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THE SCHINZEL-TUDEMAN 
THEOREM OVER FUNCTION FIELDS 

B.BRINDZA,A.P!NTÉR AND J.VÉGSÔ 
Presented by CL. Stewart, F.R.S.C. 

INTRODUCTION 

Let f e Q[X\ be a polynomial with at least two distinct (complex) zeros. In 
1976 Schinzel and Tijdeman [6] showed that the equation 

fix) = y', in rational integers x,y,z with | y |> 1 
implies z < C(/) where C(/) is an effectively computable constant depending only 
on / . For further improvements, generalisations and related results we refer to 
llJ.lalJS) and [9]. The purpose of this paper is to give an effective analogue of 
the theorem, mentioned above, in the case when the unknowns z and y lie in an 
algebraic function field. Our result makes it possible to prove a general theorem on 
superelliptic equations over finitely generated fields (see Végsô [10]). 

Let ib be an algebraically closed field of characteristic zero and let K be a fi-
nite extension of the rational function field fc(<) with genus ^(K) and degree d. 
Moreover, let MK denote the set of additive valuations of K with value group Z. 
The (additive) height of a non-zero element a € K and a non-zero polynomial 
Pi*) = Er=o ««*' « W m de,ined ^ 

^ K ( « * ) = 2 1 -™«»{M«)) 
and 

J * K ( P ) = 5 3 -m«»{0,t»(«o)..-.tw(on)). 
veM* 

respectively. 
Theorem. Let f e K[JC] be a polynomial of degree n with ai least two distinct 
zeros (in an algebraic dosure of It). Then ike equation 
(1) /(x) = y m i n x , y 6 K , m G Z + w i t h y ^ f c 
implies 

m<32n«(ffK(/) + d + s(K)). 
We note that the unknowns x and y are not necessarily integral over the poly-

nomial ring k[t], and an analogous result over algebraic number fields would have 
dramatic consequences. 

The research of the firat author ha» been supported in part by Grants 1641 and 4056 from 
the Hungarian National Foundation for Scientific Research. The research of the second author 
has been supported in part by Grant 4055 from the Hungarian National Foundation for Scientific 
Research . 
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AUXIUARY RESULTS 

To prove our Theorem some preliminaries are needed. Let L be a finite extension 
of an algebraic function field K and P e KfJC] be a non-zero polynomial of degree 
n splitting into linear factors over K; that is 

n 
PiX) = a HPf " «0. («. € K,i = 1,... ,n). 

iol 

For the following simple inequalities we refer to [5] imd |7]. For any non-zero 
a,f) e K and m 6 Z we have 

max{.ffK(a/ï)..ffK(û +/*)) < /fK(a) + ifoW, 

HK(a,n) =1 m | Hfiia), 

J 1 ( P ) = | L : K ] ^ K ( P ) , 

iiiax{ JTKW, f^ ffK(a0} < ^ K ( P ) . 
•sl 

Let 5 be a finite subset of MK containing all the in/mite valuations* of K. A 
non-zero a € K is called 5-unii if u(ot) = 0 for every v $ S. 

Lemma 1. (Mason [4]) Let 71,72,7} be S-units in K witb 

71 + 7J + 7s = 0. 

Then 
H K ( 7 I / 7 * ) < | S | + 2 9 ( K ) - 2 . 

wbere | S | denotes (be cardinality of S. 

A similar result had been proved by Gyôry [3|. 
For an algebraic function field K C K' C L wc put G(K') = |L : K'](S(K') - 1). 

Lemma 2. (Ma8on[5],p.65) Lei A € K[X\ be a polynomial and a be a zero of A 
such that K(o) Ç L. Then 

0 < G ( K ( a ) ) - G ( K ) < | i f K M ) . 

(Tie constant | can be unproved a bit.) 

