence result in
(8. Let X be an acyclic compact ANR, and let Y be an ANR. Let & : X — P(Y) be
a u.s.c. approachable multifunction with non-empty compact values. Let ¥ : X — P(X)
be a continuous multifunction with non-empty compact values, and let o : X xY x X —
RU{+£00} be a continuous extended proper real function. Assume that for any finite polyhedron
P contained in X x Y, the restriction of the marginal multifunction M, ¢ defined by (2) to P is
approachable. Then problem (1) has a solution.

A classical result of Aronszajn asserts that the solution set of the Cauchy problem with
continuous right hand side y’ = f(t,y),y(0) = z, is an Rs set (i.e. a countable intersection of
a decreasing sequence of compact contractible spaces), hence co—proximally connected in the
space of continuous functions (see for instance (1], [3] and references there). This qualitative
property of solution sets was extended by many authors to differential inclusions. Let K be
a non-empty subset of R and F : [0,T] x K — P(R") be a multifunction with non-empty
compact values. Denote by Sp(z; K) (Sr(z) for Sp(z; R")) the sets of Carathéodory solutions
viable in K (i.e. y € S§(z; K) if and only if y(t) € K,Vt € [0, T]) of the Cauchy problem with
initial value z :

y'(t) € F(t, (1)
¥(0) = z.

Let C be a non-empty subset of K. Assume that for any given z € C there corresponds a

a.e. in [0, T}, 3)

subset ¥(z) C C of possible return points. Starting at an arbitrary point z € C, we travel along
a trajectory y of problem (3). We then follow a return path to a point z € ¥(z). Assume that a
cost ¢(z,y, z) is associated to this journey (for instance, (z, y, z) could be the sum of an attack

cost py(z,3) and a retreat cost x(y(T'), z)). We are interested in the problem:

{ Find zo € C, 2o € ¥(Z0), Yo € SF(ze; K'), such that 4)

#(Zo, Y0, o) = infew(z0) (%o, Yo, 2)-

Let us recall that F is said to be a Carathéodory multifunction if the following conditions
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are satisfied: (i) F has convex values; (ii) y — F(t,y) is u.s.c. a.e. t € [0,T}; (iii) Vy € K,t —
F(t,y) is measurable; (iv) sup{|vl;v € F(t,y),y € K} < p(t) where s : [0,T] — [0, +c0) is
an integrable function. Let us also recall that a non-empty closed subset K of R" is said to be
a prozimate retract ([7]) if there exists an open neighborhood U of K in R™ and a continuous
mapping r : U — K (called neighborhood retraction) such that the following two conditions
are satisfied: (i) r(z) = z,Vz € K; (i) [|r(z) - z|| = dist(z, K) = infuek ||z - ull,Vz € U. Any

closed convex subset of R", and any C?-submanifold of R” is a proximate retract ([7]).

Theorem 4. Assume that C is convex compact, ¥ is continuous with non-empty convex com-
pact values, ¢ is continuous on C x C([0,T},R") x C, and ¢ is quasiconvex with respect to the
return variable z. Then problem (4) has a solution provided K is a proximate retract and F is

a Carathéodory multifunction satisfying the tangency condition
F(t,y) N Tr(y) # 0,¥(t,y) € [0,T] x K, (8)
where Ti(y) := {v € R.";li{rlloi+nf QLVL:"'—KI = 0} is the Bouligand contingent cone to K at y.

Proof. In view of Theorem 1.1 in [7], the multifunction & : K — P(C([0,T], K))
defined by &(z) := Sr(z; K),z € K, has Rs values. Moreover, one can show that ® is u.s.c..
Indeed, the multifunction F extends to a multifunction F :[0,T] x R*» — P(R") in such a
way that Sg(z; K) = &(z) (see [7] for details). One then invokes well-known results to obtain
that the solution set multifunction Sz : R* — P(C([0,T],R")) is u.s.c.. Being a closed-
graph multiselection of S, the multifunction S",‘ : K — P(C([0,T}, K)) given by S;f(z) =
Sg(z; K) = ®(z),z € K, is also u.s.c.. Consequently, ® is approachable. The conclusion
immediately follows from Theorem 3. O

Remarks. (a) Observe that in case K is an open subset of R", then Tx(y) = R", the
inwardness condition (5) being automatically satisfied. (b) Theorem 4 also holds for differential
inclusions of order k in a Banach space E.

When F is l.s.c., the multifunction Sg(.) is generally neither u.s.c. or l.s.c., nor are its values
always closed. However, S¢(.) admits a u.s.c. multiselection ® with compact values ([4]) This

fact leads to a lower semicontinuous version of the preceding theorem.
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Theorem 5. Assume that C is a closed disk D(uo,b) and that K is an open subset of R"
containing the closed disk D(ug,b + LT), where b, L > 0. Assume also that ¥ and ¢ are as in
Theorem 4. If F is l.s.c. with values in the open ball B(0, L), then problem (4) has a solution.
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ON SOME FUNCTIONAL INEQUALITIES CONNECTED
WITH QUASICONVEX FUNCTIONS

Jacek Smolarz

Presented by J. Aczel, F.R.S.C.

Abstract. We prove that functions f,g:1 — R ,where
1 ¢ R is an interval, satisfy the inequality ‘
f(ax+(1-2)y) = max{g(x),g(y)} , x,yel, 2e€[0,1]

if and only if there exists a quasiconvex function h:1 — R
such that f = h = g on I. Using this theorem we characterize
solutions of 3 siuﬁhr functional inequality connected with
quasiconvex functions. As a corollary of this result we obtain
also a theorem on approximately quasiconvex functions.

In [1] K. Baron, J. Matkowski and K. Nikodem have proved
that two real functions f,g defined on an interval IsR can be
separated by a convex function if and only if they satisfy
the inequality

f(ax+(1-A)y) s Ag(x)+(1-A)g(y) , x,yel, ae[0,1].
In this paper we prove an analogous result for quasiconvex
functions. We present also some applications of this result.

Let us recall that a function f:D — R ,where D is a
convex set, is said to be quasiconvex if
f(Aax+(1-a)y) = max{f(x),f(y)} ., x,yeD, Ae[0,1]).
Equivalently, f is quasiconvex iff for every aeR the level

set { xXeD. : f(x)=a } is convex.

1991 Mathematics Subject Classification: 26AS1, 39B872.
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Theorem 1. Let ISR be apn jinterval, Functions f,g:1 — R
fulfil the inequality
(1) f(ax+(1-a)y) s max{g(x),g(y)} , x,yel, Ae[0,1]
if and only if there exists a guasiconvex function h:1 — R
such that f = h s g.

Proof. Assume that f,g:1 — R satisfy the inequality (1)

and consider a function h:1 — R defined by the formula

h(x) := Inf{ a: xe conv g '(-=,a] }
The inequality h = g is trivial. Let xel. Fix arbitrarily beR
such that h(x) < b. From the definition of h we have
x € conv g '(-w,b]. In view of Carathéodory's theorem

(cf.[4,Th.31E])

with some x','x € g'(-=,b] and A,A e [0,1] , A + A =1

2 2

Hence
f(x) = f(Ax+ax ) s max{g(x ),g(x,)} = b .

Thus passing to the infimum we obtain f(x) s h(x).

Now we will show that h is quasiconvex. Let x,yel and
Ae[0,1). Suppose that h(x) = h(y) and fix beR such that
h(y) < b. By the definition of h we have x,y € conv g '(-»,b]
Hence

Ax+(1-A)y € conv g '(-w,b]}
and consequently h(ax+(1-aA)y) s b . Therefore
h(ax+(1-a)y) = h(y) = max{h(x),h(y)}
The proof of the first implication is complete. The

converse implication is obvious.
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The following example shows that an analogous statement is
not true for functions defined on the plane.

Example 1, Let K = { xeR® : 1x0<2 } and
e= (cos(2in/3),sin(24in/3)) , 1 =1,2,3.
Define functions f,g:K —» R putting
0 x=x0 0 xef{e_,e .ea)
£(x) = . glx) = Ve
1 x=0 11 xe{e'.ez,ea)

1t is easy to observe that inequality (1) holds.

Suppose that there exists a quasiconvex function h between f
and g. Then conv{efeyes) < hq(~n,0] but that is not possible
because h(0)z1.

In the same way as in the proof of Theorem 1 we can get the

following

Theorem 2. Let D be a convex subset of a real linear space,
1f functions f,g:D — R fulfil the jnequaljty

£( Z=1A|xl ) s max{ g(x,) : i=1,...,n} ,

n
x €D, A z0, ZB,A'z 1
for each nelN, then there exists a quasiconvex function h:D — R

such that f <= h s g.

As an immediate consequence of Theorem 1 we can get the
following theorem. An analogous result connected with convex
functions was proved in [1] (cf also [2]).
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Theorem 3. Let T>0, A function f:[0,») — R satisfies the

inequality

(2) f£(Ax+(T-A)y) s max{f(x),f(y)} , Aef0,T] , x,ye[0,=)

‘f and only if there exists a quasiconvex function h:[0,») — R
such that

(3) hsfsh,

vhere h(x) = h(—%—x)

Proof. Putting TA instead of A in (2) we obtain
f(TAx+(T-TA)y) s max{f(x),f(y)} . A€[0,1)
Hence
(4) F(ax+(1-a)y) s max{f(x),f(y)) , 2e[0,1] , x,ye[0,=)
where F is defined by the formula f(x) = £f(Tx) , xe[0,=).
Therefore by Theorem 1 there exists a quasiconvex function
h:[0,») —/ R such that
f(Tx) = h(x) s f(x)
Putting -%—x instead of x we get also
£(x) s h(—x) = h(x)
Conversely, if f satisfies (3) with a quasiconvex function

h then f and f satisfy (4) which is equivalent to (2).

