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THE SCHINZEL-TWUDEMAN
THEOREM OVER FUNCTION FIELDS

B.BRINDZA,A.PINTER AND J.VEGSS
Pregsented by C.L. Stewart, F.R.S.C.

INTRODUCTION

Let f € Q[X] be a polynomial with at least two distinct (complex) geros. In

1976 Schinzel and Tijdeman [6] showed that the equation

f(z) = y*, in rational integers z,y,z with |y |>1

implies z < C(f) where C(f) is an effectively computable constant depending only
on f. For further improvements, generalisations and related results we refer to
(1),{2],[8] and [9]. The purpose of this paper is to give an effective analogue of
the theorem, mentioned above, in the case when the unknowns z and y lie in an
algebraic function field. Our result makes it possible to prove a general theorem on
superelliptic equations over finitely generated fields (see Végs5[10]).

Let k be an algebraically closed field of characteristic zero and let K be a fi-
nite extension of the rational function field k(t) with genus g(K) and degree d.
Moreover, let Mg denote the set of additive valuations of K with value group Z.
The (additive) height of a non-zero element o € K and a non-zero polynomial
P(X) =Y " oa: X' € K[X] are defined by

Hg(e)= ) —min{0,v(a)}
vEMk
and
Hg(P)= Y —min{0,v(ac),... ,v(an)},
) vEMy
respectively.
Theorem. Let f € K[X] be a polynomial of degree n with at least two distinct
geros (in an algebraic closure of K). Then the equation
(1) f(z)=y" inz,ycKmeZ  withygdk
implies
m < 32n°(Hg(f) + d + 9(K)).
We note that the unknowns z and y are not necessarily integral over the poly-

nomial ring k{t), and an analogous result over algebraic number fields would have
dramatic consequences.
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AUXILIARY RESULTS

To prove our Theorem some preliminaries are needed. Let L be a finite extension
of an algebraic function field K and P € K[X] be a non-zero polynomial of degree
n splitting into linear factors over K; that is

P(X) =aﬁ(x -a;), (ei €K,i=1,...,n).
i=1

For the following simple inequalities we refer to [5] and [7). For any non-zero
a,f € K and m € Z we have

max{Hk(aB), Hx(a + B)} < Hk(e) + H(B),

Hg(a™) =| m | Hx(a),

Hy(P) = |L : K] Hx(P),

max{Hg(a), ) Hx(ai)} < H(P).

Let S be a finite subset of Mk containing all the infinite valuations! of K. A
non-zero a € K is called S-unit if v(a) = 0 for every v ¢ S.

Lemma 1. (Mason [4]) Let 71,72,7s be S-units in K with
Nn+v+r=0
Then
Hg(n/m) <| S| +29(K) - 2.
where | S | denotes the cardinality of S.

A similar result had been proved by Gyéry [3].
For an algebraic function field K C K' C L we put G(K') = L : K'}(g(K') - 1).

Lemma 2. (Mason [5],p.65) Let A € K[X] be a polynomial and a be a zero of A
such that K(a) C L. Then

0 < G(K(e)) - G(K) < S Hx(4).

(The constant 3 can be improved a bit.)

1We recall that the extensions of the degree valuation of the rational function field k(t) are
said to be infinite (cf. Mason [5), Schmidt [7]).



THE SCHINZEL-TIJDEMAN THEOREM OVER FUNCTION FIELDS 55

PROOF OF THE THEOREM

Let (z,y,m) be an arbitrary, but fixed solution to the equation (1). Furthermore,
let F be the splitting field of f and let f be factorized (over F) as

k
£(X) =aJJ(X - @)™,

where a; # a; for i # j. Since

k k
[F: K|H(f) = He(f) 2 ) riHn(ai) = Y rilF : K(ou)) Hgqony (i)

i=1 i=1

Z—lr K] Hg(ao)(@i)s

i=1

we have two (distinct) zeros of f with reasonable "size”, that is, we may assume
without loss of generality that Hg(,,)(o1) < Hk(f) and Hg(o,)(az) < nHg(f). Set
L = K(ay,a3) and f;(X) = f(X + a;),i = 1,2. For a polynomial Q € L[X] we
denote by S(Q) the set of (additive) valuations of L with value group Z for which
there exists a coefficient of Q with non-zero value. As a preparatory step to apply
Lemma 1 we derive an upper bound for the cardinality of S(fi),i =1,2.

Let a = ag') ag'). . ,a) denote the coefficients of fiy i = 1,2. Then by using
the sum formula we obtain

|51 3 2H(ef?) < 2 + D) = 20+ D () <
=0
2(n+1)

ST

5 (Hr(a )+ZH:((X +ai—aj)) <

:=1

<At iy + z:r;m(a,) +nHy(a)) <
[F L] o
An+1)

<
[F: L)

S5y (CHe(f) + nHgea(a)F : K(es)]) < 4(n + 10’ Hr(f); i=1,2.

By taking a valuation v ¢ S(fi) of L such that v(z — a;) # 0 we get two cases to
distinguish: v(z — a;) < 0 yields

my(y) = v(f(z)) = v(fi(z - a;)) = nv(z — ay), i =1,2.
Moreover, if v(z — a;) > 0, then

myu(g) = v(fi(z - ;) = Liv(z - ;)
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where [; is the smallest degree occuring in the expression of the polynomial f;. In
both cases we have

@) = <= o) IS] vle - @) |, i =1,2.
The identity
®) (z-a)+(az—z)+ (a1 -a2)=0

can be considered as an S-unit equation where the valuation set S is the smallest set
containing all the infinite valuations of L and the sets S(ay —a3), S(z—a;), S(fi), i =
1,2. (Now, the elements a3, a3 are considered as constant polynomials in L[X].)
Applying Lemma 2 twice we get
3
0 < Gk(ay) — Gk < 5 Hx(f)
and 3 3
0 < G = Gkioy) < 3Hx(on)(f) < FnHx(f),
therefore, 5
o(L) < [L: Klg(K) + 3(n + D Hx(f).
I S CS(fi)US(f2) US(a1 — az), then Lemma 1 implies

Hy, ( T —a ) <IS(h) |+ 8(f2) | +|L : K]d+'| S(e1 — a2) | +2¢(L) - 2,

ay — Qg
and the inequalities

m < mHg(y) = Hg(f(z)) < (n + 1)Hg(f) + -H(L;-—l)-flx(z) <

< (n+ () + 221D (H., ( ) + Hy(o — az) + m(a,))

provide the appropriate bound for m.
In the remaining case, when the set

51 =S\ (S(Hi)US(f2)US(e1 — a2))

T — Oy

ay — az

is not empty, we have

151 <14 1 s()US(R)US(ar - an) .
181

It is clear that = | ) |[< 2(Hi(z — a1) + Hi(z — a3)) and
z—a
—a:) <
H.,(:rf a;)< H (01 =
By applying Lemma 1 again we obtain

T — .
Hl,( : z) _I SI 2g(ll) 2, 3 1'2.

) + Hi(ag —a3), i=1,2.

thus
2(Hu(z — a1) + Hu(z — a3)) < 4| S| +8g(L) — 8 + 4Hy (a1 — a3),
and finally a simple calculation completes the proof.

Acknowledgements. The authors are grateful to Prof.K.Gyéry and the referee
for their remarks.
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FLATNESS OF POWER SERIES EXTENSIONS
CHARACTERIZES DEDEKIND DOMAINS
John T. Condo and David E. Dobbs

Presented by P. Ribenboim, F.R.S.C.

Abstract. It is proved that a (commutative integral) domain R is a Dedekind
domain if and only if T[[X]} is R[[X]]-flat for each domain T containing R as a

subring.

Recall from [4] that if A is a subring of a (commutative integral) domain B, then
A C B is said to be LCM-stable in case rBNsB = (rANsA)B for all r,s € A.
Flatness is a sufficient condition for LCM-stability (cf. [3]); the converse holds for
overrings but fails in general [8, Proposition 1.7 and Example 4.8]. As noted in [2],
it follows from a result of F. Richman {7, Theorem 4] that a domain R is a Priifer
domain if and only if the polynomial ring T[X] is R[X]- flat for each domain T
containing R as a subring; equivalently, if and only if R[X] C T'(X] is LCM-stable
for all such T. Our purpose here is to determine the domains R such that the formal
power series ring T [[X]] is R[[X]] - flat for each domain T containing R as a subring.
Henceforth, X denotes an analytic indeterminate.

According to the main result of [2], a domain R is a Dedekind domain if and

only if R([X]] C T[[X]] is LCM-stable for each domain T containing R as a subring.
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Since flatness entails LCM-stability, it follows that if R is a domain such that T [[X]]
is R[[X]]- flat for each domain T containing R as a subring, then R is a Dedekind
domain. The following result establishes the converse, and thus achieves the purpoée

announced above. Its proof makes essential use of the above-cited result from [2].

THEOREM. For a domain R, the following are equivalent:
(1) R{[X]) € T([X]] is LCM-stable for each domain T containing R as a subring;
(2) T[[X]} is R{[X]]- flat for each domain T containing R as a subring;

(3) R is a Dedekind domain.

Proof. By the above comments, it suffices to prove that (3)=>(2). Let a Dedekind
domain R be a subring of a domain T. To prove that T [[X]] is R[[X]] - flat, it suffices
to show that B = T[[X]]y is flat over A = R|[[X]]y for each maximal ideal N of
R([X]}. By [6, Theorem 15.1}, write N = (M, X) for the corresponding maximal
ideal M of R. It is important to note that A is a regular local ring [5, Exer.5, p.121]
and, hence, a UFD (cf. [5, Theorem 184]). Without loss of generality, dim(A) = 2;
for, otherwise, A would be a local one-dimensional UFD, hence a DVR, and B would
be A-flat.

According to the "conductor criterion” for flatness (1, Exer. 22, p.47], it suffices
to prove that (1B : f) C (I : f)B for each nonzero f € A and for each nonzero proper
ideal I of A. To this end, suppose k € B satisfies .h [ € IB; we shall produce c; € 4,
d; € B such that ¢;f € I and h = ¥ ¢;d;.

Case 1: ht(J) = 2. Then VT = NR[[X]]y, and so X € V1. Hence, X" € I

for some positive integer n. Since T is R - flat and flatness is a universal property,
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the base change R — Ry [X] /X" Ras [X] leads to the fact that B/X"B is A/X"A
-flat. If (") denotes reduction modulo (X"), then the condition hf € IB leads to
BT € TB. As B is A- flat, the conductor criterion for flatness now yields @; € 4,
b; € B such that a;f € T and & = £a;b;. Choose a; (resp., b;) to be any preimage
modulo (X™®) of G; (resp., b;); then h ~ T a;b; = X™b for some b € B. Also, writing
I = (fiy..., Ju) for suitable f; € R[[X]), we have a;; € A such that &;f = Tk, a5 f;,
whence a;f — ¥ a;;f; € X"A. Since f;, X" € I, we have a;f € I. As X"f € I and
h = ¥ a;jbj + X"b, the required c;, d; have been presented.

Case 2: ht(I) = 1. As above, write I = (fi,...., fi), fi € R[[X]]. Put d =
ged(fiy ...y fi) € A. Then d belongs to some height 1, hence principal, prime ideal
of A. So d is a nonunit. Moreover, without loss of generality, gcd(d, f) = 1. Since
hf € IB, we have hf = X fif; = dB for suitable i, 8 € B. Thus, hf € fB N dB.

At this point, we invoke the main result of [2]: since R is Dedekind, R[[X]] C
T ([X]] is LCM-stable. Thus (cf. 8, Proposition 1.6]), A C B is also LCM-stable. It
follows that & f € (fANdA)B. However, fANdA = fdA since ged(d, f) = 1 (and A
is a UFD), and so h = da for some a € B.

Next, writing f; = g;d for suitable ¢; € A, we infer af = ¥ f;gi = f. Thus
with J = (g1,...,9¢) = d™'I, we have a € (JB : f). Note that ht(J) # 1 since
ged(g1, ..., 9x) = 1, and so by case 1, a € (J : f)B. Therefore, a = ¥ a;§; for some
a; € A, §; € Bsuch that a;f € J. Then v = da; € A satisfies v;f = d(a;f) € dJ =

I and ¥ v;6; = dL ajb; = da = h, as desired. ®

We find it remarkable that the above proof that (3)=>(2) needed to invoke the
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main result from [2]. It would be interesting to find a proof that (3)=>(2) which
would avoid mentioning LCM-stability.