1 We recall that the extensions of the degree valuation of the rational function field kit) are 
said to be infinite (cf. Mason (S). Schmidt [7]). 
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PROOF OF THE THEOREM 

Let (x, y, m) be an arbitrary, but fixed solution to the equation (1). FWthermore, 
let F be the splitting field of / and let / be factorized (over F) as 

fiX)=al[iX-air, 
i=l 

where or,- £ oy for i ̂  j . Since 

* k 

[F : K]HKif) = Htif) > 5> i?r (« . ) = E r ' l r : K(o0)^K(o,)(««) > 
tel tel 

k 

>E^|F:Kl/fK(O ()(«0-

we have two (distinct) zeros of / with reasonable "size", that is, we may assume 
without loss of generality that .Hk(oi)(ai) < ^ K ( / ) and /1K(O,)(ûJ) < riHuif). Set 
L = K(ai,or2) and fiiX) = fiX + oj),i = 1,2. Fbr a polynomial Q € L\X] we 
denote by 5(Q) the set of (additive) valuations of L with value group Z for which 
there exists a coefficient of Q with non-zero value. As a preparatory step to apply 
Lemma 1 we derive an upper bound for the cardinality of £(/,), ï = 1,2. 

Let a = oj ,o, , . . . ,0}, denote the coeffidents of fi, i = 1,2. Then by uring 
the sum formula we obtain 

I Sift) \< £ 2/rl(a<.,)) < 2(n + Itftifi) = 2(n + l)^L.H,{fi) < 

- ̂ T^{Hria)+è mx+o, "Q>)r') -

- TTir(2f fr ( / ) + n*ltC.)("<)(F : «(«.)]) < 4(n + l)n»^K(/); f = 1,2. 

By taking a valuation v ^ <5(/i) of L such that v(x — a,) / 0 we get two cases to 
distinguish: v(x — a,-) < 0 yields 

rm;(y) = w(/(i)) = u(/,(x - a,)) = nu(z - a,), i = 1,2. 

Moreover, if u(x — a,-) > 0, then 

mvig) = vifiix - at)) = 1JW(X - on) 
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where lj is the smallest degree occuring in the expression of tbe polynomial ft. In 
both cases we have 
(2) ^ < ^ | « ( y ) | < | U ( x - a j ) | . i = l,2. n n . 
The identity 
(3) ( x - a 1 ) + ( a 2 - x ) + (a 1 -Q 2 ) = 0 
can be considered as an 5-unit equation where the valuation set S is the smallest set 
containing all the infinite valuations of L and the sets 5(ai —02), <S(a:—a,),5(/j), t = 
1,2. (Now, the elements 01,012 are considered as constant polynomials in L[X].) 
Applying Lemma 2 twice we get 

0<GK(o. ) -G K <| i fK( / ) 
and 

0 < Gt - GK^O < ^K(a,)(/) < \nMfl 
therefore, 

gih) < [L : K]giK) + | (n + 1)HK(/). 
If S Ç 5(/i) U5(/j) U5(QI -02) , then Lemma 1 implies 

SL (^^r) <l S{fi) I + I Sift) I +IL : K]d+ | 5(a, - o2) | +2S(L) - 2, \oti -at/ 

and the inequalities 

m < mHKiy) = ifK(/(x)) < (n + l)HKif) + n{nfl)HKix) < 

< (n + l)HKif) + ^p^- (Ht ( j ^ ) + War - o,) + ^ ( a , ) ) 
provide the appropriate bound for m. 

In the remaining case, when the set 
S, = S \ (5(/, ) U Sift ) U 5(0, - a2)) 

is not empty, we have 

i ^ j < 1+ 15(7,) U 5(/2) U 5(0. - 02) I • 

It is clear that ^ | 5i |< 2(/fi(i - «1) + Eifx - atf) and 

Hl(x - o.) < Et (î^L\ + Htid - at), i = 1,2. 
\ O i — « 2 / 

By applying Lemma 1 again we obtain 
H*- (^r) ^ s l + 2 ^ L ) - 2> ' = 1 ' 2 ' 

\Qi -at) 
thus 

2(Jïi(x - Q.) + Htix - at)) < 4 I 5 I +ty(L) - 8 + 411i(a, - a,), 
and finally a simple calculation completes the proof. 