As a corollary of Theorem 1 we can obtain the following
(one dimensional) stability theorem for quasiconvex functions

due to K. Nikodem [3].
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Theorem 4. Let ISR be an interval and € be a positive
constant, 1f a functjon f:1 — R satisfies the condition
f(Aax+(1-a)y) s max{f(x),f(y)} + € , x,yeD, ae[O0,1].
then there exists a guasiconvex function h:1 — R such that
' f =shs f+e .

Proof. It is enough to apply Theorem 1 to the functions f
and f+e.

Remark. We say that a function h:I — R is J-quasiconvex
iff
n(-X3¥) s max{h(x),h(y)} , x,yel
Clearly, if f s hs g on I and h is J-quasiconvex, then
(5) £(-X3Y) = max{g(x),9(y)} , xX,yel .
However the converse implication is not true. Namely, consider

the following

Example 2. Let H be a Hamel base of R over Q@ , hx'hz'ha'hc

be different elements of H and

— 1
X, =—th, +h, +h, +h,)

Define functions f,g:R — R by

0, xX*x/ 0, xeH

f(x) = ' a(x) =
1, x=x 1, xeH
[V}

Then f, g satisfy the inequality (5) . Suppose that there is

a J-quasiconvex function h:R — R between f and g. Then we get
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a contradiction:
h1 ohzoh 30!& A
4

s max{h(h,),h(h,),h(h,),h(h)} =
= max{g(h,),g(h,),g(h,),g(h )} = 0.

1=f£(x) = h ) s
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ON THE CONSTRUCTION OF BIORTHOGONAL WAVELET
BASES OF L?(R?) BY MCCLELLAN’'S TRANSFORMATIONS
Presented by G.F.D. Duff, F.R.S.C.

ABDERRAZEK KARroU!l and REMI VAILLANCOURT

Department of Mathematics and Statistics, University of Ottawa

ABSTRACT. Bidimensional wavelet bases are constructed by means of McClellan's transfor-
mation, M, applied to a pair of one-dimensional biorthogonal wavelet filters. Under appro-
priate conditions on the transfer function F(w;,w3) associated to M and on the dilation
matrix D, one can construct symmetric compactly supported biorthogonal wavelet bases of
L?(R2). The method is illustrated by a numerical example.

RESUME. On construit des bases d’ondelettes bidimensionnelles au moyen de la transforma-
tion de McClellan appliquée a un paire de filtres unidimensionnels biorthogonaux. Sous des
conditions appropriées sur la fonction de transfert F(w),w2) de McClellan et sur la matrice
de dilatation D, on contruit des bases d'ondelettes de L?(R?) biorthogonales symétriques et
a support compact. On illustre la méthode au moyen d’un exemple numérique.

1. Introduction. The design of nonseparable multidimensional wavelets [1] is com-
plicated because many one-dimensional (1-D) techniques and results do not generalize
to higher dimensions; in fact, 2-D wavelets are usually built by tensor product of 1-D
wavelets.

McClellan’s transformation [2] is used to generate and implement multidimensional
finite impulse response (FIR) filters from a 1-D zero-phase (i.e. real) FIR filter h(w) =
Y xez ke~ **“. In this note, we report on an adaptation {3] of this transformation to the
construction of nonseparable wavelet bases of R2, which preserves the number of vanishing
moments.

2. Biorthogonal multiresolution analysis of L?(R2).

Definition 1. A matrix D € Z?*2 with singular values 0; > o2 > 1 is said to be a

dilation matrix.
By Definition 1, DZ? C Z2, ||[D7!||; = 1/0; < 1, and every direction is dilated.

1991 Mathematics Subject Classification. 42C15, 94A12.

Key words and phrases. Biorthogonal wavelets, McClellan transformation, zero-phase symmetric dual
filters, nonseparable wavelets, non trigonometric Fourier analysis.
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Definition 2. A 2-D multiresolution analysis is a decreasing sequence of closed linear
subspaces of L?(R?),

{0jc.--cvacVicVpcV.,c Vo C--- C L3(R?), (2.1)
with the following properties: . '
(P1) Ve L*(R*) andVj€Z, f(z)€ Vjy < f(Dx) € Vy;

(P2) 3¢ € Vo C L*(R?) such that, V k € Z2, ¢oi(x) = ¢(x — k) is an orthonormal
basis of ;.

Scaling functions are defined by

dik(x) = |det D|™2p(D 'z - k), j€Z, keZ? (2:2)

By Definition 2, for fixed j € Z, the family ¢;x(x), k € Z?, form an orthonormal basis of
Vj, and a sampling rate of |det D] has to be achieved in order to go from one approximation
level to the next, because of the geometry of the sampling grid, ' = Z?/DZ?. Thus, to
achieve exact reconstruction, one needs to construct one scaling function and d elementary
wavelets $()(z), 1 = 1,2,...,d - 1, where d = |det D| - 1.

If |[det D| = 2 and if in (P2) we take f = ¢, then there exists a finite sequence of real
numbers oy such that ¢(z) satisfies the multiple-scale identity

¢(x) = ) axd(Dz ~ k). (2.3)
. kez?
" In this note, we consider only the dilation matrix
D, = [} _i] . with |det Dy| = 2, (2.4)

which generates the quincunx decimation with sampling sublattice
Q =7%/D,Z* = {(a,b)' € Z% a,b have the same parity}.
To use different analysing and synthetizing families of biorthogonal wavelets we use a
2-D biorthogonal multiresolution analysis.
Definition 3. A 2-D biorthogonal multiresolution analysis is a decreasing pair of families,
(V;)jez, and (V;);ez, of linear subspaces of L?(R?), each satisfying (2.1) and property (P1)
of Definition 2, and the following biorthogonality conditions:

W; 1V, w; LV, (2.5)
wherf W; and W,- are the (generally non-orthogonal) complem.ents of V; and 17_, in Vj_,
and V;_,, respectively.

The elementary biorthogonal wavelets for the quincunx decimation (5] are given by

Y(z) = Z (_l)k'al—ki,—kg¢(Dw - k), {b_(a:) = Z (—l)"'al_k,._k,a(Dm - k).

kez? keZ?
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3. Designing 2-D Nonseparable Wavelets.
Definition 4. Let
N N
h(w) = z ay, cos(nw) = Z an T (cos(w))
n=0 n=0

be the frequency response of a 1-D zero-phase FIR filter, where T;, is Chebyshev polyno-
mial of degree n. If F(w) is the frequency response of a 2-D zero-phase FIR filter, then
McClellan’s transformation associated to F(w) and applied to h(w) is

N
My(w) = ) anTo (F(w)). (3.1)
n=0
Given the Fourier transforms,

N N
h(w) =" ancos(nw),  hw) =Y &n cos(nw), (3.2)

n=0 n=0
of a pair of dual filters, then M} (w) satisfies the following two properties:

(a) The identity
h(w)h(w) + h(w + T)h(w +7) =1, Vw € [0, 7], (3.3)

holds if and only if, for all w € [0, 7],

N N
[Z a"T,.(cosw)] [E anTh (cosw)] LZ: anTh (cos(w+1r))] Lz: anTn (cos(w+1r))]
n=0 n=0 (3 4)
(B) The function h(w) has a zero of order 2m at = if and only if, for 0 < z < 1,
N
Y anTa(22? - 1) = 2™ Py m) (), (3.5)
n=0

where Py(n_m)(Z) is a polynomial of degree 2(N — m).
Property (a) provides necessary conditions on F(w) to have exact 2-D reconstruction.
Property (8) shows how to preserve the number of vanishing moments. In fact, if

Fw) =2f3(w) -1 (3.6)
and h(w) has a zero of order 2m at w, then the corresponding filter factors as

H(w) = f>™(w)Pyn-m) (f(w)), @7
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where f™(w) := [f(w)]™. By choosing an appropriate auxiliary transformation function
f(w), the 1-D and corresponding 2-D wavelets will have the same number of vanishing
moments.

We now assume that |det D| = 2. For quincunx decimation, the construction of 2-
D biorthogonal wavelets reduces to the design of a pair of 2-D low-pass filters whose
frequency responses, H(w;,w) and H (w1,w?), satisfy the identities

H(wy,wo)H(wy,we) + H(wy + mwz + M)H(wy + mwe +7) =1, Vwy,ws € [0,7]. (3.8)

Note that H and H are obtained by applying McClellan’s transformation on a 1-D
biorthogonal filter and its dual, respectively. If (3.2) denotes the Fourier transforms of
the 1-D filter and its dual, respectively, then (3.3) is satisfied. In this case, H and H will
satisfy (3.8 if the transformation function F(w),w,) satisfies

F(w + 7wy + 1) = —F(w),w2). (3.9)

The wavelets will be in LZ(R?) only if the infinite product []52, H([D™’]'w), converges;
thus necessarily
F(0,0) = 1. (3.10)

In terms of the auxiliary transformation function f(w;,w2), conditions (3.9) and (3.10)
are written as

fz(wl +Mwr+m)=1- fz(wl,wg), f£(0,0) - 1. (3.11)

Conditions of type (3.11) are necessary, but not sufficient, for exact reconstruction. In
fact, they do not ensure that the constructed wavelets are regular or even in L2(R?).