Let n be a positive integer. We do not know which (necessarily Dedekind, hence
Noetherian) domains R are characterized by the property that the formal power series
ring T({ X, .., Xa}] is R[[Xi,...Xa]] - Nat for each domain T containing R as a subring.

We close with some observations about the n-variable context.

MARK. (a) If a Noetherian domain T-is flat over a Noetherian subring R,

then T[[.\',,....)_.’,]] is R[[X),..., Xu]]- Aat. For a proof, we may reduce to the case
n = 1 since power series rings inherit Noetherianness, and this case is handled by [2,
Remark 2.12(b)).

(b) If a Dedekind domain R is a subring of a Noetherian domain T, then T[[ Xy, ..., Xa]]
is R[[X\,..., Xa]]- flat. For a proof, (a) may be applied, as R is Noetherian.

(c) If R is a Noetherian domain with quotient field K and if K is a subring
of a domain T, then T[[X),...X.]] is R[[X),...Xu]]-flat. For a proof, note via [l‘,
Exer.17(a), p-250] that T[[Xy,.... Xu]) is K[[ X1, ..., Xa]] - flat. Thus, by the transitivity
of flatness, it suffices to show that K[[Xy,..., Xa] is R[[X1, ..., Xa]} - flat. This, in turn,

follows from (a), as I is Noetherian and R - flat.
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The Diophantine equation z* &+ py* = 27
Nobuhiro Terai

Presented by P. Ribenboim, F.R.S.C.

§1 Introduction.

Let p be an odd prime and put p* = (—1)®=12p, Let d be a square-[ree positive integer.
In [4), Powell proved the following:
Theorem 1 (Powell{4]) (a) If p % %1 (mod 8), then the Diophantine equation

iyt =2

has no integral solutions z,y, z with (z,y) =1 and p [zy.
(b) The Diophantine equation

1t — y* = 27 (resp. z' — 4y* = 2°)
has no integral solutions z,y, z with (z,y) = 1, p fzyz (resp. p [y).

Powell proved (a) by factoring 2P as (z? + iy?)(z? — iy?) over the Gaussian ring Z[i].
The proof of (b) needs the result concerning the Jacobi symbol used in the proof of the
first case of Fermat’s Last Theorem for even exponents by Terjanian (cf. Terjanian(8] or
Ribenboim|5), p.67). -

To generalize Theorem 1, (a), in the previous paper {7] we considered whether the
Diophantine equation

4 dy' =2° (1)
has integral solutions z,y, z or not, and using the theory of imaginary quadratic fields, we
obtained the following (cf. Cao[2]).

Theorem 2 (Terai and Osada[7]) Let p be an odd prime, d # 3 (mod 4) a square-free
positive integer, and h(—d) the class number of the imaginary quadratic field Q(v=d). If
p # +1 (mod 8) and p [ h(—d), then the Diophantine equation (1) has no integral solutions
z,y,z with (z,y) =1, p [zy and y even.

If d = 1 in (1), it follows unconditionally that p J h(—1) and y is even. Therefore
Theorem 2 gives a generalization of Theorem 1, (a). The proof of Theorem 2 is based on
the following two facts:
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(i) Let a,b be relatively prime integers of opposite parity and c an integer. Then the
implication

a®+db? = = a+ bv/-d = (u +vvV-d) (2)
holds for some integers u and v.
(ii) A square of odd integers is congruent to 1 modulo 8.

In general, it is difficult to show that the implication (2) holds (especially for d < 0).
Adachi (1) showed that the implication (2) holds for d = —p* under some conditions.

In this paper, we consider the Diophantine equation (1) when d = —p°, and prove the
following two theorems:

Theorem 3. If p =1 (mod 4) and B(y_1)/2 # 0 (mod p), then the Diophantine equation
-pyl=2F (3)
has no integral solutions z,y,z with (z,y) =1, p|y and z even.
Theorem 4. The Diophantine equation
' +3y' =2 (4)

has no integral solutions z,y,z with (z,y) =1 .

§2 Proof of Theorems.

First we prepare two lemmas:

Lemma 1 (Adachi[l])' Let p be an odd prime, and a,b relatively prime and of opposite
parity. In the case p = 1 (mod 4), we also suppose that the Bernoulli number By,_,); is
not divisible by p and b is divisible by p. If d = —p°, then the implication (2) is valid.

The following lemma is obtained by applying the idea of Terjanian(8] using properties of
Jacobi’s symbol.

Lemma 2 (Rotkiewicz[6]) Let a and B be the different zeros of the trinomial z — Lz +
M, where L > 0 and M are rational integers such that K = L —4M > 0 and (L, M) = 1.
If2| L, M = ~1 (mod 4) and p is an odd prime, then

L= "::g’ # pat.

Now we use Lemma 1, 2 to prove Theorem 3, 4.

Proof of Theorem 3. Suppose that the Diophantine equation (3) has integral solutions.
Then it follows from Lemma 1 that

2 + Py’ = (a + by/P).
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Therefore we have
(p=1)/2 p . .
’=a Y ( .)a"'(”“’b”p’ = aA,
= \%
2 g 4 (25410225 5
=b ; p-14+0p%y = bB.
Y ,;o (21 + l)a ¥ _
We first show that (a, A) = 1,(, B) = p and p||B. From (z,y) =1 and p | y, we have

p JaA and (a,b) = 1. Hence since

A= pt~'pPV/ (mod @) and B =pa®~' (mod b%p?),

we have (a,A) = 1, p||B. Thus it follows from p | y that p | b and so (b, B) = p. Therefore
we obtain

a=+u?, A=2U? b=4p?, B=+pV?

for some non-zero integers u,U,v, V.
We next show that a and b are of opposite parity. Suppose that a and b are odd. Then
we have

(p—-1)/2 P
A= Y ( ) = 2°"! (mod 2)
=0 \%

and
(p=1)/2 P B st 5
B= . =2 (m N
P> (571) =2 (mod 2

so A and B are even, which contradicts (z,y) = 1. Thus a and b are of opposite parity
from (a,b) = 1. Since A = a?~! + pb*~'p®~"/? (mod a?b?) and a # b (mod 2), we have

+U? = A = a4 pb~'pP~1? (mod 4),

SO

+U?=a"' + ! =1 (mod 4).

Hence A = U?, so a = u?. Similarly we obtain B = pV?, b = pv’.

Put e =a+by/pand B =a-b/p. Wenote that a =0 (mod 2) and b = 1 (mod 2),
since z = 0 (mod 2) and (a,b) = 1. Thus we have L = a+ 8 = 2a(> 0) =0 (mod 2),
M = aff = a* — pb* = —1 (mod 4) since p = 1 (mod 4), and (L, M) =1.

Since z? + /py® = o and z? - /Py’ = fP, we obtain

2 _ P =fF
y = Zﬁ
b..‘i.’i
2./p
- .27
a-p
= bB.
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:g’ = pV?, which contradicts Lemma 2. This completes the

proof of Theorem 3. '

Therefore we have B = o

Remark 1. No examples of B(p_1)/2 = 0 (mod p) are known for p < 6270713 (cf. Wash-
ington [9), p.82).

Remark 2. If p [/ y and z is odd, then the Diophantine equation (3) has an integral
solution. For example, (z,y,z,p) = (3,2,1,5).

In the same way as the proof of Theorem 3, we obtain the following:
Corollary. Ifp=1 (mod 4) and B(,—y)/3 # 0 (mod p), then the Diophantine equation
-plyt=2" ()
has no integral solutions z,y, z with (z,y) =1 and = even.
Proof. The Diophantine equation (5) can be written as (z?)? — p(py®)* = 2. It follows

from Lemma 1 that- .
2+ VB pyt = (a 4 byRY.

We use the notations in the proof of Theorem 3. Then we have py* = bB. Since p [a and
B = pa®~! (mod b?p?), we have p|| B and (b, B/p) = 1. Thus

b=+v? B =+pV2.

P_gp
2 z=pV’,which

contradicts Lemma 2. This completes the proof of corollary. [

By the same argument as the proof of Theorem 3, we obtain B =

Proof of Theorem 4. Suppose that the Diophantine equation (4) has integral solutions.
If z and y are odd, then z is even. Hence by (4), we have 4 = 0 (mod 8), which is impossible.
Thus z and y are of opposite parity since (z,y) = 1. Therefore it follows from Lemma 1

that
2+ V=3’ = (s + V=-3t)°
for some non-zero integers s,t. Then we have
z? = s(s® - 9¢%)
and
y? = 3t(s® - 12).

Since (z,y) = 1, we have (s,3t) = 1 and so (s,s? — 9¢%) = 1. Thus there are integers u,v
with (u,v) = 1 such that s = +u? and s? — 98 = £v?. But a congruence mod 3 shows
that the - sign must be rejected. Hence
s=u® and s*-9t2 =%
Suppose first that ¢ = 0 (mod 3). Then by (3t,s? — *) = 1, we have

3t=+w® and $* - ==r
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Therefore we obtain
u! = wt =2,

which has no integral solutions as well known.
Suppose next that ¢ # 0 (mod 3). Then by (3t,s? — t?) = 3, we have

t=4uw? and *—12=43r2

Thus

ut — Juw! = v?,

which has no integral solutions as well known (cf. Dickson (3], p.634). '

Remark 3. Ifp= -1 (mod 4), then —d = p* = —p < 0 and s0 K = L2 -4M < 0. Hence
in this case we can not apply Lemma 2. But we here treated only the case of p = 3, using
Lemma 1.

Remark 4. If (z,y) # 1, then the Diophantine equation (4) has many integral solutions.
For example, (z,y, z) = (2a%, 2a%,4a*), (7a%, 14a%,49a*). The integral solutions of (4) with
(z,y) # 1 and 0 < z,y < 300 are given in the table below. The least solution of (4)
such that (z,y) # 1,z fyory Jzis (z,y,2) = (49923, 33282,2146689). It seems that
the condition (z,y) = 1 is essential for the Diophantine equation (1) to have no integral
solutions.

Table. The integral solutions of (4) with
(z,y)#1and 0 < z,y < 300

z y z
2 2 4
7 14 49
16 | 16 64
54 | 54| 324
5 | 112 784
128 | 128 | 1024
250 | 250 | 2500
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ABSTRACT. In his paper [1], G. Frey shows that the existence of a non-trivial
integer solution to Fermat’s equation is equivalent to the existence of an elliptic
curve over Q with certain properties. In this paper, we consider the Fermat equation
in a more general form and generalize Frey’s argument to obtain a similar statement
when the base field is the fraction field of a principal ideal domain of characteristic
different than 2.

1. NOTATION

Let p be a prime number such that p > 5. Let R be a principal ideal domain of
characteristic different than 2 and p. Let S denote the set of primes dividing 2 and
let F be the fraction field of R.

We consider the Fermat-like equation in six variables $;.X? + S;Y? + $327 = 0.
We are intersted in solutions (5),S53,53,X,Y.2) = (s1,532,93,4,b,¢), where a, b, c
are non-zero elements of R and sy, 2, 53 are units in R. We may assume that a,b,c
are pairwise coprime. Let A = syaP, B = 8,07, C = s3c”.

We define an equivalence relation in the set of such solutions as follows:

(81,82, 3, @, b.¢) is equivalent to (si, s}, s5,a’,V, )

if and only if {A, B,C} = {uA’.uB’,uC’} (as sets), for some unit u in R.

We also call a solution (sy,s3, 53, a, b, ¢) trivial iff a, b, c are units in R. By the unit
theorem (see [4]), there are only finitely many equivalence classes of trivial solutions
and they are effectively computable.

Given a solution. consider the elliptic curve over F given by

y? = z(z — A)(z + B). . )

(This is non-singular because 2 # 0 in R. Also observe that there is nothing special
about the pair (A4, B); we could have chosen any other pair instead.)

We have the associated quantities (see [4]):

ce=16(A?+ B*+ AB), A = 16AB?C?, j = /A = 2%(A* + B?+ AB)}/A2B?C?.