Acknowledgements. The authors are grateful to Prof.K.Gyôry and the referee 
Car their remarks. 
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FLATNESS OF POWER SERIES EXTENSIONS 

nHARAOTRRIZES DEDEKIND DOMAINS 

John T. Condo and David E. Dobbs 

Presented by P. Ribenboim, F.R.S.C. 

Abstract. It is proved that a (commutative integral) domain R is a Dedekind 

domain if and only if T [[X]] is R [[X]] - flat for each domain T containing A as a 

subring. 

Recall from [4] that if /I is a subring of a (commutative integral) domain B, then 

A C B is said lo be LCM-stable in case rB D sB = (rA D sA)B for all r,s 6 A. 

Flatness is a suificient condition for LCM-stability (cf. |3]); the converse holds for 

overrings but fails in general (8, Proposition 1.7 and Example 4.8]. As noted in [2], 

it follows from a result of F. Richman (7, Theorem 4] that a domain B is a Prufer 

domain if and only if the polynomial ring T[X\ is B|A'l- flat for each domain T 

containing B as a subring; equivalently, if and only if R[X] C T[X] is LCM-stable 

for all such T. Our purpose here is to determine the domains R such that the formal 

power series ring T \[X]] is R [[X]] - flat for each domain T containing B as a subring. 

Henceforth, A' denotes an analytic indeterminate. 

According lo the main result of [2], a domain B is a Dedekind domain if and 

only if A(|A]) C T[\X]] is LCM-stable for each domain T containing Rasa subring. 
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Since flatness entails LCM-stability, it follows that if A is a domain such that T[[X]] 

is A([.Y]]- flat for each domain T containing B as a subring, then B is a Dedekind 

domain. The following result establishes the converse, and thus achieves the purpose 

announced above. Its proof makes essential use of the above-cited result from [2]. 

THEOREM. For a domain R, the following are equivalent: 

(1) R[[X]] C T[{X]] is LCM-stable for each domain T containing iî as a subring; 

(2) T[[X]] is H|(.Y]]- flat for each domain T containing B as a subring; 

(3) fl is a Dedekind domain. 

Proof. By the above comments, it suffices to prove that (3)=K2). Let a Dedekind 

domain fl be a subring of a domain T. To prove that T [[X]] is fl [\X]] - flat, it suffices 

to show that B = n p f ] ^ is flat over A = fl((^Ilw for each maximal ideal N of 

R[[X]]. By [6, Theorem 15.1), write N = iM,X) for the corresponding maximal 

ideal M of fl. It is important to note lhat A is a regular local ring |5, Exer.5, p.I2Il 

and, hence, a UFD (cf. [5, Theoiem 184)). Without loss of generality, dim(4) = 2; 

for, otherwise, A would be a local one-dimensional UFD, hence a DVR, and B would 

be A - Hat. 

According to the "conductor criterion" for flatness (I, Exer. 22, p.47), it suffices 

to prove that {IB : / ) C (/ : f)B for each nonzero feA and for each nonzero proper 

ideal / of A. To this end, suppose he B satisfies hf € IB;vre shall produce Cj € A, 

dj e D such that Cjf 6 / and h = Ecir f j-

Case 1: ht{1) = 2. Then s/I = Nn[[X]]N, and so A' g VÎ. Hence, Xn 6 / 

for some positive integer n. Since T is fl-flat and flatness is a universal properly, 
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the base change fl -» AM (A') /AnflM [X] leads to the fact that B/XnB is A/XnA 

-flat. If ( ) denotes reduction modulo {X"), then the condition hf e IB leads to 

HJ € 77?. As B is 3 - flat, the conductor criterion for flatness now yields ay e A, 

Sj € 7? such that âjj e 7 and Ti = Eôjîj. Choose aj (resp., &;-) to be any preimage 

modulo iX") of âj (resp., îj); then h -£ajbj = Xnb for some be B. Also, writing 

' = ifu—ifk) for suitable fi e R[lX]\, we have Oy € A such that âjf = ^-L, âïjfi, 

whence ajf - Eaii/i G A"i4. Since /..X" 6 / , we have oy/ 6 /, As Xnf € / and 

h = J^ajbj + Xnb, the required Cj, dj have been presented. 