The construction of 2-D biorthogonal wavelets bases is ensured by the following theorem
[5] which generalizes Theorem 3.2 of [6] to n dimensions.

Theorem 1. Let D € Z™*" be a dilation matriz whose n singular values satisfy oy > 1,
l=1,...,n, and set d = 0102---0n. Assume that for some positive numbers, ¢, € > 0,
the dual scaling functions, %@, $(©, and the (d — 1) different dual mother wavelets, ¥,
9@, i=1,...,d~ 1, satisfy the inequalities

/e (3.12)

¢ -e-n/4 = ~c
WP < (1+ 1) ™™, 19D < (1 + lwl?)
ForjeZ keZ" andi=0,... ,d — 1, define

¥ (@) := |det D=3/ 2p)(Dz — k), ¥ (x) := |det D| /2P (D Iz - k).
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Moreover, assume that

Z Y o pa ph = b5 (3.13)

i=0 leZ"
Then, if < -, > denotes the scalar product in L?(R™), we have the wavelet ezpansion

. d-1
f= ZZ ST =3 (re) 0. rer’m,
i=1 jEZ keZ" i=1 jEZ keZn

where the series converge in the L? norm.

A trivial choice for the auxiliary transformation function fg(wi,ws) for the construction
of 2-D biorthogonal wavelet bases associated to matrix (2.4) is

fé(w,.wg) = ag + @) coswy + a3 coswy + az cosw; CoSwa,

where the coefficients ag,a;,a2 and a3 are to be determined. For quincunx decimation,
fq needs to satisfy the identity

fs(wl,w2)=l—~f3(wl + m,we + ), 0fSw Em 0<w, <.

By direct computation, ag = 1 and a; +a; = 2, and, consequently,

' 1

Fo(wi,w2) = 2f3(w1,wz) =1 =aycoswy + (1 —ar)coswz, a1 € [0. 5] g
Choosing a; = 1 for symmetry, we finally obtain

1 w 1 w
2 gt . 2wy 1.,/w2
Jo(wr,wy) =1 5 sin ( 2) 5 8in ( > )

4. Numerical Results. The 2-D biorthogonal scaling functions ¢(x) and ¢(z), and the
corresponding wavelets, ¥(x) and ¥(z), shown in Fig. 1, for the quincunx decimation,

with D; given in (2.4), were approximated numerically by six iterations of the cascade
algorithm given in [5]. McClellan's transformation function is

1
Fo(wy,w?) = i—(coswl + coswy).

The coefficients of the 1-D biorthogonal wavelet filters, h(w) and R(w), used in this exam-
ple, are given in Table 2 in [3].
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A GENERALIZATION OF NAPOLEON'S
THEOREM TO n-GONS

J. A. Lester

Presented by H.S.M. Coxeter, F.R.S.C.

On the sides of an arbitrary triangle in the Euclidean plane, construct similar
copies of an equilateral triangle and its centre. Napoleon's theorem then states that
the copied centres form an equilateral triangle.

The Napoleon-Barlotti theorem [2] generalizes this resuit to polygons.
Construct similar copies of a regular n-gon and its centre onto the sides of an affinely
reguiar n-gon; then the copied centres form a regular n-gon. (An affinely regular
n-gon is an affine transformation of a regular n-gon.)

A theorem of Rigby {4] generalizes Napoleon's theorem in a different direction:
replace the equilateral triangle and its centre by an arbitrary triangle Ajkm and an
arbitrary, non-vertex point e. On the sides of a variable triangle Aabe, construct
triangles Apcb, Aacq and Aarb all similar to Ajkm, and points 8, t and u in the same
position relative to these triangles that e is to Ajkm. Then for all triangles Aabe, the
triangles Astu are similar. In fact, they all turn out to be anti-similar to the pedal
triangle of e with respect to Ajkm [3].

We prove here a further generalization of Napoleon's theorem which
encompasses both the Barlotti and Rigby theorems. The thecrem deals with similar
copies of one polygon plus an arbitrary non-vertex point constructed on the sides of
another polygon. The polygons need cniy satisfy a very weak form of affine regularity -
in fact, they need not even be closed.
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To begin with, some terminology. We take a polygon to be a finite sequence of
points (vertices) in the Euclidean plane such that any two consecutive vertices are
distinct. Its sides are the lines joining consecutive vertices; it is non-degenerate
whenever no two consecutive sides coincide. (We do not assume that polygons are
necessarily closed; if they are, we interpret the word “"consecutive” cyclically.) The
pedal polygon of any non-vertex point with respect to a given non-degenerate
polygon has as vertices the feet of the perpendiculars from the point to the sides of the
given polygon.

A polygon will be called trapezoidal if for every four consecutive vertices a, b, ¢
and d, the first diagonal ad is parallel to the side be. This relation is preserved by
affine transformations, thus since regular polygons are trapezoidal, so are affinely
regular polygons. We illustrate some trapezoidal polygons which are not affinely
regular; any affine transformation of these is also trapezoidal.

N,

~N

Our theorem is as follows.

Theorem. Let @ be a non-degenerate trapezoidal polygon, m any non-vertex point
and P an affine transformation of @. On the sides of P, construct appropriately
oriented copies of @ and m, i.e. construct for each side of P a polygon similar to @ so
situated that the corresponding sides of ? and @ are coincident, and a point in the
same position relative to the copy of @ that m is to the original. Let R be the polygon
formed by joining the copies of m in order. Then R is anti-similar to the pedal n-gon of
m with respect to Q.

We prove this theorem by extending the notion of the shape of a triangle
developed in [3] to polygons. Some notation. For any complex number z different
from 0 and 1, define Z':= (1- 2)-'. This “cycle notation" obeys the following calculation
rules: ;

z -

=1 =21 - =-
z=:L, z=3l 7=z zzr=a.
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Another useful rule, which we leave to the reader for verification: for any non-zero 0, @,
p and o,

0+g'= p+o? it and only if (g)’(gﬁ)' = -po. .
Identify the Euclidean plane with the complex numbers C. The shape of any
triangle Aabec is defined to be the complex number
A.bc =8:-€ .
a-b
The argument and modulus of Ay, give the angle between sides ab and ac and the
ratio of their lengths, so two triangles are similar whenever they have the same shape
and anti-similar when they have conjugate shapes. The cycle notation gives the effect
of cycling the vertices of the triangle: if Ay = A then Ay, = A and Ay = A’ (an easy
calculation).

The shape of a polygon can be defined in terms of the shapes of its sub-
triangles. There are various ways to do this: see [1]for an alternative. Here, we define -
the shape of a polygon to be the sequence of shapes of the triangles formed by triples
of consecutive vertices: if (..., a, b, ¢, ... ) denotes a palygon with typical consecutive
vertices a, b, ¢, then the shape component of the polygon at vertex b is the number
B = Byeae We denote the shape component at each vertex by the corresponding
Greek letter, so a typical polygon(...,a,b,¢c,...)has shape (...,a,8,v,...)
(Note that open polygons have no shape components at their end-points. Since we
use only “local® arguments below, this does not affect the proof.) As with triangles,
shapes determine polygons up to similarity: similar polygons have the same shape
and anti-similar polygons have conjugate shapes. Note that, as a polygon, a triangle
with shape Ahas polygon shape (A &, &7).

The effect on shapes of adding and deleting vertices is easy to determine.

Lemma. Let (... a,b,c,d,e,...) beanypolygonwithshape(...,a,$,v.0,¢,...).
a) If a vertex p is added between b and ¢, then for p = Ay, the resulting
polygon has shape
(....a, Bp" P, PY. O, &,...).
b) If vertex ¢ is deleted, then the resuiting polygon has shape
(....o B, OlY, €,...).

Proof. a) Only the shape components at b and ¢ change; these become
By = Byce Bupe = fp” and M"'Aebp%:p'?-
b) Only the shape components at b and d change; these become
Boga = Doca/Buca=PlY'°  @nd By = Byec D =0/Y. 1

A few words about trapezoidal polygons and their shapes. For an arbitrary
polygon(... a,b, ¢, d, .. .), a simple calculation shows that

a-d _ ,_ -1
b c =1-(B+Y").
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The argument of the left-hand side gives the angle between side be and diagonal ad,
while its modulus gives the ratio of their lengths. Thus the polygon is trapezoidal if
and only if for every two consecutive shape components p and y, p + y~'is real, i.e. if
andonlyifp+y-'=f + y. From rule ., then, a polygon is trapezoidal if and only if
(BBY(Y = - By

for every pair 8, y of consecutive shape components. Furthermore, since any affine
transfomlation preserves parallel line segments and the ratio of their lengths,
if (...,a,b,e,d,...) is an affine transformation of the trapezoidal polygon
(...a,bed...) then for corresponding pairs of consecutive shape components
B.yard B, 7, we have fi +7'=B +y, or equivalently (from rule .),

(PrBY(Sn)" = -

We begin the proof of the theorem by finding the shape of the pedal polygon of
m with respectto@ =(... a,b, ¢, d,...). The pedal polygon is similar to the polygon
(....s8,tu,...) obtained by reflecting m through the sides of @ (dilate the pedal
polygon by a factor 2 about centre m). We use the lemma to find its shape: we add
the vertices. . ., s, t, u, ... to @ and then delete the vertices. .., a,b,c,d,.. ..