Let | be a prime of R not in S.

If I does not divide ABC, then we have good reduction at I.
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If | divides ABC , then [ cannot divide ¢,, therefore vi(cs) = 0 and vi(A) > 0, so
the Weierstrass form is minimal at ! and we have multiplicative reduction at [.

The reduction type at primes ! € S does not have to be multiplicative. As an
example, let R be the ring of integers of F = Q(+/=3). The field F has class number
1 and, as noted in [3], we have the solution (1,1,1,{,(~?, =1), where ( is a primitive
6th root of 1. Then 2 is inert in R and it is easy to check that the given Weierstrass
form of the elliptic curve corresponding to this solution is minimal at 2, therefore the
reduction is additive at 2.

In the sequel, we will use S as a prefix whenever we want to describe properties
shared by all primes pot in S. Therefore, the considerations above give an elliptic
curve over F' with S-multiplicative reduction.

2. RAMIFICATION OF POINTS OF ORDER p

In order to state and prove the theorem in the next section, we will need the
following two propositions:

Proposition 1 .

Let E be an elliptic curve over R with multiplicative reduction at the primel. Let p
be a rational prime , not divisible by [, and let K, denote the extension of F obtained
by adjoining the coordinates of the points of order p on E. Let ) be a divisor of {
in K, and K, the corresponding completion. Also let F; be the completion of F at
l. If e(/) denotes ramification index, then we have e(K,/Fi) = e(Fi((s, 5/?P)/ F1),
where ¢, is a primitive pth root of 1. :

Proof

Since K,/ F is Galois, it suffices to prove the assertion for the place A such that
Ky = Fi(E[p]). (E[p] is the subgroup of points of order p of E.)

Let g be the Fi-integer such that j = (1/q) + £32, cag™, where the coefficients c,
are integers.

Observe that (jg)'/? exists in F; (apply Hensel’s lemma to the polynomial X? — jq
with first approximation equal to 1). Hence Fi((,,q'/?) = Fi((p,5'/7).

We have two cases to consider:

(i) E has split reduction at I. Then, by Tate's theorem (see [4]), we have an
isomorphism of E(K,,) and K,/ < ¢ > as Gal(Fy/K,,)- modules.

Since E[p] is contained in E(K,») , we conclude that there exist elements (;, ¢'/?
in K, and we have

Ky = Fi(E[p)) = Fi((p,¢"'?), which proves the assertion in this case.

(ii) E has non-split reduction at l. Then, again by Tate’s theorem (see [4]), there
exists a quadratic unramified extension L of F; such that E is isomorphic to the
Tate curve E; over L. Let M be the compositum of K, and L. Then E(M) and
M*[ < ¢ > are isomorphic Gal(F;/M)-modules.
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As in part (i), we conclude that there exist elements {,, ¢!/? in M and M =
L(E[p])) = L((y.q"?). Since L/F; is unramified, we get

e(Kpa/Fi) = e(M/Fi) = e(L((5,9'/?)/L) = e(Fi((5,4"/?)/ i), and this completes
the proof.

Proposition 2

Let I, p, K, be as in proposition 1. Let E be an eliptic curve over F having good
or multiplicative reduction at I. Then K,/ F is unramified at [ if and only if v(;) > 0
or y(j) = 0 mod p.

Proof s

If vi(j) = 0, then E has good reduction at I. Indeed, if this were not the case,
then, by semistability. vi(cs) = 0 and v)(A) > 0, so v(j) < 0, which is absurd.

Therefore , by the criterion of Néron-Ogg-Shafarevich, we get that K,/F is un-
ramified at [.

Now suppose vi(j) = 0 mod p and vi(j) < 0. Then we have multiplicative reduction
at 1, so it suffices to show that Fy((,,;'/?)/F; is unramified, by proposition 1. But
this is evidently true, because vi(j) = 0 mod p and p is not divisible by I (see e.g. (2],
page 130).

Conversely, suppose that K,/F is unramified at [ and v(j) < 0. Then we have
multiplicative reduction , so we can apply proposition 1. Then e(Fi((, i'/?)/F) = 1,
therefore v;(j) = 0 mod p (again by (2]).

3. THE THEOREM
We now return to the Frey curves of section 1. We have the following:

THEOREM
For a prime p > 5, the following are equivalent:
1. There exist non-zero a, b, c and units s,, 33, s3 in R such that

$1aP + 33bP 4+ s3¢° = 0.

2. There exists an elliptic curve E over F with S-multiplicative reduction and an
S-minimal Weierstrass equation y? = z3 + dz? + ez, where d, e are coprime elements
in R, such that:

(i) The points of order 2 are F-rational.

(ii) the field K, obtained by adjoining the coordinates of the points of order p on
E is unramified over F outside the divisors of 2p.

(iii) min(0, v,(5) — v,(2%)) = 0 mod p, for all p € S, and min(0, v,,(j)) = 0 mod p
for all p; dividing p.
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3. There exists an elliptic curve E over F with S-multiplicative reduction and an
S-minimal Weierstrass equation y? = z° + dz? + ez, where d, e are coprime elements
in R, for which A/16 = u?r?, where u is a unit and r is in R.

Proof

1 implies 2.

Let the notation be as in section 1. Thend = B—A,e=—-AB. Let p€ S. If
p divides e = —AB, then it cannot divide d, by coprimality of A, B. Therefore, p
cannot divide both d and e.

Also if ! is a prime of R which does not lie in S, then, by S-minimality and S-
multiplicativity of the given Weierstrass equation, we get that ! cannot divide both
d and e.

Therefore d, e are coprime.

The points of order 2 are (0,0), (4,0) and (—B,0), which are of course F-rational.
This proves (i).

Now let I be a prime not dividing 2p. If ! does not divide ABC, then vi(j) >
0, so K,/F is unramified at [, by proposition 2. If I divides ABC, then v(j) =
—2p(vi(a) + vi(b) + vi(c)), so wvi(j) is divisible by p, hence K,/F is unramified at {,
again by proposition 2. This proves (ii).

Also, let p € S. If p divides ABC, then v,(j) — v,(2%) < 0 and v,(j) — v,(2%) =
0 mod p (Since A. B, C are p-powers). Otherwise, if p does not divide ABC, then
v,(j) = v,(28) 2 0. Hence, in any case, min(0, v,(j) — v,(2%)) = 0 mod p.

Finally, let p; be a divisor of p in R. If p; does not divide ABC , then obviously
v,.(j) = 0. Otherwise, if p; divides ABC, we get v,,(5) = —2p(vp,(a) + vy, (8) +vpi(c)).
Hence, in any case, p divides min(0, vp,(j)), which proves (iii).

2 implies 3. A

The given equation is-S-minimal and we have A = 16¢?(d? — 4¢) and j = 2%(d® —
3e)?/(e?(d? — de)), by direct calculation.

So it suffices to show that e?(d® — 4¢) is a 2p-power times the square of a unit.

Now, e?(d? — 4e) is already a square, since it equals the square of the product of
the z-coordinates of the points of order 2 on E (it is a square of an element in F and
therefore it is a square of an element in R, since it lies in R already).

So it will suffice to show that the valuation of e?(d? — 4e) at every prime [ that
divides e*(d? — 4e) is a multiple of p. .

Let I be such a prime (i.e. I divides e*(d? — 4e)).

If 1 does not divide 2p, then, by proposition 2 and the fact that K,/ F is unramified
at I, we get that v(j) = 0 mod p, hence, vi(e?(d? — 4¢)) is divisible by p, by S-
semistability.

If | = p; divides p, then v,,(j) < 0 (by S-semistability), so, by (iii), vy, (e*(d* —4¢))
is divisible by p.
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Finally, let € S, say { = p.

We have two possibilities:

Suppose p divides e. Then, p does not divide d (by coprimality of d, e), so
p does not divide d* — 3e. Now, by (iii), p divides v,(j) — v,(2%), i.e. p divides
v,((d? — 3e)*/(e*(d? — 4e))). Since p does not divide d? — 3¢, we get that p divides
v (e*(d? — 4e)).

Suppose p does not divide e. Then p divides d* — 4e. Then, obviously p cannot
divide d* — 3e (otherwise, it would also divide e, which is absurd). Again , since, by
(iii), p divides v ((d? — 3e)3/(e?(d? — 4e)), we get that p divides v,(e*(d? - 4e)).

Therefore, vi(e?(d? — 4¢)) is a multiple of p for all primes I of R.

3 implies 1.

Since d and e are coprime, so are d? — 4e and e. Therefore, there exist coprime
elements v, w and units u,, u; in R such that d® ~ 4e = u,v?” and e = u;w®. Then

wduw?Pv? = ulr?,

Therefore, uju; = u?, therefore u; is also a square, say u; = u2.

Then (d ~ u3v®)(d + u3v®) = 4de = 4u,wP. Note that the only possible common
prime factor of d — u3v? , d + u3v® are in S. Fix p € S for the moment. There
exist non-negative integers u, v (both of them < p — 1), units uy, us and S-coprime
elements z,;, z; such that

d — u3v® = uyp*2}, d + uzv® = ugp”zj, where p + v = v,(4) mod p.

Then

2d = usp*zy + usp¥z} and

2u3v® = ugp®zy — uypt2f.

If g+ v = v,(4) + p, then both p and v are at least v,(4) + 1. Then p*“H! divides
2d and 2u3vP. Therefore, p*»(41+2 djvides d? and v??, absurd, since d? — u,v? = 4e
and d, e are coprime.

Therefore we must have u + v = v,(4).

Suppose p is different than v, say g < v. Then pu < v,(2) and v > v,(2). Then
p divides 2y, so p” divides 2d and p divides e, absurd, since v > v,(2) and d, e are
coprime.

Therefore, u = v = v,(2).

This being true for all p dividing 2, we conclude that we can write

d — u3v® = ug2} [] p!? = 2uq23,

d + u3v® = uzz§ [1 p%?) = 2ug2%,

where ug, uz, us, up are units, 23, z4 are S-coprime and the products are taken over
allpe S.

The above two relations give

2uav® = (ur2§ — ug23) [T p%® = 2(up2} — ugz3), therefore we get

u3v? = ugz§ — ug2}, i.e. we get a solution to the Fermat-like equation of section 1.

This completes the proof.
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4. FINAL REMARKS

Let E be an elliptic curve satisfying the third equivalent statement of the theorem.
Then the above proof of 3 implies 1 gives a solution S of the Fermat-like equation of
section 1.

Let Es be the Frey curve associated to the solution S.

An easy computation shows that the two curves E and Es have the same j-
invariant. Therefore, E and Es are |somorphlc and, in particular, the isomorphism
class of Es does not depend on S.

Moreover, one can show that two solutions of our Fermat-like equation give rise to
isomorphic (over F') Frey curves if and only if they are equivalent. Therefore:

COROLLARY. There is a bijection between the set of equivalence classes of
solutions to the Fermat-like equation and the set of isomorphism classes of elliptic
curves satisfying statement 3 of the main theorem.

Also, it is easy to see that, under the bijection of the corollary, equivalence classes
of trivial solutions correspond to isomorphism classes of elliptic curves satisfying
statement 3 and having good reduction outside S. Therefore, using Shafarevich’s
theorem (see [4]), we get another efficient algorithm for determining all equivalence
classes of trivial solutions. '
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ABSTRACT. H. J. Zassenhaus has suggested that every finite subgroup of normalized
units in the integral group ring of a finite group G is conjugate to a subgroup of G.
While this conjecture has not been settled for group rings, a reformulation within the
context of alternative loop tings has recently been established and is discussed here.

1. Introduction. Let ZG denote the group ring of a finite group G over the integers.
What role does G play in determining the torsion units of ZG? H. J. Zassenhaus has
conjectured that every normalized unit inZGisa conjugate of an element of G via a unit
in the rational group algebra QG. Several years ago the authors established a variation
of this result for alternative loop rings. Specifically, we proved

Theorem 1.1. [5, 3] Let r be a normalized torsion unit in the integral alternative loop
ring ZL of a finite loop L which is not a group. Then there ezist units 7,7, € QL and
L € L such that ;' (77 'rm)ma =L

A second, far stronger conjecture of Zassenhaus says that every finite subgroup of
normalized units of ZG is conjugate to a subgroup of G, via a unit of QG. Recently,
the authors have shown that here too, with some modification, the conjecture is true
for alternative loop rings. We have established, and it is our intent to discuss here, the

following theorem.