Case 2: Ai(/) = 1. As above, write / » (/i,...,A),/i 6 «[[^ll- Put d = 

gcd(/i,...,/b) € /I. Then d belongs to some height I, hence principal, prime ideal 

of A. So dis a nonunit. Moreover, without loss of generality, gcd(d,f) = I. Since 

hf e IB, we have hf = £ft/j = d0 for suitable ft,/3 6 B. Thus, hf e fBndB. 

At this point, we invoke the main result of [2]: since fl is Dedekind, fl[(A^]] C 

T[[X]] is LCM-stable. Thus (cf. (8, Proposition 1.6]), A C B is also LCM-stable. It 

follows that hf eifAndA]B. However, fAndA = fdA sincegcd(d,/) = 1 (and A 

is a UFD), and so h = da for some a € B. 

Next, writing /,• = gid for suitable gt 6 A, we infer af = ]CA'Si = 0- Thus 

with J = igi,...,gk) = d~lI, we have a 6 iJB : f). Note that Ai(J) jt 1 since 

gcdigi,...,gk) - I, and so by case 1, a £ (J : f)B. Therefore, or = J^OjSj for some 

aj € A,Sj e B such that ajf e J. Then 7, = daj 6 A satisfies 7;/ = diajf) e dJ = 

I and ^fjbj = dj^ajbj = da = h, as desired. • 

We find it remarkable that the above proof that (3)=>(2) needed to invoke the 
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main result from [2], It would be interesting to find a proof that (3)=>(2) which 

would avoid mentioning LCM-stability. 

Let n be a positive integer. We do not know which (necessarily Dedekind, hence 

Noetherian) domains fl are characterized by the property that the formal power series 

ring r((X|,. . . , A'n)] is fl|(A|, ...A'n]] - Hal for each domain T containing fl as a subring. 

We close with some observations about the n-variable context. 

REMARK, (a) If a Noetherian domain T is flat over a Noetherian subring fl, 

then T[[Xt,...,Xn]] is fl|[.V|,..., A„]]- flat. For a proof, we may reduce to the case 

n = 1 since power series rings inherit Noetherianness, and this case is handled by (2, 

Remark 2.12(b)). 

(b) Ifa Dedekind domain fl is a subring of a Noetherian domain T, then T\[Xu ...,X„]] 

is fl((Ai,..., A'„)] - flat. For a proof, (a) may be applied, as fl is Noetherian. 

(c) If fl is a Noetherian domain with quotient field I< and if K is a subring 

of a domain T, then r(|.Yi,....Vn)] is fl|(A,,...A'„]]-flat. For a proof, note via [I, 

Exer. 17(a), p.250] that r|[.Y, Xn]] is A'p' , X„]] - flat. Thus, by the transitivity 

of flatness, it suffices to show that A((A|,,.., Xn]] is fl]]^,..., .YB)) - flat. This, in turn, 

follows from (a), as A' is Noetherian and fl- flat. 
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The Diophantine equation ar ± py* = zp 

Nobuhiro Terai 

Presented by P. Ribenboim, F.R.S.C. 

§1 Introduction. 
Let p be an odd prime and put p* = (—l)^- 1"^. Let d be a square-free positive integer. 

In [4), Powell proved the following: 
Theorem 1 (Powell{4]) (a) If p ^ ±1 (mod 8), then the Diophantine equatton 

x*+y* = z' 

has no integral solutions x,y,z with {x,y) = I and p fxy. 
(b) The Diophantine equation 

x4-y4 = z" (resp. x* - 4y4 = zp) 

has no integral solutions x,y,z with (z,y) = 1, p fxyz (resp. p fy). 

Powell proved (a) by factoring z* as {x7 + i»J)(*s - «y') over the Gaussian ring Z(t|. 
The proof of (b) needs the result concerning the Jacobi symbol used in the proof of the 
first case of Fermat's Last Theorem for even exponents by Terjanian (cf, Tcrjanian(8] or 
Ribenboim[5), p.67). 

To generalize Theorem I, (a), in the previous paper (7) we considered whether the 
Diophantine equation 

i ^ + d y ^ r " (I) 

has integral solutions x,y,z or not, and using the theory of imaginary quadratic fields, wc 
obtained the following (cf. Cao(2]). 