Set A= Bype 1 = Boep Nd V= Brge; then B =X, Ay =p and A =V,

since the reflected triangles are anti-similar to their criginals. A simple calculation

relates A, p andvio g and y: Au”=p-1and u'v’'=y'. Then (lemma) since & has shape

(....a,B,v.9,...), the"star-shaped” polygon(...,s,b,t,¢,u,...) has shape
(oK, AP | Wy, Vo) = (WK BB Y V)

Now delete .. .,a,b, ¢, d,. ... Atvertex t, the resuiting polygon has shape component

(lemma)

__" =2
(B/BY(/y)

-2
By
since @ is trapezoidal.
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We now find the corresponding shape component of the polygon R. Suppose
a, b e. etc. are the vertices of P corresponding to the vertices a, b, ¢, etc. of @, The
only parts of the copies of @ and m¢t that matter are the triangles with bases on ? and
apex vertices at the copies ...,8, 8,80,... of m. These triangles have shapes
Al = =\, A% =n and A,,,,,-v. We find the shape of R by adding the vertices

A A

..,8,tu,...to?Pand then deleting ....a.s,c. ,

From the Iemmag since ? has shape (. ..3, 6?8 ...), the star-shaped
polygon (.. s,b t, c.u,.. ) has shape “ R
(....)., Nﬁu TR p,y\f, v,...)= (... N BB Y V..l )
Then at vertex £, R has shape component

-A_"'K_'
e By’
since ? is an affine transformaticn of the trapezoidal polygon @.

Thus, since they have conjugate shape components at typical corresponding
vertices t and {, the pedal polygon of m with respect to @ and the polygon R are anti-
similar, and we are done.

If @ is a triangle, we recover thbys theorem (triangles are trapezoidal by
default). If @ is regular and m is its centre, we recover Barlotti's theorem (the
orientation of @ is irrelevant and the pedal triangle of m with respect to Q is regular).
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BE I Il I ra I! I Io y
sur les corps F,((G))
Ali BENHISSI
Presented by P. Ribenboim, F.R.S.C.
Introduction :

Dans la suite G est un groupe commutatif totalement ordonné, G'= {a e G;a >0 } .
IFq le corps fini a q éléments et qu ((G)) le corps des séries formelles généralisées. Un

€lément de qu((G)) sera noté f = Z f, T® avec Suppt={ue G: f,# 0} On

considére I'équation : aY? +bY +c=0 . ob a=0bce IF,((G)). Si b =0, ceute éyuation

admet une solution dans IF,((G)), définie par Y. ( %)ZuT  , ssi pour tout & € G non
2-divisible, on a (-E- )o =0.
Si b#0 .enposant: X = %Y etd= 13—. I'équation devient : X +X+ d = 0.

b-

Plus généralement , on s'interresse 2 I'équation : (¥) X%-X-d =0 avec de F 4 ((GY).
1- Remarques :

- Si (*) admet une solution f dans IFKI ((G)). les autres solutions som f-x . ou xe }Fq .
L'une d'entre elles est de tenne constant nul, On la notera I_d .

-Si det e existentdans F ((G)et xe F_ .alors {xd = x|d et|d+e =|d +|e.

2- Proposition :
2)SiSuppd C G' . alors|d = Y d¥ eF, (G).

n=0
b) Si les éléments de Suppd sont < 0 et de g-hauteurs infinies. alors :

ld= X d' 9 eF (G

n=1
Démonstration :
b) Supp |d € U 4 Supp d . qui est bien ordonné , d'aprés le cas particulier g
n

n=l q
premier . Voir [2] p. 133.

-
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Exemples :

- Uneracinede X9-X+T =0 dans qu((T)) est - h‘ = 2 an .
. n=0

- On suppose que q est premier . Soit f = 2 fnT"e F q((’I')) avec f la somme des
n=0
chiffres de 'n en base q. D'aprés {1] p. 281 ,0na: —I-XY = (X-Df.
3- Corollaire:

Toute extension quadratique de IF, ((G)) est obtenue par adjonction d'un élément de

I'une des formes suivantes :
a) VT avec fe IF, ((G)) tel que pourtout & € Supp f, & n'est pas 2-divisible.

b)|d avec d € F,((G)) tel que pourtout o € Suppd, a < 0 et de 2-hauteur finie.
4- Lemme :

Si Suppd est une partie finie de G, dont les éléments sont de q-hauteurs finies. alors
n

uexisledans qu((G)) ssid= § a, ( ™ -Tqli ).avec neN , aiequ et o; € G.
Démonstration:
n .
fetid=) aT! .
i=1

* = " Remarquons que si de qu ((G)) estde valuation v(d) <0 tel que
lde FF,((G)). alors v(d) € qG. Posons: d=a TP+ et d;=d-a T +a T

Ona: |d, =|d -aT". Si v(d))<0, onrecommence . L'opération doit s'arréter apres
un nombre fini d'étapes a cause des hypothéses sur Supp d. Dot le résulat.

S- Lemme :

Soient C et D deux parties non vides de G. On suppote que D est une partie bien
ordonnée de G', et que pour tout d € D, la partie :
Vy=[ceC;3ieN,d= q'c} estfinie non vide.

Onpose: X, = U lqjc:OSjSi,qic=d).
ceVd

Alors: X = U X, est une partie bien ordonnée de G.
deD

Démonstration :

Supposons que X contient une suite (x;) strictement décroissante.
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Ona: x; X4 » d;€ D,pour i 2 1. Lensemble (d,.i21) estinfini car les Xy sont
]

finis. Comme D est bien ordonnée, quitte A considérer une sous suite extraite, on peut
supposer que d; <d, <... Ona: d; <x; , pour tout i.L'inégalité est toujours stricte car si

d,=x, . alors x,,, < x, =d, <d,, <x,,,:absurde. Pourtout i21, ilexiste ce C
etdesentiers 0<n, S m, telsque:

' ' 'x;.lrésulteque m; - n; 2 1. Les inégalités :

n. m
x=q'cetd=q'c =q

[ L1

m. .-n. m
—_—— . itl i+l s
>d,,, >d; sécrivent: 0>x, >x,,>q X124 Ry

0>x; >x;y1 i

Donc : my,,- n;,; < m;-n;. On obtient une suite d'entiers : m,-n, >m,-n, >.2 I:
absurde.

On désigne par Gq 'ensemble des élémentsde G™ qui ne sont pas g-divisibles. Si
de [Fq((G)) . on désigne par da partie de d dont le support est formé par des éléments
o <0 etde q-hauteurs finies : et pour tout a € Gq.on pose :
td)=card{ i20; q aSuppd e N .

6- Théoréme :
~ i i’
[_g existe dans F_((G)) ssi dy =0 et d = Z Z a (TT" -T9 %), avec
aeP ie€l,
PC G, ; 1, une partie finic de N:i<ie aelF .
Démonstration :
"= " D'aprés remarque | et proposition 2, ont peut supposer que :

d=d= Z Z d ; T"”. Paridentification, pour tout o € G,. Z d‘n TI®
aeG, ieN a« ieN

existe dans qu((G)). On conclut par le lemme 4.

i1
~ . K
e lﬂ_= - Z Z a, 2 9 @ € F ((G) . d'apres le lemme 5.
aclP iel, k:i
7- Corollaire:
|d existe dans I!"2 ((G)) ssi dy =0 etpourtout o€ Gll.ona : T (d)= 0 (mod 2).
Définition :

Onpose: q=p° . obl p cstun nombre premier.

n
Pour tout n 20 . on définit e polynéme : P (X)= Y, (- Cy X1 e F_IXI.
m:0
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Ona: P} -P , =-P .
8- Lemme :

Soient K un corps de caract p et a € K. On définit la suite (a,) par ay=a et a, une
racine du polynome : X%- X - a,., dans une cloture algébrique K de K.

Alors a, est aussi racine du polyndme : P_(X) + -n"'a.

Démonstration :
P,@)+¢D"'a =-P @)+ P, @)+ (-D""a
=- n-l( 8:- a,-a,, )= pn-l @,.)+ ('I)Ml as- Pn-l(an-l) - ('l)n a.
On termine par récurrence.
9- Remarques :
- Notons par S, I'ensemble des racines du polynome P, (X) dans K . alors I'ensemble
des racines de P (X) + D™ a estégal { a,+6:0€esS ).
n-1
-Ona: P, (1-P¥}) =P Donc P, divise P, pour m<n et P,=X [] c1-P2').
m:1
ql
En particulier, si n< qk ,le polyndme P, divise P , = X - X9 .
q

Donc: S, ={0:6=0 ou P":;'(O)= 1;1€sm<n) C F gk avec égalité si n=qk.
q
Définition :
Pourd € F ((G)) . on pose 'd ={d e|"d =|"'4q .
On suppose dans la suite que ¢ est un nombre premier.
10- Lemme :

Soient F un sous-corps de IFq((G)) et de F tels que &i existe dans [F q((G)),

Si [F(1d):F] = q . alors [F(L2d): F(ld)1 =gq.
Démonstration :