Theorem 1.2. If H is a finite subloop of normalized units in an alternative loop ring
ZL which is not associative, then H is isomorphic to a subloop of L. Moreover, there

ezist units v;,72,... , 7% of QL such that

(1) % ('O Hn)me) - ) € L.
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Corollary 1.8. If H is a finite subloop of normalized units in ZL, then H| < \L). If
|H| = |L|, then H is isomorphic to L and there ezist unils 1,,... ,7x € QL such that
L=5"(..(' (O Hy)m) - e

2. Definitions and Terminology. An allernative ring is one which satisfies the left

and right alternative laws
z(zy) = =y and (yz)z = yz’.

Such rings are nearly associative; for example, the subring generated by any two elements
is always associative and also, if three elements of an altemativevring associate in some
order, then they too generate an associative subring. Composition algebras provide
examples of alternative rings, and examples of particular relevance to this work. A
composition algebra is an algebra A with 1 over a field F on which there is a multiplicative
nondegenerate quadratic form ¢: A — F. By multiplicative, we mean that q(zy) =
9(z)q(y) for all z,y € A. Since alternative rings satisfy the three Moufang identities

(zy)2)z = 2(y(=2)),  ((zy)2)y = z(y(zy)) and (zy)(2z) = (2(y2))=,

the loop of units in an alternative ring is necessarily a Moufang loop which is, by definition,
a loop in which any of these (equivalent) identities is valid. In particular, if RL is an
alternative loop ring for some commutative and associative ring R and loop L, then L is
a Moufang loop (of a very special nature). We refer the reader to the book by Zhevlakov,
Slin’ko and Shestakov [8] for a treatment of alternative rings and composition algebras,
to Pflugfelder’s text (7] for an introduction to Moufang loops, and to two papers in the
literature [2, 1] for the basic properties of loops which have alternative loop rings.

In an alternative loop ring RL, the map e: RL — R which sends T/l to T ay is a
homomorphism. Thus e(y~'¢y) = ¢(¢) = 1 for any ¢ € L and unit 7. So, if we hope to
establish (1), it is clear that we must restrict ourselves to subloops H whose elements are

normalized in the sense that (k) =1forall heH.

3. Sketch of the Proof of Theorem 1.2. Let H be a finite subloop of normalized

units in an alternative loop ring ZL. In a proof of the isomorphism theorem for alternative
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loop rings over Z [4), the authors constructed a map p from the normalized torsion units
of ZL to L. Restricted to H, this map turns out to be a one-to-one homomorphism, thus
H is isomorphic to a subloop of L. What is more difficult is to establish an equation of
the form (1). For this, we show that there exist units ~; in the rational loop algebra QL
such that ‘

(2) % (7' (7 am)) . ) = pla).

for all @ € H. We consider the three possibilities: (i) H is an abelian group, (ii) H is a
nonabelian group, and (iii) H is a Moufang loop which is not associative.

If H is an abelian group, we show that H is generated by a single element and elements
in the centre of ZL and then appeal to Theorem 1.1. Cases (i) and (iii) are more
delicate. Here we use the fact that the alternative loop algebra QL is the direct sum
of simple alternative algebras and observe that it is sufficient to establish (2) in each
simple component. Since the associative components are fields, as we are able to show,
and since the £ of Theorem 1.1 is, in fact, p(r), each element of H and its image under
p have equal images in the associative components. Thus we need consider only those
components which are not associative.

Now an alternative loop algebra ﬁas an involution (anti-automorphism of period 2)
a — a® such that aa® is central for any a. From this, one can show that n(a) = aa®
induces a multiplicative quadratic form on each simple component of QL. This form
turns out to be non-degenerate, so each simple component is a composition algebra. Let
A be such a component and x: QL — A be the natural projection. Let Lo = p(H).

If H is not associative, we show that each of #(H) and x(Lo) generate A and that p
induces an automorphism of A. By a theorem of Jacobson [6], any automorphism of a
composition algebra is the product of reflections (maps of the form z — y~1z7), so we
have the result in case (iii).

The most difficult case is that in which H is a nonabelian group. Here we let z and
y be noncommuting elements of Lo and let B be the subalgebra of QL generated by
z and y. Similarly, we consider the subalgebra B of QL generated by £ and §, the

preimages under p of z and y respectively. It can be shown that p: H — Lg extends to
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a ring isomorphism B — B which induces.a ring isomorphism x(B) — x(B). We show
that this map extends to an automorphism of the composition algebra A which, by the
theorem of Jacobson already mentioned, is the product of reflections. Thus the proof is

complete.
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Fadi MALEK, P. W. SHARP and Rémi VAILLANCOURT *

Presented by T.E. Hull, F.R.S.C.

Abstract. Second-order initial value problems with the first derivative absent can be solved
using explicit Runge-Kutta-Nystrom pairs. We report that the minimum number of stages
for pairs of order (p — 1,p), p = 4,5,6, is respectively 4, 6,6 if the first stage of the next step
is as the last stage of the previous step, and 4, 5,6 otherwise.

Résumé. Les paires de formules explicites du type Runge-Kutta-Nystrom résolvent les
équations différentielles du second ordre, oii la premitre dérivée est absente. On montre que
le nombre minimum de stages des paires d'ordre (p - 1,p), p = 4,5,6, est respectivement
4,6,6 si le premier stage du pas suivant utilise le dernier stage du pas précédent, sinon ce
nombre est 4,5,6. '

AMS Subject Classification: 65L05. CR Categories: G.1.7

Key words: Ordinary differential equations, special second-order eqtiations, explicit Runge-
Kutta-Nystrom pairs.

1. Introduction

Explicit Runge-Kutta-Nystrom (RKN) pairs are designed to solve directly second-order
systems of non-stiff ordinary differential equations of the form

(1.1) ¥ =f(z,9),  y(zo) =wo, ¥'(20) =m0

where f : R x R® — R" and the first derivative is absent, without reducing (1.1) to a system
of first-order equations.

RKN pairs consist of at least three formulae: two formulae of different orders for the
solution, y, and one formula for the derivative, y’. The derivative-formula and one of the
solution-formulae are used to advance the approximations. The second solution-formula is
used to estimate the local error in the solution. Pairs often have a second derivative-formula.
This is used to estimate the local error in the derivative.

Pairs with three formulae require fewer stages than pairs with four formulae. However,
the numerical testing of Dormand, El-Milkkaway and Prince (1) suggests that the local error in

* Each author was partly supported by the Natural Sciences and Engineering Research Council of Canada.
The work of the second and third authors was also partly supported, respectively, by the Information Technol-
ogy Research Centre of Ontario and the Centre de recherches mathématiques of the Université de Montréal.
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the derivative should be controlled to ensure reliability of the pair. Because of this evidence,
we report on pairs which use four formulae. '

As for Runge-Kutta pairs, RKN pairs are usually derived with as few stages as is practi-
cable. Table 1 lists the previously known or newly found minimum number of stages required
for pairs that consist of (p — 1)st- and pth-order formulae for the solution and derivative
(the references for the known results are given in Section 3; the new pairs are listed in the
Appendix). The number of stages is listed for two general types of pairs: those that re-use
the last stage on the next step, and those that do not. We refer to the first type as (p— 1, p)F
pairs and to the second type as (p— 1, p)NF pairs. The letter F stands for FSAL (First Same
As Last) and NF stands for Non-FSAL.

Table 1. The minimum number of stages for (p — 1,p) pairs, p = 4,5,6.

P 4 5 6
(p—-1,p)NF 4 5 6
(p-1,p)F "4 6 6

It is proved in [2] that the number of stages listed in Table 1 is the minimum possible.
Proofs are by contradiction. For each value of p it is assumed that a pair exists with one stage
fewer than the one given in Table 1. Then it is shown that either the order conditions for the
derivative-formulae cannot be satisfied or that the (p—1)st- and pth-order derivative-formulae
are the same. In this note, we give the proof for the case (5,6).

2. Definitions and order conditions

Explicit Runge-Kutta-Nystrém pairs, which use four formulae, generate approximations
to y(z;) and y'(z;) according to the formulae

8 ]
(2.1) v =wi+hal + R bifi,  yha =ui+hi ) bS5,
i=1 Jj=1
3 . 3 R
(22) Gir=uithauf + ] bif;, = ui+h D biS;,
j=1 =1

where h; = z;4; — z; and

j=1
fi =f(ziw), fi= f(-‘t.' + hicj, u; + hicju} + h? Za,kfk). i=2,...,8.
k=1
The two formulae in (2.1) are of order p and the two formulae in (2.2) are of order p—1. If the
numerical approximations are advanced from z; to 2,4, using the order-(p— 1) formulae, then
u; = §i, 4} = §. If the numerical approximations are advanced using the order-p formulae,
then u; =y, uj = y}.

(o
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The order conditions for the (p—1)st-order derivative consist of the quadrature conditions

(2.3) feF = — k=01,...,p~-2,
and the non-quadrature conditions

s
(2.4) > biSi(ac)=0, k=1,...,Ny=1, g=1,...,p~1,

where N; is the number of order conditions of the order g. The S}, for order conditions up
to the order six are listed in Table 2, where repeated j indices imply summation and

(2.5) Qi := (k_-l-lm Za.jck 022500098

i=1

Table 2. The S7,(a,c) of orders one through siz.

q Si'.;
1,2,3 none
4 Qi
5 Qi Qi
6 Qu cQiz Qi ai;Qn

The order conditions for the pth-order derivative-formula consist of the quadrature conditions

s
1
' — — L —3 e — ,
(2'6) ‘§=,: b‘Cf = k+ l' k 0) 1) WP 1

and the non-quadrature conditions
S
(2.7) Y bSi(a,0)=0, k=1,...,Ny=1, g=1,...,p.
For a FSAL pair, ¢, must be one, b, must be zero and

(2.8) a,,5 = bj, i=l...,8—-1

By the definition of a pth-order solution-formula, the weights b;, j = 1,...,s, satisfy the
quadrature conditions

- r 1
(2] ;m::{‘ TEADNE+2)
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Equations (2.9) then imply that Q,x = 0 for k£ = 0,...,p — 2. This means that the non-
quadrature order conditions for an s-stage (p — 1,p)F pair are the same as those for an
(s — 1)-stage (p — 1, p)NF pair. We use this observation to shorten the non-existence proof
for the pairs of order (4, 5).

For convenience, we shall take ¢ = 1 even when ¢; = 0.

3. Results

Four-stage (3,4)F pairs exist (see [3], for example). We state that three-stage (3,4)NF
pairs do not exist.

THEOREM 1. No three-stage (3,4) RKN pairs ezist.

Six-stage (4, 5)F pairs exist (see [3], for example). We state that four-stage (4, 5)NF and
five-stage (4, 5)F pairs do not exist. A new five-stage (4,5)NF pair is given in Table A.1 in
the Appendix. '

THEOREM 2. No four-stage (4,5)NF nor five-stagé (4,5)F RKN pairs ezist.

Seven-stage (5, 6)F pairs exist (see [4] for example). New six-stage (5,6)F and NF pairs
are given respectively in Tables A.2 and A.3 in the Appendix. We show by contradiction that
five-stage (5, 6) pairs do not exist. One step in the proof uses Theorem 2.

THEOREM 3. No five-stage RKN pairs of order (5,6) exist.

PROOF. We assume that a pair exists and consider the non-quadrature order conditions c¥Q;,
in the first column of Table 2, namely

(3.1.k) "zéQn + B’ach:u + 5’44‘@41 + 5’5ch51 =0, k=0,1.
(3.2.k) byc5Qar + b3ckQar + byckQar + b5ckQs1 =0,  k=0,1,2,

If the rank of the coefficient matrix of the four linear equations (3.1.0) and (3.2.0)-(3.2.2) in
the four unknowns Q;, is four, we must have Q;; =0, i = 2,...,5. But if Q2 = 0, then
cz =0, and the method reduces to a four-stage pair for which we know that such (4, 5)-pairs
do not exist by Theorem 2.