Theorem 2 (Torai and Osada[7]) Let p be an odd prime, d ^ 3 (mod 4) a square-free 
posilive integer, and A(—d) the class numier of the imaginary quadratic field Q(>/—a). If 
p^±l (mod 8) andp J'ft(-d), then the Diophantine equation (1) has no integml solutions 
x,y,z with (x,y) = 1, p fxy and y even. 

If d = 1 in (I), it follows unconditionally that p / A(-I) and y is even. Therefore 
Theorem 2 gives a generalization of Theorem I, (a). The proof of Theorem 2 is based on 
the following two facts: 
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(i) Let a, b be relatively prime integers of opposite parity and c an integer. Then Ihe 
implication 

a2 + d& = l?=*a + byflt=iu + vyfly (2) 
holds for some integers u and v. 
(ii) A square of odd integers is congruent to I modulo 8. 

In general, it is difficult to show that the impUcation (2) holds (especially for d < 0). 
Adachi (1) showed that the implication (2) holds for d = -p* under some conditions. 

In this paper, we consider the Diophantine equation (1) when d = —p*, and prove the 
following two theorems: 

Theorem 3. / / p = 1 (mod 4) and B(p_i)/3 ^ 0 (mod p), tAen the Diophantine equation 

xA-pyA = z' (3) 

Aas no integral solutions x,y,z with (z,y) = I, p | y and x even. 

Theorem 4. The Diophantine equation 

x* + 3y* = z3 (4) 

has no integral solutions x,y,z with (x,y) = I • 

§2 Proof of Theorems. 
First we prepare two lemmas: 

Lemma 1 (Adachi[l]) Let p be an odd prime, and a,b relatively prime and of opposite 
parity. In the case p = I (mod 4), we also suppose lhat the Bernoulli number 6(p-i)/2 is 
not divisible by p and b ts divisible by p. Ifd= -p', (Aen tAe implication (2) is valid. 

The following lemma is obtained by applying the idea of Terjanian[8] using properties of 
Jacobi's symbol. 

Lemma 2 (Rotkiewicz[6]) Let a and fi be the different zeros of the trinomial x2-Lx + 
M, where L>0 and M are rational integers such that K = L* — 4M > 0 and (L, Af ) = 1. 
/ / 2 j L, M S—l (mod 4) and p is an odd pnme, then 

Now we use Lemma 1, 2 to prove Theorem 3, 4. 

Proof of Theorem 3. Suppose that the Diophantine equation (3) has integral solutions. 
Then it follows from Lemma I that 

*' + y/pU1 = (« + tv/P)"-
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Therefore we have 
(p-U/ï (p-nn / „\ 

(p-n/»/ _ \ , , . . 
^ = k E (2/+1)«''-(2'+,VV=bB. 

We first show that (a,i4) = I,(b,B) = p and p[|B. From ( i ,y) = 1 and p ) y, we have 
p / a / l and (a,b) = 1. Hence since 

A s pbo-y»-1»/» (mod a7) and B = po"-1 (mod b V ) . 

we have (a, A) = I, p\\B. Thus it follows from p | y that p | b and so (b, B) = p. Therefore 
we obtain 

a = ±u2, A = ±U7, b = ±pv7, B = ±pV7 

for some non-zero integers u, U, v, V. 
We next show that a and b are of opposite parity. Suppose lhat a and b are odd. Then 

we have 
( P - O / î ( p - " ) / » / f i \ 

and 
(P-O/J (p-i)/» / D \ B s sUJ = : r , m ° d ^ , • i=o 

so A and B are even, which contradicts («,y) = I. Thus a and b are of opposite parity 
from ia,b) = I. Since /I = a»-1 + p b ' - y " " ' 2 (mod o'b*) and a ^ b (mod 2), we have 

±t / 2 = /I = a"-1 + pb"" V p " n / J (mod 4), 

so 
±U7 s a"-1 + V-l = \ (mod 4). 