Supposons que | 2de F(Ld ). Alors il existe P(X) € F(X] tel que Iii =P(d ).
Donc: PY(jd )-P(Id )- |d =0. Puisque X%-X-d estiméductible sur F et admet
I[d et Ld -1 comme racines, alors l'application {d —— |d -1 définit un F-
automorphisme ¢ de F(Ld ). En appliquant ¢ 2 I'égalité précédente, on trouve :
PY(Ld -1)-P(Ld -1)- Ld +1 =0. Orpuisque ( | d -1); # 0 . d'aprés le théoréme 6 .
I'équation X%- X - | d +1 =0 n'a pas de solution dans [ ((G)).
11- Théoréme :

Soient ne N* . F un sous-corps de H"q((G)) et de F tels que lld existe dans
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F(@G)) et |[de F.
Alors le polynéme minimal de Iﬂ sur F estégala:

n
Pn(X)-F(-l)"” d=2 (-l)m C:‘" qu-f-(-l)n” d.

m:0
12- Remarque : ‘
Si Suppd € G* ou les éléments de Suppd sont < 0 etde g-hauteurs infinies, alors
’lg existe dans [F ((G)) , pour tout n2 1.
Exemples :
a) La série de Morse fe FF,((T)), définie par f, =0, f, = 1 et les formules :

f, , = f,f,. =f+l,pour i21 ,satisfait: (14T)° >+ (14T f+T = 0.
2i-1 i 2i i
o _ 4T 2 T _ R . . w, T
Posons : g = T f. Alors g +g+——l+,r = 0. Le polynome minimal de (ﬁ )
n
m " T
sur [F-(T) estégala mZ;o c X * T

-1

b) La série f= Z T de qu((Q)) est racine du polynéme : X9-X-T . '

i1

n
Le polynome minimal de | " T ' sur F_((T)) estégala: H™em x4 ) ik
q ferd n
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AN EMBEDDING INVARIANT FOR OPERATOR SPACES

Florin Pop* and Roger R. Smith*

Presented by M.-D. Choi, F.R.S.C.

Abstract
We investigate the question of whether the maximal and minimal C*-norms agree on
the tensor product of two C*-algebras A and B. An isomorphism invariant w(E) for an
operator space is introduced, and we show that these C*-norms are distinct when w(A4)
and w(B) are finite. In particular our results apply to the tensor product of von Neumann

algebras.

Introduction. It is well known that if 4 and B are C*-algebras then there are two

distinguished C*-norms on the algebraic tensor product 4 ® B:

n

z a; d b

Z"(“i)®l’(bi)

i=1

= sup

B(HON)

over all representations 7: A — B(H), p: B — B(K) and

over all commuting representations 7 and p of 4 and B. For every other C*-norm 8 on

A ® B one has

3 wlai)n(bi)

n

Zal @"i

= sup

" * "min 5 /’ _<. " * ”max-

A C*-algebra is called nuclear if for every C*-algebra B

" : "min = “ * "max on 4 ® B

* Partially supported by a grant from NSF
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Although the theory of nuclear C*-nlgebra has had a deep and broad development, the
problem of deciding whether the min and max norms are equal on A ® B for a given pair
of C*-algebras A and B is still not well understood.

S. Wassermann proved [6] that if C(H) denotes the Calkin algebra, then on C(H) ®
C(H) the min and max norms are different. E. Kirchberg (3] showed that the min and
max norms are equal on B(H) @ C*(F ) where C*(F) is the full C*-algebra of the free
group Fo, on countably many generators. We refer to [4] for more results on equality of
the two tensor norms.

An old question of Guichardet concerned the case B(H)®@ B(H ) and recently M. Junge
and G. Pisier [2] proved that the min and max norms are different on B(H) ® B(H).

In this note we prove a similar result for Af @ N where Af and N are von Neumann
algebras not finite of type I. Our result is in fact a consequence of a more general one
(Theorem 3) which involves an embedding invariant for operator spaces and it is our belief

that this invariant is likely to have further applications.

Preliminary results. Denote by OS, the set of all n-dimensional operator spaces. We

identify two operator spaces if they are completely isometrically isomorphic. For E and F

in OS,, define
ds(E,F) = inf{||u]les - |~ )lcs: w: E — F completely bounded isomorphism}.

It has been shown [5] that OS, together with 6( E, F) = logd.s(E, F) is a complete

metric space. Morcover ([2]), this space is nonseparable for n > 3.

Proposition 1 ([2]). Let A be a separable, infinite dimensional C*-algebra A. For every
8 > 1 there is an integer n(68) such that for every n > n(8) there exists an operator space

Ey € OS,, such that for any n-dimensional subspace E C 4 we have d(E, E,) > 6.

Lemma 2 (1), 5.2). Let E and F be operator spaces. If E is finite dimensional, then

the operator spaces CB(E, F) and E* O F are completely isometrically isomorphic.
mn

Here CB(E, F) denotes the space of all completely bounded lincar maps between E

and F. Let us now define the embedding invariant. Let E be an infinite dimensional
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operator space. Define
w(E)=sup sup inf{|jullcs-lu~lles u: F — u(F) C E completely bounded embedding.}
n FEOS,

It is clear that w is invariant under conpletely isometric isomorphisms. Proposition 1
shows that for every separable infinite dimensional C*-algebra A, w(A) = co. It is obvious

that w(B(H)) = 1. We obtain more properties of w in Proposition 4.
The main result.

Theorem 3. Let A and B be infinite dimensional C*-algebras. If w(A) < oo and w(B) <
ocothenA® B#A @ B.

min max
Proof: To get a contradiction, assume that 4 9 B = A ® B. Fix é > 0 and choose,
by Proposition 1, Ey € OS, such that dcg(EoI.nE ) > fc;:'a:\ll n-dimensional subspaces
E C C*(Fy), where F, denotes the free group on countably many generators. It is
easy to sce that if A is any infinite set, then also d.s(E,Eq) > 6 for all n-dimensional
subspaces E C C*(FA). Let then A be such that there exists a surjective *-homomorphism
m: C*(Fp) = B. If J =kern then B = C*(F,)/J. The complete contraction
AQCFy) — A O C(Fr)/T =40 B

min min

vanishes on A ® J, therefore it induces a complete contraction
min

AQC(F\)/A & T — 4A0QB.

min min min

It follows that the quotient normon 4 2 C*(F,)/4 @ J induces a C*-norm on A ®@ B.

H“n
Uniqueness of the norm on A © B implics that thc C *-algebras

A®B and 4 C'(F\)/-l ® J are isomorphic.

min
There is a completely bounded embedding j: Eg — j(Eo) C B such that both [|j]lcs and
[l5="Hlcs are at most w(B)'/2. By Lemma 2, j can be vicwed as an element jo € Eg = B
of norm [|jo|| < w(B)"/2. Moreover, jo can be viewed as an element j, € A ® B of
norm ||, || € (w(A)w(B))'/2. We claim that for every ¢ > 0 there is a lifting jo Of Jo to
E; = C*(Fa) of norm ||jo|| < (w(A)w(B))"/? +¢ and (Idg; ® 7)(jo) = jo.
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Indeed, if jo = Z ei ® #;, then j; has a lifting J, = Z &R+ Z a; ® h; of norm

I7:0l < (u.v(A)u.v(B))'/2 + € such that (Id4 © 7)(7;) = j1, where
e, €E;, a;€Ad, r,€C*(Fp), hieJ.

Let (u,) C J be an approximate unit for 7. Then

(I @ = wa)ll < (w(AN( B))'? + ¢

P
Zc,- Azl —u,) + Za,- Qh(I - u,)

< (w(A)(B)'? +e.

For a large enough we get that

zei @Ii([_ "n)

< (w(A)(BNY/? 4.

If we denote jo = Z e; D xi(I —ugy) then

l7oll < (W(A)(B)'? +¢ and (Idgs © 7)(o) = jo.

Let j: Eo — C*(FA) be the operator associated with jo (Lemma 2). Then [|jfls <
(W(AW(B))'/? + € and 70 j = j. It follows that j is an embedding and

des(Eoy j(Eo)) < lImlles - Nilleolli ™" lles < ((w(A)o( BN'? + e)( B)'/?

which is a contradiction if we choose § > w(.4)!/2w(B) and ¢ small enough. This concludes

the proof.

Proposition 4.
a) Let A be an infinite dimensional C*-algchra. Then w(A) = oo if A is either separable,
nuclear or the full C*-algebra of a frce group.
b) w(C(H)) = 1 where C(H) is the Calkin algebra.

c) w(A) = 1if 4 is a von Neumann algcbra not finite of type I.

Proof: Note that A C B implies w(B) < w(A).
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a) This was proved earlier for separable C*-algebras, the nuclear case follows from Theo-
rem 3 and for free group algebras it follows from Kirchberg's result and the above remark.
b) Let (pn)a1 be an increasing sequence of finite dimensional projections in B(H),

li'!'n Pn = I. Since for every T € B(H) onc has

Tl = sup [P Tpull

it follows that the map T — @ p,Tp, establishes a completely isometric embedding
B(H) - &M, C B(H). The di:tnnce from @ p,Tp, to the compact operators is equal
to ||® p,.T?p,.ll = [IT|l, therefore B(H) embeds"completely isometrically into C(H), hence
w(C(nH)) = 1. This recaptures Wassermann's result on C(H) ® C(H) [6].

c) Let R be the hyperfinite type IT; factor. We first show that w(R) = 1. Let (en)n>1 be
a sequence of mutually orthogonal projections in R, Y ¢, = I. Then B(H) C ® M, C
® e, Re, C R where the above inclusions are complct::%; isometric embeddings, tl':erefore
u';(R) = 1. If Ais of type Io, Il or III, then 4 contains a copy of B(H) so w(A) = 1.
If A is of type II, then A contains a copy of R and since w(R) = 1 we get w(A) = 1.