Hence these four equations must be linearly dependent. Thus there exist a, 3,7, 6, not
all zero, such that

(3.3.4) bl + BU} + yblc; + 8bic? =0, i=2,...,5.

Multiplying the ith equation by ¢} for k = 1,2,3, and summing over i, we obtain, from the
quadrature conditions (2.3) and (2.6), the system

N T
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Since the determinant of the coefficient matrix is not zero, this system has the unique solution
(a + B8,7,6) = (0,0,0). Hence a = —B # 0, for otherwise no pair exists. However (3.3.i)
imply that b} = b}, i =2,...,5. Thus, by (2.3) and (2.6) with k =0, b} = b|. Hence no such
pair exists. 1§

Appendix

The appendix contains the Butcher tableaus of a five-stage (4,5)NF pair, a six-stage
(5,6)F pair and a six-stage (5,6)NF pair. These pairs are not intended to be optimal pairs
from each class, but they only confirm the existence of at least one pair with the required
number of stages.

Table A.1. A five-stage (4, 5)NF pair.

1 L

[ 72

3 459 7

10 23000 2875

2 41 189 0

5 2876 2875

2 1145 203 385 0

3 29187 6486 2538

b -9 18 _35 _ 5 1
36 K7y 36 28 3

b 17 _125 3328 _ 275 47
18 28 396 56 88

B _l 3 25  _

b 36 14 18 % 1

Iy 17 _75 2375 _ 1375 141
18 14 198 168 88

Table A.2. A six-stage (5,6)F pair. An entry of the form (a, b)
represents the algebraic number a + bv/5.

1 1
2 8
1 8 3
(';'n_'i%) (T‘slo'v"%) (%‘%l—%) ("T}.'o'lﬁ)
(%'Tlﬁ) (%'ﬁ) (i%o‘o_l_;ﬁ) ('1%6""3';—0) (%|2_lo')
b 5 0 2 (R Go-R) 2
12 2424 TN
b ﬁ 0 0 ('z'szvgl'f) (isi'_fli) 0
b i 0 - 1 1 1
v v 0 (—% % i % (-
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Table A.3. A six-stage (5,6)NF pair. An entry of the form (a, b)
represents the algebraic number a + bv/5.

(3:3%) -}-%%) @G

1 - R E-B

-% G-%) BB &) o

) | C8-8k (B8 E-3 o (-

b & 0 FH-% o (Ed LY

b i 0 (-3 0 (%) G-%

¥ & 0 g8 & & -1

v 5 0 & & 13 1
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ON THE DIAMETER OF THE ATTRACTOR
F AN IF

Serge Dubuc Raouf Hamzaoui

Presented by L. Lorch, F.R.S.C.

Abstract

We investigate methods for the evaluation of the diameter of the attractor of an
IFS. We propose an upper bound for the diameter in n-dimensional space. In the
case of an affine IFS, we indicate how this upper bound can be calculated.

Key Words: attractors, diameter, fractals.
AMS Subject Classifications: 58F12, 28A80

1 Introduction

Apart from its theoretical interest, the evaluation of the diameter of the attractor of
an iterated function system (IFS) is useful in many algorithms. Dubuc-Elqortobi (3] have
considered adaptive methods to reduce the computations in the deterministic algorithm
(1] and Hepting-Prusinkiewicz-Saupe [5] have proposed an algorithm that renders the
geometry of the space which contains an attractor characterizing each point according
to its distance to the attractor. In these methods it is assumed that the diameter of the
attractor or at least an upper bound is known. However, no clue was provided on how to
determine this diameter although it is clear that computer graphic tests can lead to good
approximations. In this paper, we propose a class of upper bounds for the diameter of the
attractor of an IFS in a complete metric space. The existence of a smallest such upper
bound is proved in n-dimensional space. If the IFS is affine, we suggest a method which
enables us to compute this smallest upper bound. Finally, we show that in a particular



86 S. Dubuc and R. Hamzaoui

case the diameter of the attractor is equal to the diameter of the convex hull of the set
of fixed points determined by the IFS.

2 Approximation of the diameter of an IFS

We recall first some basic results of IFS theory. Let (X, d) be a complete metric space.
The class of all non-empty closed bounded subsets of X is a complete metric space for
the Hausdorff metric A [7). Given N contractions fi, fa,..., /v : X — X, the finite set
F = {f1, fay.-,fn} i8 called an iterated function system or IFS. Let L(f;) denote the
Lipschitz constant of the contraction f;, i = 1,2,...,N. The following theorem can be
found in Hutchinson [6)].

Theorem 1 Let F = {fi, fs,...,fn} be an IFS of the complete metric space (X,d).
Then there ezists a unique non-emply compact set A called attractor of the IFS such that
A = F(A) = UL, fi(A).

Lemma 2 Let F = {fi, f2,..., fn} be an IFS of the complete metric space (X,d) with
altractor A. Let E be a non-emply closed bounded set such that fi(E) C E for each i.
Then AC E.

A proof is given in [4].

Proposition 3 Let F = {fi, f2,...,fn} be an IFS of the complete metric space (X,d)
with attractor A. Then for any z € X, A C B(z,r:), where r: = maxicicn %‘f—,{:&?

Proof. If zo is in the closed ball B(z,r;), then for every i € {1,2,...,N}, fi(zo) €

B(z,r:). This is a consequence of the following inequalities

< d(fi(zo), fil2)) + d(fi(=), %)
< L(fi)re + d(fi(z),2)
<

rz.

d(fi(o),2)

Thus, fi{B(z,7:)} C B(z,rs) which implies that A C B(z,r;) by Lemma 2. O

Proposition 4 Let F = {fy, fa,...,fn} be an IFS of (R",d). We define ®: R* = R
by &(z) = r.. Then ® is continuous and has a global minimum.
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Proof. & is clearly continuous. Let £, be the fixed point of f;. For each z not contained
il'l B(ﬂl, rn.) .

() < d(z,%) (1)
< =), (2

where the inequality (2) is justified by the fact that @, € A C B(z,r;). Since ¢ is
continupus on the compact B(fy,rq,), it reaches on this set a lower bound which is also
the global minimum due to (2). O

We deduce from Proposition 4 that from all balls B(z,r:) that contain the attractor,
there is at least one with smallest diameter. This diameter is our best upper bound for
the diameter of the attractor.

From now on we shall consider only affine IFSs of n-dimensional space, i.e., IFSs such
that the contractions are affine transformations of IR".

What can be said about the nature of the set of points at which the minimum of the
function ¢ is reached ?

Proposition 5 The set of solutions of the minimization problem inf.cr» ®(u) is a closed
convez set and consists of a unique point if the funclion ® is strictly convez over R".

Proof. We note first that ® is convex. This results from the convexity of each function

d(=z.fi(=

i=i{ Which is clear since

d(z, fi(=))

X —

llz - fi=)ll 3
lAiz + Bill, (4)

where A; is a linear map and B; is a vector. Let S be the set of solutions of the
minimization problem inf,¢r~ ®(u). We know from Proposition 4 that S # 8. Moreover,
S is closed since & is continuous. If both z and y attain m = infuer~ ®(u), then

m < &(Az + (1 - A)y) < A8(z) + (1 — A)®(y) = m, (5)

so Az + (1 — M)y also attains m. Hence S is convex. Now if ® is strictly convex and
z #y, then for A = 1/2 the second inequality in (5) is strict and leads to the contradiction
m<m. 0O

Let us see how to approximate the diameter of an attractor in Euclidean space. We
will consider two approaches. The first one is experimental. It consists of drawing an
approximation of the attractor and the assumption that the diameter of the obtained set
is a good evaluation of the real diameter. This is motivated by the following proposition.
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Proposition 8 Let F = {f;, fs,...,fn} be an IFS with attractor A. Then for any
non-emply bounded set E

16(4) = S(FEY) < 25— ME, F(E))
where L = maxy<icn L(f;).!

Proof. This is an immediate consequence of a result in Berger [2] which states that the
function diameter is Lipschitz with constant 2. O

The second approach is to compute the minimum of the function ®. We explain in
an example how this can be done. The dragon is the attractor of the IFS {f;, f2}, where
Si(z,y) = (1/22+1/2y,—1/22+1/2y) and fa(z,y) = (=1/2z+1/2y+1,-1/2z—1/2y).
For a given point u(z,y) we determine the value of ®(u) = max; <ica ,:"‘ !'.‘ . We know
that L(f;) = (/maxigjc2 A, where the ;s are the eigenvalues of ATA; and A; is the
matrix associated to f;. Thus L(f;) = L(f2) =‘\/§/2. By comparing d(u, fi(u)) and
d(u, f(u)) we find that

O(u) = %%%;P if(z—3/4) +(y+1/4)*<1/8
()= ﬂn% otherwise

Instead of the minimization problem inf,¢g: ®(u), we can consider the equivalent one
inf,erm $*(u). The function ®? has no critical points inside or outside the circle defined
by the equation (z — 3/4)* + (y + 1/4)? = 1/8. On the circle the critical points are
solutions of the Lagrangian system

OF(=.p =0
aflt.'!! - 0
8y

(z—3/4) +(y+1/4)* =1/8

where F(z,y) = 22/2 + y*/2 — M{(z — 3/4)* + (y + 1/4)* — 1/8}. These solutions are
z =3(v5/20+1/4), y = —(v5/20+1/4) and z = —-3(v/5/20-1/4), y = (v5/20—1/4).
By comparinig the value of ® at these points we deduce that inf,epm $(u) = !;/—_55:-;?.
Thus the diameter of the dragon is less than g%;.

In the general case and for an IFS F = {fy, fa,..., fn}, we determine the N domains

1We recall that h is the Hausdorfl metric. By §(A) we denote the diameter of a set A.
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D;, Dz, ceny DN defined by

| 4869 > 4ty
463 = =P

The function ®(u) is equal to W on D;. We find the critical points of ®?(u) which
is a differentiable function on every D;. The study is made separately in the interior and

D;

on the boundary of D;. We calculate the value of & at the critical points and retain those
that minimize ®.

The following proposition says that there is a special case where the diameter of the
attractor is equal to the diameter of a finite set.

Proposition 7 Let F = {f,, fa,..., fn} be an affine IFS with attractor A. Let Q; denote
the fized point of f;, and let O be the convez hull of {0,,Q;,...,9n}. If f;(%) € O for
alli,j € {1,2,...,N}, then the diameter of A is equal to the diameter of O.

Proof. Since all the fixed points Q; are contained in the attractor, we have §(0) < §(A).
The condition f;(Q;) € O implies that f;(O) C ©. Thus A C O which shows that
§(0) 2 §(A). O

Example The diameter of the Sierpinski gasket is equal to the diameter of the triangle
whose vertices are the fized points of the three contractions.

The computation of the diameter of a finite set in Euclidean space is a common
problem in computational geometry. Efficient algorithms are given in Preparata and
Shamos [8].

Acknowledgement. The authors are grateful to the referee for his comments on the
proof of Proposition 5 and to Dr. Amitava Datta for proof reading the manuscript. The
second author would like to thank Prof. Dietmar Saupe for helpful discussions.
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ASYMPTOTIC BEHAVIOR OF THE DAVEY-STEWARTSON SYSTEM
Marisela Guzmin-Gémesz

Presented by G.F.D. Duff, F.R.S.C.
Abstract: This paper is devoted to the study

of the asymptotic behavior of the Davey-Stewartson
system that models gravity-capillary waves.

1. Introduction

We consider the initial value problem for the Davey-Stewartson system (DSS):

g + 08Uz +uy = '\lulz“ +bups, teR, (z,y)€ Rzr (1.1)a
PR
Pz + Moy, = 5;(""2)' (1.1)s

with the initial condition
u(z,¥,0) = uvo(z,y)- (1.1)c

The Davey-Stewartson system appears as envelope equations in modulation of water waves
at the surface of a three dimensional flow [1,2,3). The parameters &, A, b and m depend on the
fluid depth, surface tension, gravity and wavenumber and can assume both signs; 6 and A can be
normalized such that |§] = {A] = 1. The boundary conditions depend on the sign of m. For m > 0,
u and ¢ vanish at infinity while for m < 0, the boundary conditions are of radiation type.

A detailed discussion of the well posedness or finite time blow-up for DSS according to the
values of the parameters is presented in Ghidaglia & Saut [4].

The purpose of this paper is to study the asymptotic behavior of global solutions of DSS and to
prove that when ¢ — %00 u tends to a solution of the associated linear equation and ¢ tends to 0. For
certain values of the parameters we also show the existence of the scattering operators 4 : uy — u-
and Q_ : u_ — uy, as bijections of the Hilbert space £ = {v € L}(R?) : [|vllz +]| Dvll2 +|Ixvll2 < 0}
or of a neighborhood of zero in L2(R?).

A large amount of literature has been devoted to the study of the scattering theory of the
Nonlinear Schrodinger equation (NLS) with power nonlinearity |u[P~'u in R". We refer to [6]
for complete references. In [5] Ginibre & Velo proved the existence of the scattering operator for
NLS equation in £ with A > 0 and l+%b<p< 1+-;__Lz. When ELH'-‘C','!,"——m<p5 l+% the
construction of the scattering operator in a neighborhood of zero in H'(R?) was studied by Strauss
(8] and in general by Tsutsumi [11]. For p > 1 + 2 Tsutsumi and Yajma [10] proved asymptotic
freedomn of NLS equation in L2(IR?) for initial conditions in E.

In this paper we obtain similar results for DSS. The study is based on the invariance of the

system under some transformations. We use this idea not only when § = 1 and m > 0 where it is
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a simple consequence once solutions in C(IR, L) are established, but also when § = 1 and m < 0
where only weak solutions are obtained and for solutions in C(R, L?(JR?)) when § = —1 and m > 0.
Decay of solutions of DSS has been studied by Tsutsumi [9) who constructs weak solutions of DSS
that decay in LP.

2. Notation and Basic Results

W™ P(R?) denote the Sobolev Space of functions equipped with the usual norm:
lullma = (Sogibigm [ 1D*ulP)/? and HH(R?) = W3(B2), [lllp = llullcs, ol = o]+ Vo +
lxv(l3. HL(R?) refers to H'(R?) endowed with its weak topology; Cs(R?) is the set of bounded
continuous functions.

The system can be classified as elliptic-elliptic, elliptic-hyperbolic, hyperbolic-elliptic and
hyperbolic-hyperbolic according to the respective signs of (§,m): (+,4), (+,-), (=,+), (~,-). We
first recall some results due to Ghidaglia & Saut [4] concerning existence of global solutions.

If any one of the following hypotheses (A1), (h2), or (h3) is satisfied there exists a global
solution (u, ) of (1.1):

a) uw€eHY(R?), m>0, §=1 and X maz{-b,0} (h1)
2[b)

b) uo€ H'(R?), m<0, =1 and [—\/% + maz(—A.O}] fluoll3 < 1 (h2)

¢) ug€L*(R?), m>0 and [luf; “small enough” (h3)

Under hypothesis (h1), the solution is unique with « and Vi € C(R, H'(IR?)); if (h2) is true,
u € C(R, H (IR?)) and p € L™(R,Cy(IR?)); when (h3) is satisfied the solution is unique with u
and Vg € C(R, L*(IR?)). In all the above solutions the mass is conserved, [Ju(t)||2 = [|uo[lz, while
the energy £ = [ {8lusl® + |uy|* + 3{ul* + $(w? + m¢?)} dzdy is conserved by solutions of DSS
that satisfy (h1). Under hypothesis (h2) one can construct weak solutions such that the inequality
£(t) < £(0) is verified.

Under hypothesis (h1) or (h2) and if the solution satisfies the inequality £(t) < £(0) then
[IVu(t)f]2 is bounded.
We also have :

[+ meddsdy < lullt, it m >0 (2.1)
1 .
| [ 12+ meghasas| < SAolloltlt and Nollw <IN m<o. 22

If m > 0, DSS is equivalent to the integral equation u(t) = S(t)up — i [ S(t — 7)F(r)dr
where S(t) stands for the evolution operator of the linear equation iug + Su,s + 1y, = 0 given
by S(t) = Lei®=+v’/40 P(y) = Alv|?v + buK(|v|?) and K the integral operator that solves
s = K(|ul?) from (1.1)s.

In the next section we study the long time behavior of global solutions of DSS.
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3. Asymptotic Behavior of Solutions with data in £ and L?(R?).

Theorem 38.1. Let m, § and A be as in (hl).
a) For initial condition ug € E, there ezist unigue scattering states ux € T such that the solution

(u,9) of (1.1) satifies:
flux - S(~t)u(®)lc = 0, [Ve(t)lla =0 as t— koo (3.1)

and for any p > 2 there ezists a positive constant Cp, such that:

llu(®ll, < Cpt* . (32)

b) For any uy € I, there ezists a unique ug € L such that the solution (u, ) of (1.1) satisfies
[luge = S(~t)u@®)llz =0 and [[Ve(t)iz =0 as t— +oo. (3.3)

¢c) For any u_ € I, there ezists a unigue uo € T such that the solution (u, ) of (1.1) satisfies
lle- = S(—-t)u(t)lz =0 and [[Ve(t)|lz—0 as t— —oo. (34)

Theorem 3.2. Letm, §, A and ug as (h2). If u € £ there ezist scattering states uz € L*(RR?)
such that a solution (u, @) of (1.1) satisfies

lug - S(-t)u(®)lz = 0 end [lp(t)llo =0 as t— too (3:5)

and for any p > 2 there ezists a positive constant Cp, such that (3.2) is satisfied.

Theorem 3.3. Letm > 0.

a) There ezists € > 0 such that if ||uolla < € there are scaltering states uy € L}(IR?) with
{luzllz < € such that the solution (u,p) of (1.1) satisfies lim; —1o0 flu(¢) - S(¢)uzllz = 0.

b) There ezists € > 0 such that given a scattering stale uy € L3(R?) with llusliz < € there
ezists a unique initial condition ug € L*(IR?) with ||uoll2 < € such that the solution (u, ) satisfies
limoy 400 [|u(t) — S(t)uslla = 0.

¢) There exists € > 0 such that given a scattering state u_ € L*(R?) with [[u_{|2 < € there
ezists a unique initial condition uo € L*(IR?) with [luollz < € such that the solution (u, ) satisfies
lim, oo [|u(t) — S(t)u-|lz = 0.

Remark. Theorem 3.1b) and c) imply that the wave operators W : ux — up are well defined
as mappings from £ to E. Theorem 3.1a) implies that Wy are one-to-one and onto and one can
construct the scattering operator W, 'W_ : u_ — u, in the elliptic-elliptic case; similarly theorem
3.3 implies the existence of the scattering operator in a neighborhood of zero in L*(R?) in the
hyperbolic-elliptic and elliptic-elliptic cases. A
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We will use the invariance of DSS under the transformations:

Tue)=(0.9) with s(z,p,0)= e+ (22 1) e = 2o (5.2, 2):

Feo(u(z,9,t), e(z,y,1)) = (x(z, ¥, t + to), p(z, st + t9))

l.e if (u, ) satisfies DSS, (v, ) also satisfies DSS with the new variables X = £,Y = £, T = -‘l;
Note that 72 = Id.
Lemma 3.1. Let (v,%) = T(u, ), X=(X,Y), x=(x,y).

a) llo(Tllz2 = lu(®)l2 (3.6)
b) IVUT)llz = IxS(=t)u(®)la = lIxu(t) + 2itVu(2)llz 3.7
¢) Xv(T)+22TVV(T)[a = [Vu(®)]lx . (3.8)
d) flo(T)llp = t*~[lu()llp (3.9)
e) [lvxlif = 166 lp. /13 - (3.10)

The proof is a direct consequence of the definition of the transformation 7.

Proposition 3.1. If uy, m, A and b are as in (A1), with in addition %y € £, then (u, ) solution
of (1.1) satisfies u € C(R, I).

Proof: Let (u,) the unique solution of (1.1), take v(z,y,1/2) = —ieils="+v")/2g,(z, y) as the
initial condition and get (v, %) the solution of DSS with v € C(RR, H'([R?)). Let (U,n)= T(v,¥);
by uniqueness of solutions of DSS, u(z,y,t) = U(z,y,t+ 1/2). All of these solutions satisfy the
conservation of the energy.

Then by (3.8),(3.9) and (3.10), (U, n) satisfies the pseudo-conformal equality:

[xU(z,y, )+ 2itVU (|3 + %t’ll(l(t)llﬂ + 8bt! f(nz + mn?) = constant (3.11)

then U and u belongs to C(R,E). g

Proof of theorem 3.1a):

Let us prove (3.1) when ¢ — +oco (the case ¢ — —oo is identical). Let (u,y) the unique
solution of (1.1) in C(RR, L) and (v, ¥) the solution of DSS with initial condition at ¢t = 1/2 defined
by v(z,y,1/2) = T(u(z,y,1/2)); v € C(IR,I), then v(0) = vy € L and limrg [|v(T) - w|lz = 0.
By uniqueness (v, %) = T(u,¢). The solution of the linear Schrodinger equation S(T')vo satisfies
limr-0 [|S(T)vo = vo|lz = 0, thus limy_o ||v(T) — S(T)vllc = 0.

Let w(t) = T(5(T)w); w(t) is also solution of the linear Schrédinger equation. Thus w(t) =
5(t)w(0) with w(0) € £. By (3.6), (3.7), (3.8) :

lu(t) = w(t)]lz = [1o(T) = S(T)wolla,
1Vu(t) = Vu(t)ll: < TIIVH(T) - VS(T)wllz + 1Xo(T) - XS(T)voll2,
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(IxS(=t)(u(t) = w(t))la = [V((T) = S(T)vo)llas
then [|S(~t)(u(t) - w(t))lle < Iv(T) - S(T)wollz because S(t) is unitary in H'(R?). Define
u4 = w(0); uy € T is the scattering state satisfying (3.1).
Using the conservation of the energy, |lv(T)l|s remains bounded. By (3.9) and Sobolev
embedding theorem LP(IR?) C H'(R?) for p > 2, then:

(@)l = £3=[lo(T)llp < Cot* oDl < Cot?".

Estimate (3.2) follows; (2.1) and (3.2) imply that:

IVe@)ll3 < llulif <C+07. g

Proof of Theorem 3.1b):

Given uy € L, define vy (T) = T(S(t)uy); S(t)uy as well as v, (T) is a solution of the linear
Schrédinger equation, let v(T) be the solution of DSS with initial condition v4(0) € Z; then v(T)
and v4(T') are in C(R, Z) and

1(T) = v (Dl < (o(T) = 040l + v+ (T) — v+ (O)ll=,

therefore limg 0+ [|v(T) = v4(T)lc = 0.

Define u);; = T~'(v(1/2)), 32 € © and there exists (u, ) that satisfies DSS with u(1/2) =
u172. 4o = u(0) is the desired initial condition. By lemma 3.1, ||S(-t)u(t) — uyllz < [|v(T) -
v4(T)|lz, then (3.3) is obtained. g

Proof of theorem 3.2:

If o € £, m, A and b are as in (h2) take v(z,y,1/2) = —ie'="+v')/35y(z,y) as the initial
condition and get (v(z,y,t), ¥(z,y,t)) a global weak solution of DSS with v € C(R, HL(R?)) and
¥ € LR, Cs(IR?)) that satisfy:

1wscoil + Jivcon + 3 { [ v+ i} < £0/2) (3.11)

Let (U, ) = T(v,¥) and (v, ) = Fy;2(U, n) defined for ¢ > 0, then (u, ) is also a solution of
DSS and u(z,y,0) = U(z,y,1/2) = T(v(z,y,1/2)) = uo.
v € C(R,, HL(IR?)) imnplies that v(T) — vp as T — 0% with respect to the weaks topology of
H'(R?), i.e., for any G € H~'(R?), G(v(T)) = G(vo), as T — 0*.
Now, define G4(9) = (g, f) Vg € H'(IR?), where ( , ) is the usual inner product in L}R?),”
then:
Aim, G,(u(T)) = G)(w) VfeH'(R)

equivalently, ‘
Am (u(T). f) = (w,f) VfeHY(R).
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Let P be the linear operator P : H'(IR?) — € defined by P(f) = limg.,0+ (v(T), f). P is a bounded
linear operator from a dense subspace of L?(IR?), therefore it can be extended to L2(R?) and

lim (o(T),f)=(vo,f) VfeL(R.