Remark. In all known cases the value of w is cither co or 1. Is there any C*-algebra A

for which 1 < w(A) < 00?

REFERENCES

1. D. BLECHER, and V. PAULSEN, Tensor products of opcrator spaces, J. Funct. Anal.
99 (1991), 262-292.

2. M. JUNGE and G. PISIER, Bilinear forms on exact operator spaces and B(H)® B(H),
preprint.

3. E. KIRCHBERG, Commutants of unitaries in U /{ F-algebras and functional proper-
ties of exactness, J. reine angew. Math. (to appear).

4. E. KIRCHBERG, On non-scmisplit extensions, tensor products and exactness of
groups C*-algebras, Invent. Math. 112 (1993), 449-489.

5. G. PISIER, Exact operator spaces, Colloque sur les algébres d’opérateurs, Astérisque
(to appear).

6. S. WASSERMANN, A pathology in the ideal space of L(H) & L(H), Indiana Univ.
Math. J. 27 (1978), 1011-1020.

Department of Mathematics Texas A&M University College Station, TX 77843
Received November 9, 1994




(226181. Math. Rep. Acad. Sci. Canada -~ Vol. XVI, No. 6, December 1994 decembre

On positive solutions of Emden - Fowler
equations

ADRIAN CONSTANTIN
Presented by G.F.D. Duff, F.R.S.C.

Abstract. We present a necessary and sufficient condition for the
nonezistence of any positive solution of the equation Au+p(z)|u|"sgn(u) =0
in ezterior domains of R2.

Let us consider the Emden-Fowler equation
(1) Au + p(z)|u|"sgn(u) =0, ¥>0,

where p :  — R, is continuous and nonnegative in some exterior domain
Q C R? (Q is called exterior if {z € R?: |z] > a} C Q for some a > 0). A
solution of (1) is a function u € C?(, R) satisfying (1) in Q.

Since the linear case 4 = 1 is'well-understood (see [1]), we will consider
the problem of the nonexistence of positive global solutions of (1) in the
sublinear (0 < v < 1) and superlinear (y > 1) case.

Let us denote

pu(t) = inf {p(2)}, P'(t) = sup {r(x)}, t>o0.
Theorem 1 [2]. If equation (1) has no positive solution, then
(@) /: * ilog t)"p*(t)dt = 00, 0<y<1,
@) [ tttog (9t = 00, 7> 1.

It turns out (see again [2]) that these conditions are also sufficient if
lim sup,_, o, { 58} is finite.

Key Words and Phrases: Emden-Fowler equation, positive solution.
1991 Mathematics Subject Classification: 35B.
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This assumption permits only small fluctuations of p on the sphere S, =
{z € R?: |z| = r} as r — 00, and we would like to show that one can allow

li sup ol (t)} =

provided we control the growth.

Let R be the class of nondecreasing functions w € C(R4, R4) with
w(t) > 0 for t > 0 and lim, .o w(t) = oo, satisfying i~ ;d(’;; = 00. Ex-
amples of functions w € R are linear functions and w(t) =tin(t+1), t > 0.

Theorem 2. Lety > 1. If there is a K > 1 and a function w € R such
that
p*(t)
(4) Splt), t2K,
w(Jf s(log s)p*(s)ds) ="
then (3) is the necessary and sufficient condition for the nonezistence of
positive global solutions to (1).

Proof. The necessity follows by Theorem 1.
In order to prove the sufficiency, we intend to show that if (3) holds,
then

(5) [ tttog tputt)ar =
Let us denote
¢ t
V() = /1 s(log s)p.(s)ds, W(t)= /‘ s(log s)p*(s)ds, t2 K
By (4) we deduce that

t(log )p*(t) X
w({ slog pH(s)ds) + 1" =

V'(t) 2 t(log t)p.(t) 2

and an integration yields

V()2 V(K)+ e t>K
- wi) w(s)+1" "=
Let A > W(K) be such that w(t) > 1 for ¢t > A. Since lim¢.o W(t) = oo
in view of (3), there is an M > K with W(t) > A for t > M. We obtain

w()
V(t)>V(K)+/ )+12V(K)+2/ ‘:‘:) £> M.
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Remembering the fact that w € R, this yields (letting ¢ — 00) lim¢—oo V(2) =
0o, so that (5) holds.

Refering now to another result of [2], condition (5) is sufficient to guar-
antee that there are no positive global solutions to (1).0

Similarly, we can prove

Theorem 3. Lety € (0,1). If there is a K > e and a Junction w € R
such that
p(t)

w(/; s(log s)1p*(s)ds
then (2) is the necessary and sufficient condition for the nonezistence of
positive global solutions to (1).

) Sp(t), t2K,
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SERIES SOLUTION OF FORWARD EDDY CURRENT PROBLEM FOR A
CYLINDER WITH NONCONSTANT WALL PROPERTIES

A.A. KOLYSHKIN AND REMI VAILLANCOURT

Presented by K.B. Ranger, F.R.S.C.

ABSTRACT. The change of impedance in a double conductor line parallel to an infinitely
long metallic circular cylinder consisting of a homogeneous inner core and an outer layer is
found in the form of an infinite series. The relative magnetic permeability, u(r) = r°, and
the conductivity, o(r) = ¢{?r*, of the outer layer vary with respect to the radial coordinate,
r, and a and « are real constants. Numerical results are presented in the form of figures.

On exprime le changement d'impédance d’un double fil conducteur parallile & un cylindre
circulaire infiniment long formé d’une double couche métallique au moyen d’une série infinie.
Le noyau cylindrique est homogéne, mais la perméabilité magnétique relative p(r)=r"et
la conductivité o(r) = o!®r* de la couche extérieure sont fonctions de la coordonnée radiale
7, ol a et x sont des constantes. On présente les résultats numériques sous forme de figures.

1. Introduction. Since analytical solutions to eddy current testing problems usually as-
sume constant properties of materials (1], analytical solutions are needed for media with
spatially varying properties. Particular cases are solved in [2]-[4].

This note reports on a series solution [5] for the change of impedance in a double conductor
line parallel to a double-layered metallic cylinder for which the magnetic permeability, u(r),
and the conductivity, o(r), of the outer cylinder are functions of the radial coordinate, r, of
the form p(r) = r®, o(r) = o!?r*, where a and « are arbitrary real numbers. The solution is
found for single wires and then superposed for double wires. Numerical results are presented
in the form of curves in Fig. 2.

2. Governing equations. Consider a double conductor line, w; and ws, parallel to a two-
layered metallic cylinder. The radii of the inner core and outer annular shell are 5, and 5,
respectively, as shown in Fig. 1. The conductivity, o2, and the relative magnetic permeability,
{42, of the inner cylinder are constant, but for the outer shell,

a)=0"(7)"  wmo=(})" )

where @, x € R, 0{® = const and ! is the distance between the wires. A solution to a similar
problem for constant o, and p, is found in [6]. Let (r,y, z) be cylindrical polar coordinates
centered at O with the z-axis parallel to the cylinder axis.

Since we neglect the displacement current, Maxwell’s equations reduce to

(a) curl E = -%. ) wrl H = o(r)E+ I, () B =pou(r)H,  (2)
where E and H are the electric and magnetic field strengths, respectively, B is the mag-
netic induction vector, I° is the external current density, o(r) is the conductivity of the

Key words and phrases. nondestructive festing, vector potential, Bessel functions..
This work was partially supported through NSERC of Canada, Grant No. A7916 and the Centre de

recherches mathématiques of the Université de Montréal.
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FIGURE 1. Double conductor line, in free space, lying in a horizontal plane
above, and parallel to, a two-layered conducting circular cylinder.

medium and o and p(r) are, respectively, the magnetic constant and the relative magnetic

permeability of the medium.

Introducing the vector potential A by the relation B = curl A and using (2)(a) we obtain

ot
where ¥ is the scalar potential. We assume that A, ¥ and I* are periodic in ¢,
A=Ay, 2)e™,  Y=9(npz)e, I*=1(rpz)e",
where j = /1. By symmetry, Ais parallel to the z-axis and independent of z,
A(r,0,2) = (0,0, A(r, v)).

Using (2)-(5) and basic formulae of vector calculus we obtain

1 ~ 1~ 1 dp
———pgraddivA4 — % curl A
po(r) & Hon(r) . Hop(r) dr

= —jwo(r)A —o(r)grad g + I".