T-0+

Also, limy_0+ [|v(T)[]2 = [luo[l2 and thus limz_,o+ [[0(T) - voll2 = 0.
Define Uy (t) = T(S(T)wo), then U, (t) = S(¢)U,(0) and by (3.6) :

IU(®) - Us(®ll = Jim, Io(T)~ S(TIoolls < o(T) = wlla + = S(TYoolly = 0 when T — 0.

Let uy = S(1/2)U,(0), then

Jm_llu() - S(@uslla = m_llu(t - 1/2) - S(e = 1/2)ull
= lim_[IU() - SOV O =0.

t=+4-00
Inequality (2.2) together with the Cauchy-Schwartz inequality and (3.11) imply that when ¢t — +oo0:
1 1 1 C
el < CHIHT o < CHIIBEIR < CrlIMTBIVUTIE < 2. g

The proof of theorem 3.3 is similar to that of theorem 3.1.
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SOME PROPERTIES OF a-BLOCH FUNCTIONS

Lou ZENGIIAN

ABSTRACT. We give the continuity of B° and Bg, predual space of B®, also a new characterisation of B®
aad B} which ace zeal extensioas foz ones of B and 8.

Presented by P.G. Rooney, F.R.S.C.

1. Introduction

Let D = {z : |z} < 1} denote the open unit disc in the complex plane. For an analytic function f

on D(J € H(D)). 0 < a < . The a-Bloch space B° is the set of all funcuons f € H(D) for which
n:p(l - P 2)) <
little a-Bloch space, Bg, consists of all functions f € H(D) for which
Jim (1= I ()] =0

It is known that B° is a Banach space under the norm |f(0)| +||fl|a-, and B§ C B®. Whena = 1,
we have B® = B and BS = Do, where B and B, are Bloch space and little Bloch space respectively(see
(1, 4-11) for an accouat of the theory of B and B3 ).

We set p(2)=(a— z)/(i — 3z) to be a canonical M3bius map of D onto D determined by a € D
and D(a,?) = {z € D : |pa(2)] < 7} a pseudohyperbelic disk with center a € D and radivs r € [0,1).
Suppose that g{z,a) = log|p.(z)| is the Green function of D with logarithmic singularity at a € D.

Hardy and Littlewood have proved that([§] [2]): for 0 < a < 1, B* = Lip(1 —a), B§ = Lip*(1 —u).
We know that Lip# can be used to describe the dual space of Hardy apace H? for 0 < p < 1({2]). So
we see B* and B are very important in the theory of Hardy spaces.

In this paper constants ate denoted by C which may indicate a different constant from one occur-

rence to the next.
2. Continuity of B® and B§.

1980 Mathernatics Subject Classification (1985 Revision). 30D48, 30D30.
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Theorem 2.1. Let 0< a,8 < oo. then

(a) B~c B°, BscB

(6) Upca B3 =U,ep B°

©) Nacp B} = Nacs B’

Proof. (2). From f € B, we have
Jim 17 =[PP < Wil lim (1 = |<fP== = 0

Hence Bg C B C Bi C B*.
(b). Uaca BS € Uacs B® is obvious. Now we suppose f € {J, 5 B®, then there exists a € (0, 8),
B3 and

ach

such that f € B”. For o' € (a.8), from the proof of (a) we know f € Bg'. so f €Y

U.<p B§ = Ua<ﬁ B°
t€). Noca B,’,’ C N..aB” is obvious. Suppose B € ta.cc),f € (,.a B?. then there exists
8" €(a,P). we have f € B?', so from the proof of (a), f € Bg and hence f € n“‘, Bg. n]

Theorem 2.2. Let 0< a,8 < oo, then
(3) Uacs B° € B’ U, B3 G B3,
(6) Macp B R B Nacp B2 R B3,

Proof. We only prove (i): U, ¢, B8 # BS, (ii): N,y B? # B,

(i) Taking #(z) = £, sivsy, From Theotem 1 of [10) f ¢ Bg for a < B, but f € Bf. So
Ua<p BS # BS.

(ii). Taking g(z) = 2:":,;;'1-!;1 From Theorem 1 of [10], f € B? for all o < 8, bat f ¢ B®. So
NocsB*#B°. O

3. Predual space of B°.
In [1], it was shown that the predual of Bloch space can be identified as
1
G =1 € BD): [ Mitr.s) < 0)
0

where My(r, 1) = (& [ |f(rei* )P do)/?.

We extend: the result to B®, that is

Theorem 3.1. Let 0 < a < 1, then the predual space of B® is isomorphic to

1
Gyla) = {f € H(D): /o (1 = )12 My(r, /')dr < o0}
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endowed with the norm ||]llg,10) = |/(0)] + [:(l —a)l-eM(r, f')dr.

Proof. Let p € (Gy(a@)F,a, = ¢l")and flz) =} 7_ a.z". Itis easy to see that. for0< s < 1.

o L)
elglrz) = z barpl(z®) = Z abar*

a=0 =0
So
L
wigi=< f,g>= 'h_ly‘ .god-b.r (g € Gila))
Since
= 2 2
4 o s-1 _ =
I(r)—.zzona.r <Sh g >= )
therefore

3w .
il o) = —/ (1= rp-e / | TE \ddr
o (1

(1 =72) rz)¥

1-altlrlr /'
/(l ) l—|r|r(21 n- rz]’do)d'

(1=r)
< | ————=dr<Cii=-|r)°
/ou—ll)“ Iy

Hence from |lpllg, (o) = 6UP420o n—,‘,ﬁ%. we obtain

V'l < lielle, tare II lloytr £ €L = 171" Nella, (o)

12
Thus § € B°; the choice g{z) = z"(n = 0,1,...) shows that f € B° is uniquely determined by
v € Gi(a).

Conversely let g(z) = 130 0842" € B® and f(z) = Torobaz" € Gita). Then define p(r) =
31 6abar®"! for 0 < r < L. we shall show that {(r) : 0 < r < 1} is a Cauchy net. From the
equality

1
2(n+l)n/ (1=02)""ds=1, n21
(]

we have

(r)"'2/ (1-.’)(2:.1: (rs)*~*(n + 1)a, s" Mds

a=l

1 _ 3 1o il INT)
-‘/o“ ’ )/o L1r32**)G'(s¢*? )~ dOds (1)

where G(z) = z(g(z) — g(0)), s0 G'(z) = zg(z) + [; ¢'(s¢")e**ds for z = re'’, which implies that
G € B°.
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Using (1) we get

letr) = o(R)|
1 2r
=|§ /o /o (1 = 82)(f'(rae®) = f'(Roe))G (s~ )c =" dbds|

1
s('/ (1 =8)"""My(s,/; ~ Jp s (f,(2) = fir2))
0

So J¢tr) = ¢(R)] — 0 as r. R — 1 by a simple application of the Lebesgue Convergence Theorem.
Now we define the linear functional #(f) = lim,_1 ¢(r). Its boundedness follows from (1)

1
let f)] < sup /(I-—n“"M;(a.j')ds
[ ]

0cegt

The theorem is proved. DO

4. Carleson measure characterization of B° and B§ functions.

Setting

Ste,0)={z € D : e < 2] < ol + (1 = |, larg =] < (1 = fe)t)

we have

201 = |e])? < |SCee.1)] < 3031 = |}, Juo] > %

A positive measure g on D is c alled a Carleson type measure if there egist constants C and £ : 0 <
t < 1, such that u(S(w,1)) < C(1 = |w]) for all w € D. p is called a vanishing Carleson type measure
it limyg; Gt = 0,

It is obvious that Carleson measure(vanishing Carleson measure) is a Carleson type measure (van-
ishing Carleson type measure) for ¢ = I(see [4, 6] for more on Carleson measure).

In this section we consider measure p,,,.4,0 < B,p < oo,O._<_ a < 00,f € H(D), defined
by dpta,pps(z) = [DPS(3 (1 = |s|?)?2+#-1)-1dm(z). where D®{(3) is the fractional derivative
of §(2) = £ a.2* defined by D?f(z) = T2 ,(n + 1/a,2*. We give Carleson type measure
characterization of a-Bloch functiorsand vanishing Catleson type measure characterization of little

a-Bloch functions,that is

Theorem 4.1. Let f € H(D) and 0 < ,p < 00,0 < a < o0, then
(8) f € B° if and only if yia p,9,9 i3 & Carleson type measure.

(b) 1 € Bg if and only if $8a,8,.¢ is & vanishing Carleson type measure.

To prove the theorem we need the following lemmas.
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Lemma 1([6]). Forz€ Dandr:0<r <l iftr+ $)/(142tF)< |2] <1 then there exist w € D

and p:0< p < 1, such that Dtz,7)C Slw,p).

Lemma 2. Let0< pd<x,0€a<x,0<r<],1<é<x,and f € H{D). then the following
are equivalent

(a} f € B°

(b) sup, |D*fi2)fil = PP+t <

te) sup, fp ID? fr2ar() = |z reso=10=3) o e (2 dmiz) <

Proof. We denote (a) is equivalent to (b) by (a) — (b). The proof of (a) — (b) and (a) — (¢) is similar

respectively 10 that of Theorem 2.3 and Theorem 2.3 of [€]. so we omit the detasl. O

Lemma '3_ Let0<p.3<0.0<a<x,0<r<.1<é< 00, and f € H(D). then the following
are equvaent

ta) f € By

(b) [D? f(2)l(1 = |2]?)>**-t =0, |z| =1

© Jp 1D? f(2)P(1 = |z e+P-0=3(] — [p(2)]* ) dm(z) — O, |u] ~ 1

Proof. The proof of (a) — () follows from [3. Theorem 6(ii)]. (a) « (c) is similar to that of Theorem

2.4 of [8], so we omit the detail. O

Proof of theorem {.1. (a). H f€ B*. Fix1:0<t< * By Lemma 2 we have

Ha,0,.4(S(w0,1)) = /
s

< sup |D? f(2)]P(1 ~ | rie+o=t) / (1 ==V *dm(z)

S(w,t)
S(w,t)
(-t -0

< sup|D? J(2)|P(1 = |22 yrie+A-e() — |u))

|D‘J(')lr(l - lz")’“"’"”"dm(z)
4}

{w,

< sup|D? S(2)P(1 = JafP ety

Here we used that 1 —|z[> > {1 =|w|X1-¢), for z € S(w,t). Hence pa,5,y,7 is & Carleson type measure.
If pap,p.7 18 & Cacleson type measure, then for each w € D, there exist constant Cand1:0<t <1,
such that g, 5,,.¢(S(w,1)) < C(1 = je|)t.

It =1, then pq g,y is a Carleson measure; by [¢, P.239, Lemma 3.3}
sup [ D2 JIP(1 - PP+ 073(1 = o () dmCa) < oo
« Jp

therefore f € B by Lemma 2((a) «~ (c)).
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Ift#£ 1. for u € D:ro < |uf(ro = LK), there existsr = 7550 < 1 < 1) such that

1347

T r+ 2 4+3:
-<¢ —i ¢
4<I+U- 12+ <lsl<1

From the Lemma 1 and its proof there exist v = {Z35e*’* ¢ Dand t = i, such that D(s,r) C
S{w,t). So

/ [D? J( 2001 = [eyPle+8-11-2gim( )
D(u,r)

5/ (1= z[?) "dpa,9,0(2)
S(w)0)

Po.s.p.g(Sl10,4))
= U =lelX1=-0
<o =lui __ ot
ST = lupd -0 1=t

and

30 / [D*S2)P(1 = |2 +9-1-2dm(z) < x
Dis,r)

roxin|

Then (a) follows from Lemma 2.

(b). Using Lemma 3 instead of Lemma 2, the proof is similar to that of (a). O
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A NOTE ON THE STRONG LAW OF LARGE NUMBERS
OF TRIANGULAR ARRAYS

Fuchun Huang, Peili Wang and Xueren Ding

Presented by G.F.D. Duff, F.R.S.C.

Abstract A necessary and sufficient condition is given for almost sure convergence of
triangular arrays with a common distribution.

If X,,, n > 1 are independent identically distributeds random variables, 5, = v X
and EX exists, then the Kolmogorov strong law of large numbers ensures Sy, /n = EX,
almost surely. But this result can not extend directly to triangular arrays. That is, given
a triangular array of independent random variables (all defined on a common probability
space) such that its nth row consists of n independent and identically distributed random
variables X,1,...,Xnn according to a common distribution F with mean zero, Spn =
Tj=1 Xuj» it is a question whether or not

snn

— 0 a.s. (%)

In (1), J.H. Romano and A.F. Siegel give au example to show that (*) may fail to hold if
F has only first finite moment of zero. Their counterexample is an F, that is a symmetric
distribution and F(t) =1 — i}g if ¢ > 1. Then, using an inequality of Feller (see 2], p.

149), they proved
$p (S 51) = m
n

n=1

So, by the Borel-Cantelli Lemma, P (Ls%,._[ > 1 infinitely oft.en) = 1, therefore Sy./n di-
verges almost surely. They also proved that if F has mean zero and a fourth finite moment
ft4, then S, /n=25 0, regardless of the row structure. Indeed,

- svm = ElS..../nl‘
e < —— .
,.E:_,P(I n|>¢) < E pr < 00, Ve > 0

n=1
So by the Borel-Cantelli Lemma, (*) holds.
In this note we prove the following

THEOREM. (*) holds if and only if F has mean zero and a second finite moment.
Proof. By the famous Hsu-Robbins theorem (see (3], p. 363), we know that

ZP(I—'S’;;'—l > e) < 0o, e > 0, (»*)

n=1
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if and only if EXyy =0, EX}, < oo. If (**) holds, then by the Borel-Cantelli lemma, (*)
holds. Else if (**) does not hold, since S,n, n = 1,2,... are independent random variables,
by the Borel-Cantelli lemma for independent events, P (l-s-;‘.—"-l > 1 infinitely oﬁ;en) =1

However, since F has mean zero, by the usual weak law of large numbers, Sun/n Ly 0, so
Snn/n diverges almost surely, that is (*) does not hold. This completes the proof of the
theorem.

Noting that (**) means the complete convergence of Snn/n, we have
Corollary. -531 = 0if and only if §:ﬂ 2%0.

So, though the complete convergence is much stronger than the almost sure conver-
gence in general, the two convergences are equivalent in the case of triangnlar arrays with
common distribution.

Note added in proof: An article by W.E. Pruitt “Summability of independent random
variables”, J. Math. Mech. 15 (1966), 769-776, contains the “if” part of the present
Theorem in a very general form.
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ABSTRACT Ostrowski's result (Z. Angew. Math. Mech. 47(1967),77-
81; MR35#7560]) on the stability of Picard sequence of iterates
for Banach contraction is extended to Matkowski contraction on
product spaces.

Keywords: Stable iterationm, Banach contraction, Matkowski
contraction, fixed point.
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1.INTRODUCTION. In computing, a solution of an equation is usually
approximated by an iterating sequence { x, },say. In practice,
because of rounding off or discretization of the function, an
. approximate sequence is used in place of the sequence {tx,}. 1In
general, the approximate sequence and the sequence { x,} need not
converge to the same point (see, for instance, Harder-Hicks
{2),p.704) . Alexander M. Ostrowski [6] appears to be the first to
investigate sufficient conditions concerning the stability of
iteration procedures for contracting maps (see Theorem 2.1 below).
Recently Harder-Hicks [2] and Rhoades [B] have obtained similar
results for maps satisfying certain contractive conditions. The
purpose of this paper is to extend Ostrowski's (now classical)
theorem to Matkowski contraction systems on a finite product of
metric spaces.

2. PRELIMINARIES. Let (Y, d) be a metric space and T : Y-Y.

For a point x, in Y, let

(*) xnoj, s f(TI xn)
denote some iteration procedure. Let the sequence {x} be convergent
to a fixed point p of T. Let ly) be an arbitrary sequence in Y, and
set
€, = d(¥Vpn, £(T, y,)), n=20,1,2,....
If lime, =0 implies that limy, =p, then the iteration process
o N~e

defined in (*) is said to be T-stable or stable with respect to T
(see Harder-Hicks [2], Rhoades [8]).

In 1967, Ostrowski [6) obtained the following first result on
T-stability (see Harder-Hicks [2]) and Istrdtescu (3], p.101, wherein
Ostrovski (1964) should be corrected to Ostrowski (1967)):

THEOREM 1. Let (Y, d) be a complete metric space and T : Y-Y such
that T 1s a Banach contraction, that is,
(2.1) d(Tx, Ty) < k d(x, y)
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for all x, y € Y ; where k<l is a nonnegative number. Let p be the
fixed point of T. Let x, be an arbitrary point in Y and put

xﬂ‘l = mnl nom o’ 1' 2'-.....
Let ly,} be a sequence in Y, and €, = d(¥pu, T¥,) , n =0, 1, 2, ....
Then, for n=0, 1, 2, ...,

o
(1) d(D) Yney) S d(Ds Xp0) + k™2d(X,, ¥p) 4-_; kﬂ']ej.

Also
(2) ]‘.im ¥, = p if and only if lime, = 0.
L] nNee
REMARK 1. The last relation (2) says that the functional iteration

{*) glven by the Picard sequence of iterates,i.e.,
Xpey = £(T, X,;) = Tx, is stable with respect to Banach contraction T.

Further, since in the case of Banach contraction,
d(x,, p) s k°d(x,, Tx,)/(1-k), (1) gives an upper bound for the error

in estimating d(y,. p).

In all that follows, we generally follow the following
notations of Matkowski [5] (see also Czerwik [1), Matkowski (4],
Reddy-Subrahmanyam (7] and Singh-Gairola [9]).

ag for iek,
(2.2) e = fy k= 1; 2rassehy

1-a, fori-=k%k,
and cff' are defined recursively by

(&) (e + elt) () for i » k

Cy1 Ciey,ker ¥ Cis1,1 Cy kerr or
(2.3) e =

! cff) xn - cifl s ciy, for i =k,

i’ k = 1,---’n‘t-1[ t = 0’ 1,-..,"‘2-

If n = 1, we define ¢’ = a,,.

Matkowski [5, p. 9] has shown that the system of inequalities
n

z; a,r,<r, 1i=1,2,...,n has a solution r; >0, i =1,

2,...n, if and only if

(2.4) cif >0, 1=1,...,n-¢, t=0,...,n-1; n22

holds. Moreover, there exists a positive number h < 1 such that
n

(2.5) 2 ayr,shry, 1=1,2,...n

for some positive numbers ry, I,,...,I, (see Czerwik [1] and Singh-
Gairola (9, p. 795)). Indeed, such an h may be found by
n

(2.6) h =max1(r]‘g ag Iy) .
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Let (X, d), i=1,2,...,n, be metric spaces,

X=X, xXp x...xX,,
and x® := (%, ....,x0), x{€X, 1=1,...,0; m=0,1,2,....
Also x := (%,....X,), X, €Xy, 1=1,...,0.
Matkowski's theorem [4-5] is as follows:
THEOREM 2.Let (X, d;), i =1, 2,...,n, be complete metric spaces
and
T,: X~X,, i=1, 2,...,n, be such that

(2.7) d,(Tyx, T,y) < gaik d, (X%, Yk).

for every X,, Yy € X, i, k=1,...,n, where a, are nonnegative
numbers defined in (2.2) such that (2.3) and (2.4) hold. Then the
system of equations

(2.8) X = T,x, i=1,...,n

has exactly one solutionp = (p,,...,P,) Such that p; € X;, 1 =1,...,k
For any arbitrarily fixed x° € X, the sequence of successive
approximations

(2.9) x§t = T,x®, 1=1,...,n,

converges and

(2.10) p; = lim x7°, 1=1,...,n.
M-

The above theorem is usually known as the Matkowski contraction
principle (Mcp) .Further, T := (T}, ..., T,) satisfying(2.7), (2.2)-(2.4)
is called Matkowski contraction (see Reddy-Subrahmanyam [7] and
Singh-Gairola [9]). If p € X is a solution of (2.8), then p is
called a fixed point of T := (Ty,...,T,) .

We shall need the following lemma due to Harder and Hicks (2].
LEMMA. If ¢ is a real number such that 0 <|c| <1 and {bJ is a

sequence of real numbers such that bl -0as j- =, then

o
lim (Y ¢®Jbd) = 0.
ares -
3.STABILITY RESULTS. The following stability theorem shows that
the functional iteration for T := (Ty,...,T,) defined by (2.9} is

T-stable whenever T fulfills the requirements of the Mcp.

THEOREM 3. Let (X,, d;) be a complete metric space and
T,: X-X,, i=1,...,n, such that T:=(Ty, ..., T,) is a Matkowski
contraction. Let p = (Dy,....D,) be the fixed point of T. Let
x% = (x2,...,x3) be an arbitrary point in X, and put

X" =Tx*, m=0,1,..., 1 =1,...,n.
Let {yA denote an arbitrary sequence in Xy, i =1,...,n,and set
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e = d(y!, Ty™m, m=0,1,...,4=1,...,n.
Then, form =0, 1,..., and i = 1,2,...,n,

I ]
(1) dypy, ¥ < dylpg, PN + h™ig, » ;_‘lh"’ e,

where r; 2 d,(x{, y{) are some positive numbers and h is defined by
(2.6). Also
(II) lim y@ = p, if and only if lime€7 = 0.
| o d e
PRCOF. For any m,
(3.1) dy(pg, ¥y < dylpy, xY) + di(Tyx®, T,y® + d,(T,y", y&Y)

n
< d,(p,;, x') + ?:;a,,d,(x:, yA +€, di=1,...,n.

Now we estimate the middle term on the right hand side of (3.1).
From the homogeneity of the system (2.5), we may assume without
any loss of generality (indeed, if necessary increasing the values

of r,, i=1,...,n) that d,(x{, y{) s r,, for some positive numbers
ry, i=1,...,n satisfying (2.5). Then

di(xi, yi) s d;(x}, T,y°) +d(T,y° y})

n
= d, (T, x° T,y°) +¢€} <V a +€ < hr, +el.
FALY] 1 1L x 1

Analogously d,(x}, y}) s h(hr; + €}) + €} = h?r, + hed + €l.
Inductively dy(x{, y{) sh®r; + h*1e] + h™2 ¢l + ....+ hel? + €,

n o-1
ay dyxx, yx) s h™ir, + h™Je].

Its ;ubstitution in (3.1) eséablishes (I).

To prove (II), first assume y{~-p, as m-», i = 1,...,n.
Then, for any i,

€ = d_((}'f“: T,y ™)
< dy(yf, py) + dy(Tp, T,y

n
< dx(.}'fuv by + ;ﬂud.(Pu i)
: -1
n
s d,(yf, p,) + (; ay) .max {d, (D, y{),...,d, (D, ¥}
1

Since each d,(p,, ¥{)~ 0 as m- », lime} = 0.
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Now suppose €] -~ 0 as m - », Since the Mcp guarantees the
existence of exactly one solution of (2.8) and, by hypothesis,

p is a solution of (2.8), the sequence {x{} converges to
p;.1=1,...,n, (cf. (2.9)-(2.10)). Recall that 0 < h <1
(cf. (2.5)). Thus, from (I), :

m
lim d,(p;, y§f') s lim (?:s h=ie) .
FFEX ] I X 3 Y

since { €] lj., is convergent to zero, an appeal to the lemma of
Harder and Hicks establishes (II).

COROLLARY. Theorem 1.

Proof. Take (Y, d) = (X;,d)) , T=T;i=1,...,n and
n =1 with a,, = k, d{(x,,y,) = r, in Theorem 3.
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CORRIGENDUM TO
AN APPROACH TO WIEFERICH'S CONDITION

C.R. Math. Rep. XIII, No. 2 April 1991
M. Yamada

Recently, I became aware that the following sentence had been dropped between L.7
of P. 91:
“If u? replaces u as a new u, then (u + 1)u~"'F;(u) = 0 (mod p?).”
This line should be inserted.
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