©)

(4)

()

(6)

We need to solve equation (6) in three cylindrical regions (see Fig. 1), free space Rp : py <

r < 0o, outer metallic layer R, : 5, < r < p;, and inner metallic core R, : 0 < 7 < ga.
Taking the z-component of (6), using the gauge

1

divA =~ :
oy e div A = ~olr) grad
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and denoting A(r, v), by Ai(r,¥) in R;, i = 0,1,2, we obtain

%Ay 10 182
o+ 1 G o = Il = )6l = o)+ bolBr — o~ a), (1)

PA 11 dm aAl 184, .
ar2 [; Tanw| o TR - jwoy(r)pom (r) Ay =0, ®)
8%4; 104 1 84, |
a + - ; ar2 + ﬁ%{p_: — Juﬂzﬂop,zAz = (. (g)

3. Mathematical analysis. We introduce the dimensionless variable rq = r/l, where the

distance, !, between the wires is chosen as unit length, and note, from (1), that pu,(rg) =

r$ and oy(rg) = 0/@r§. Henceforth, the subscript d will be omitted, and r, and r; are

dimensionless variables.
From (7)-(9), we obtain the following system of equations:

0?4y 10A, 108%°A

Bt t g = Ml —n)sle - ¢1) + el lE(r — ra)ilp — e, (10)

62A1+1—03A1 18A1

or? r Or  r2dp

8’A, 1 3142 1 8%A,

Brt * e r or + ﬁa_cpz

where f; = l\/wo©®yg and B, = |,/w0zliopz. The boundary conditions are

04,

- jBire* A =0, (11)

1 94,

A0|T=D| = Alln:pp 5 iy = I 5 Y=P| (13)
1 BA, 1 6.42

Ailrep = Azlrmog, o e = e — 5 14

tlr=r, g i g Or le=py 2 or le=p, ( )

where 1y = %, 12 = p3 and py = pi/l, p2 = pa/l.

Since system (10)—(14) is linear, its solution can be expressed as the sum of two solutions.
For the first solution, only the first term on the right-hand side of (10) is present. For the
second solution, only the second term on the right-hand side of (10) is present and we replace
1 by 73, ) by 2 and I by —I in the first solution.

Since we are interested in the change of impedance in the double conductor line due to the
presence of the conducting cylinder, we shall consider only the induced potential, AlMd(r, ),
which, in Rp, can be written as the sum of two parts:

ARY(r,0) = A5 (r, ) + AL (r, ),

where the first and second terms on the right-hand si_de correspond to the wires w; and ws,
with coordinates r = ry, ¢ = @, —00 < z < oo for i = 1,2, respectively.
To obtain the first solution, we expand Dirac’s delta function in a Fourier series,

1= ' lv >0’
J(w_wl)=;26ncosn(¢_¢l)l Where 6"={ 1/2 Z=0
n=0 ' ,
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and seek the solution to (10)-(14) in a Fourier series,
. 1=
Ailr @) = = 3 8atia(r) cosn(p — ). (15)
n=0

Substituting (15) into (10)—(14) we obtain a system of ordinary differential equations,
d’ay, 1dag, n?

&t T 7 gy g ten = —pallE(r =), (16)
day, 1 —-ada, n? .

dr;n + r = d:‘ - 1:_2' Qn — Jﬂ?ra+‘aln =0, (17)
d%a 1 da. n? )

dr:" +;d—:"—;;aan—1ﬁ§azu=0. (18)

with the boundary conditions

daon L day,

onlr=py = Qinlr=pys dr le=p, - uy dr b=y’ (19)
1 day, 1 daz,
o — s T — — . 2
alnlram a2n|r—mp i dr lesp,  p2 dT lr=p, (20)

The structure of the solution to equation (16) depends on the value of n.

It is convenient to consider two cylindrical subregions, Roo: py <r <riand Ry : r > 1,
of region Ry, where 0 < ¢ < 27, —00 < z < 00.

First, if n = 0, we denote the solution of (16) in Ry and Ry, by a‘(,%) and at(,},), respectively.
Bounded general solutions of (16) in Rop and Ry, are

afg(r) = Ciolnr +Cp,  afg(r) = Co, (21)
respectively. Second, if n # 0, bounded general solutions to (16) in Rgo and Ry, are
a)(r) = Ciar + Conr™,  af(r) = Car™, (22)

respectively. The general solution to equation (17) is (see [7])

@1n(r) = Cuar®Jp(br°) + Conr®Yp(brc), - (23)
where Jp(s) and Y;(s) are Bessel functions and
_a _a+k _ b= _Vai+an?
e=3 =3~ +L  b=TS pETm—t
A bounded general solution to (18) is
az(r) = CenJa(kr), (29)

where k = f,\/=j. The structure of (23) and (24) remains the same for n = 0,1,2,...,
except for the case a + x = —2 where (17) degenerates into Euler’s equation.
We solve (16)-(20) in the case n = 0. Since the vector potential is continuous at r = r,

we have a{Q(r,) = ald(ry), that is

Ciolnry + Cy = Cjo. (25)
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Multiplying (16) by r, integrating with respect to r from r; — ¢ to r; +¢ and taking the limit
as € — +0, we obtain
dagz dag - 2
dr lrar, dr lyer, = ~holl’. (26)
Using (21), (23) and (24) (for n = 0) and determining the constants C)q, Cag, ..., Ceo from
(19), (20), (25) and (26), we obtain the first term of the Fourier series of A%V (r, ) as

() (r) = ——__HasiuTPrip3“pi{dodp (bof) + ¥, (bof)
dolaJp (bp§) + bep§Jy, (bpf)] + aYy (bpf) + bepfY; (bpf)’

(27

where
_ iiakpaJy(kpa)Yy (605) — pado(kes)laYp (bog) + bepsY! (b05)]
P12kp2Ji(kpa) Jp (bp5) — paJo(kpa)laty (be5) + bep§J; (bos)] "
and ’ denotes ordinary derivative of a function of one variable.
The solution to (16)-(20) for n = 1,2,..., can be found in a similar way. Thus,

(W:) 2
A(Wl)(r p) = (r) poll’r z

o+ e osn(p - vu), (28)

ot r" b

where

bu = pnnldnJp (b5) + Y, (b65)] — dalaJ, (595) + bepiJy, (565)]
- aY;, (bp§) — beatY, (bpf),
bz = p1unldnJy (b05) + Y, (595)] + dalay (695) + bept T, (b65)]
+ aY;, (bp}) + bepY; (bpf) ,
_ t1zkpaJy (k)Y (b65) — paJn(kps)[aYy (bp5) + bepsYy (bos)]
t12kpaJ; (kp2)Jp (bp5) — paJn(kpa)laly (bo5) + bepsJj (bo3)]
and a, b, c and p, in the first term (27) on the right-hand side of (28), correspond to n = 0.

To obtain Af,“")(r, ), we replace ry, ) and I in (28) by r,, 2 and —1I, respectively. Adding
AL(r, p) and AS?)(r, ) we have

Alrd(r, ) = PolBr = 73) 03" pildoJ, (565) + Y5 (bo)]
¥ =8 2r do[aJ (bpf) + bepfJ;, (bpf)] + aY}, (bof) + beptYy (bof)
poIl’ [ _ b] ]
n}; nr,r" 05'1(‘# 1) 2nz=:l Arpr bra - cosn(p — p2) (29)
The induced change of impedance is given by the formula
ind _ JW [ aind _ wpol?
zoa =22 A dt = 5 20, (30)

where L is the contour of integration along the two wires in the opposite directions over one
unit of length. Hence, from (29) and (30) we obtain

Zo=j 5 [7'1 (-p—l)h +r2 (%)211 —(ri+rn) (‘g:‘)" (%)"003 n(p1 — ‘Pz)]- (31)

n=1 nb)z n
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@ : (®)

FIGURE 2. |Z| against z (a) for magnetic permeability p)(r) = r® and (b)

for conductivity o,(r) = o'9r*, of medium R,.
4. Numerical results. Formula (31) was used for computing Z; for different values of the
parameters of the problem by means of Mathematica, version 2.2.2, on a Sun Microsystem
Sparc 10, which can evaluate Bessel functions of fractional order and of a complex argument.

InFig. 2, m(r) = 7%, 01(r) = 0", pyy = p¢, a2 =p3, p2a=1, b = B, = 1 and h = 0.1,

and | Zo| is plotted against the horizontal shift, z = r, sin; +1/2, of the centre of the double
conductor line measured from the vertical axis ¢ = 0. In Fig. 2(a), Kk = 0, p; = 0.4 and
p2 = 0.3. It is seen that |Zy| increases as the change of magnetic permeability across the
layer p; < r < p; becomes stronger, a fact which is important in qualitative analysis of eddy
current testing of media with varying properties. In Fig. 2(b), uy(r) = r~2, p, = 0.3 and
p2 = 0.2. It is seen that |Z;| decreases with « and increases with x.
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QUASI-HEREDITY OF ENDOMORPHISM ALGEBRAS

V. Dlab, F.R.S.C., P. Heath and F. Marko

ABSTRACT. Quasi-hereditary algebras were introduced by Cline-Parshall-Scott (see
{CPS] or [PS]) to deal with highest weight categories which occur in the study of
semi-simple complex Lie algebras and algebraic groups. In fact, the quasi-hereditary
algebras which appear in these applications enjoy a ber of additional properties.
The objective of this bricf note is to describe a class of lean quasi-hereditary alge-
bras [ADL) which possess such typical characteristics. The complete proofs of the

stat will app !

Let A be a finite dimensional (associative) algebra. Let {S(A)]A € A} be the
set of all non-isomorphic (left) simple A-modules indexed by a partially ordered
set A. For every A, denote by P()) the projective cover of S(A) and by A(A)
the corresponding standard module, i.e. the maximal factor module of P(A) with
composition factors of the form S(x) for & < A.

We say that A is quasi-hereditary with respect to A if there is a linear order
At € A2 € -+ < A, on A refining the given partial order and satisfying the
following conditions: for each 1 < i < n,

(i) the standard module defined above equals

A(XN) = P(a\.»)/trace(j?i P(X;) — P(X:)),

(ii) the endomorphism algebra of A(J,) is a division algebra and

(iii) P(A;) can be filtered by A(Aj)'s, j > i.
Here, trace(X — Y) denotes the submodule of Y generated by all homomorphic
images of X in Y. The latter condition is equivalent to the fact that the factors

lrace('ék P();) — P(Xi))/trace( P()j) = P(A))
J:

n
®
i=k+1

of the trace filtration of P();) are direct sums of A(A:)’s (i < k < n) [D).
Throughout the note, R denotes a (finite dimensional) commutative local self-
injective K-algebra with a splitting field K, and A the endomorphism algebea of a
(finite) direct sum X = '\?A X(A) of pair-wise non-isomorphic (finite dimensional)
local-colocal R-modules X (A), i.e. such that both X(A)/radX ()) and soc.X()) are
simple. Write, for each A, ex = myps, where py : X — X(A) and m, : X()) —» X

1991 Mathematics Subject Classification. Primary 16D99, 16P99, 16599.
This research was supported in part by NSERC of Canada.
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are the canonical projection and embedding, respectively. Thus, for all A € A,
S(X) = Aey/radAe, are the (pair-wise non-isomorphic) left simple A-modules,
P()X) = Aey their projective covers and I(\) = Homg/(erA, K) their injective

n
hulls. Write also &, = J_e¢; for 1 <t < n and €n4; = 0.

i=t
Observe that, for each X (), there is a (unique) embedding into R and that every
R-homomorphism f : X(A) — X(x) is induced by multiplication by an element
r€ R: Given f, there is an extension f : R — R and every endomorphism of Rp
is given by multiplication,

0 X(2) Rr

1| |7=r

0 —~—— X(x) —— Rp

Thus, in particular the image Imf is isomorphic to a submodule of X()). As a
result, the following three statements are equivalent:

(a) R2 X(x) 2 X(A);

(b) there is a monomorphism from .X () to .X'(x);

(c) there is an epimorphism from X () to X(A).

Furthermore, each X (1)) is a factor module of R and as such has a natural struc-
ture of a local commutative selfinjective K-algebra; thus Homg (X ()), () = X(A).
As a consequence, A = EndgrX is an algebra with involution and thus there is a
duality functor D : A-mod — A-mod satisfying D(S) ~ S for all simple A-modules
S. Indeed, the map » : A — A defined for

fiX 2 x(a) Lt x(x) 2 X
by

10 X 25 X(x) = Homp (X (x), ) 2omif=aK),

Homg (X (M), K) =~ X(\) =~ X
is an involution. In addition to the relations (ab)* = b*a® and (a*)° = a, we have
also e = ea for all A € A. Hence, we get a duality functor D if, for every right
A-module Y4 we define the left module 4Y*° by putting Y* =Y and ay = ya®, and
set D(Ya) = Homg(aY*, K). Thus D(P(A)) = I(A) and D(S(A)) = S(A).

The main result of this paper is the following theorem.

THEOREM. Lel R be a commutative local selfinjective K -algebra over a splitting
field K; dimgR = n. Let X = {X(X)|XA € A} be a set of local ideals of R indezed
by a finite partially ordered set A reflecting inclusions: X(X') C X(\”) if and only
if X > M. Let R = X()\) belong to X. Then A = End("?AX(z\)) is a quasi-

hereditary algebra with respect to A if and only if
(i) card(A) = n and
(ii) radX(A) = 3 X(x).
A<k
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Let us add that under the conditions of the theorem, we can easily verify the
following facts:

(a) as mentioned earlier, there is a duality functor on the category of A-modules
which fixes the simple modules S(1), A € A;

(b) the algebra A is lean (see [ADL]) and every standard module A(A) has a
simple socle isomorphic to S(A;);

(c) [A() : S(x)) < 1 for all A, & € A; in fact, [A(A) : S(x)] = 1 if and only if
x < A, and thus dimx A()) = card{x|xc < A};

(d) R/radR =~ X()\,) € X, dimg P()\,) = n and generally

dimg P(x) = ) dimgA(A);
Alx

thus dimyg A = ¥ (dimg A(N))%;
A€A

(e) the dominant dimension of A is > 2 (see [T]).

The proof of the sufficiency of the theorem is based on the following four lemmas:

Lemma 1. The set {z\|A\ € A}, where X(\) = z,AR, is a K-basis of the vector
space Ry, and the set of all ideals X(I) C R generated by {z|\ € I}, for every
subset I of A, forms a distributive lattice with respect to addition and intersection.

Lemma 2. Every R-homomorphism f : X(A) — ¥ X(u) C R for some I C A,
pel
factors through the canonical (summation) map p : $' X(p) = ¥ X(p). In par-
HE uel

ticular, every R-homomorphism f : X()\) — radX(x) factors through the canonical
map ? X(p) — radX(x).
>

Lemma 3. For every A € A,

{m.mapalX(2) € X(x)},

where m,, denotes the embedding X () C X(x), is a K -basis for the (left) standard
module A()). In fact,

A(A) = P(A)/tracc(“?‘\ P(p) — P())).

Let us point out that Lemma 3 describes the structure of the standard modules:
the factorizations m., = m,,m, correspond to the embeddings X(X) € X(p) C
X (x). In particular, every standard module A(A) has a simple socle generated by
ma,», and hence is isomorphic to S(A;).
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Lemma 4. If X(j) C X(i), then AcjAei/Acjs1Ae; = A(5). If X(5) € X (i), then
AgjAe; = Agjy Ae;.

On the other hand, the proof that the conditions (i) and (ii) of the Theorem
are necessary uses the following lemma together with the previously mentioned
duality D : A-mod — A-mod fixing simple modules and Bernstein-Gelfand-Gelfand
reciprocity law.

Lemma 5. Let f : X(i) — X(k) be an R-homomorphism. If f is a monomorphism,
then my fp; ¢ AeiyrAe:. If f is not a monomorphism, and A is quasi-hereditary,
then my fp; € Aeiy1Ae;. Therefore, if A is quasi-hereditary, then the multiplicity
[A(3) : S(k)) = 1 for X (i) C X (k) and [A(i) : S(k)]) = 0 otherwise.

Remarks

Let us conclude this note with a few observations and examples.

First, the (ordered) quiver Q4 of the algebra A is given by the monomorphisms
and epimorphisms between the direct summands of X. To be more explicit, let
(1,2,...,n) be the sequence of the vertices of Q4 corresponding to a (linear) order
of the direct summands X(1) = R, X(2),...X(n) = R/radR of the module X
(which refines the partial order A of the theorem). Then, for i > j, there is an
arrow i — j in @, if and only if X (i) C X(j) C R and there is no X (k) satisfying
X (i) C X(k) C X(j) C Rfor k #i,j. Furthermore, in that case, there is an arrow
i «— j corresponding to an epimorphism X(j) — X(i) which cannot be factored
through any X(k), & # i,j. Thus, Q4 is a connected quiver with single arrows
which appear in pairs: either there are no arrows between two vertices i and j of
Q4 or there is a pair of arrows, i = j. From here, we can easily read the structure
of the standard modules established earlier: each A(i) is given by the suquver of
Q4 consisting of all sequences of arrows

izjo— 1= —jici=ji=j, i=jo> 51> > je1 >jr=1J,

and the respective vertices.
Recall that the trace filtration of the projective-injective indecomposable module

P(1) = Aey = AeyAey D AcaAey D -+ D AgpAe; D0

has the property that Aec;Ae;/Aciy1Ae; =~ A(i) for every 1 < i < n. Here, the
extensions
0— AE.'.HAcl -— AE.‘AC| bnd A(l) —0

are determined by the arrows of Q4 corresponding to the epimorphisms. Observe
that there is a (unique) embedding of P(i) in P(1), for every 1 <i < n.

The following examples should serve as simple illustrations of the theorem, as
well as indications of its limitations.
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1. R = K[z]/(z'), t > 1. There is a unique choice of X (the direct sum of all
indecomposable R-modules) and thus A is the respective Auslander algebra. The
quiver Q4 is as follows:

2. R = K[z,y}/(zy, 2* = y') , t > 2. Here, for t > 3, we have several choices for
X ; for instance, we get the following forms of Q4 :

2242 ... 2 2 2+2 222442 .= 2

| § S 1 S 1l 1l
1 =3 ... = 2—-1=2+1=2+3=...2 2A-1,
1<s<t.

3. R= Klz,y)/(2? = y°, 2> - ", z*). Here, the algebra is 8-dimensional. Write
P for the canonical image of p € K([z,y] in R, and consider

X=R®ZR ® jR ® YR ® v’R ® 7y'R & 'R & °R
(in that linear order). Then A = EndgpX is a 159-dimensional algebra whose quiver
Q4 has the form
2 24=6= 8
il 1l

1 =23=522 7.

/

4. Consider again the 4-dimensional algebra R = K[z, y)/(zy, z* - y°). Taking
X=R ® R/Z’R & =R
(thus only 3 direct summands, not all local-colocal), or
X'=R @ (ER® R/Z2R)/(z? - (§+ z°R)) ® TR ® z’R

(thus not all direct summands are local-colocal), the respective endomorphism al-
gebras are still quasi-hereditary. The first one A = EndrX is a 19-dimensional
algebra (without duality) whose quiver Q4 is

1=E2£E3.
The algebra A’ = EndpX’ is a 39-dimensional algebra with duality (and uniserial
standard modules whose socles are isomorphic to S(1), [A(4) : $(2)] = 2) with Qar
of the form

1= 2 = 4
1
3
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