Hence /I = l/', so o = «J. Similarly we obtain B = pV2, b = pu2. 
Put a = a + by/p and 0 = a - by/p. We note that a = 0 (mod 2) and 6 = 1 (mod 2), 

since x = 0 (mod 2) and (a,b) = I. Thus we have L = a + 0 = 2a(> 0) = 0 (mod 2). 
M =a0 = a7 - pb2 = - I (mod 4) since p S I (mod 4), and (L,M) = I. 

Since x2 + v^y2 = a" and x2 - ^/py7 = fP, we obtain 

, cT-P 
y = 

oP-p 
= h-

= bB. 

2bv/p 
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Therefore we have B = ^- = pV2, which contradicts Lemma 2. This completes the 
a — p 

proof of Theorem 3. • 

Remark 1. No examples of B(p-i)/3 = 0 (mod p) are known for p < 6270713 (cf. Wash-
ington [9], p.82). 
Remark 2. If p / y and x is odd, then the Diophantine equation (3) has an integral 
solution. Por example, ix,y,z,p) = (3,2,1,5). 

In the same way as the proof of Theorem 3, we obtain the following: 
Corollary. / / p = I (mod 4) ond B(p_i)/2 je 0 (mod p), then the Diophantine equation 

x*-pY = z' (5) 

Aas no integral solutions x,y,z with (x,y) = I and x even. 

Proof. The Diophantine equation (5) can be written as (x2)2 - p(py2)2 = «p. U follows 
from Lemma I that 

x' + y/ppy^ia + b^p)'. 
We use the notations in the proof of Theorem 3. Then we have py2 = bB. Since p fa and 
B = pa"-' (mod b2?2), we have p|]B and (b, B/p) = I. Thus 

b = ±v2,B = ±pV2. 
p ap 

By the same argument as the proof of Theorem 3, we obtain B = — — y = pV2, which 
contradicts Lemma 2. This completes the proof of corollary. i 

Proof of Theorem 4. Suppose that the Diophantine equation (4) has integral solutions. 
If x and y are odd, then z is even. Hence by (4), we have 4 = 0 (mod 8), which is impossible. 
Thus x and y are of opposite parity since (x,y) = I. Therefore it follows from Lemma 1 
that 

X
7 + y/Zïy7 = (S + v/ZSt)3 

for some non-zero integers s, t. Then we have 

x7 = sis2-9t2) 

and 
y2 = 3t(s2-<2). 

Since (i,y) = 1, we have (s,3t) = I and so (s.s2 - 9I2) = 1. Thus there are integers u,v 
with (u,o) = I such that s = ±u7 and s2 - 9t2 = ±w2. But a congruence mod 3 shows 
that the - sign must be rejected. Hence 

â = ii2 and s , - 9 t 2 = i;2. 

Suppose first that t = 0 (mod 3). Then by (3t,â2 - t2) = I, we have 

3t = ±w7 and s2 - I2 = ±r2. 
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Therefore we obtain 
u* — w* = v2, 

which haa no integral solutions as well known. 
Suppose next that t £ 0 (mod 3). Then by (3t,s2 - t7) = 3, we have 

t = ±w2 and a 2 - t 2 = ±3r2. 

Thus 
u* - 9w* = v7, 

which has no integral solutions aa well known (cf. Dickson (3), p.634). i 

Remark 3. If p = - 1 (mod 4), then - d = p* = - p < 0 and so K = L2 - 4M < 0. Hence 
in this case we can not apply Lemma 2. But we here treated only the case of p = 3, using 
Lemma 1. 
Remark 4. If (x,y) ^ 1, then the Diophantine equation (4) has many integral solutions. 
For example, ix,y,z) = (2a3,2a3,4a<),(7a3,14o3,49a*). The integral solutions of (4) with 
(z,y) ^ I and 0 < x,y < 300 are given in the table below. The least solution of (4) 
such that (x,y) ^ 1, x | y or y fx is (x.y.r) = (49923,33282,2146689). It seems that 
the condition (x,y) = 1 is essential for the Diophantine equation (I) to have no integral 
solutions. 

Table. The integral solutions of (4) with 
( i , y ) / l a n d 0 < x , y < 3 0 0 

X 
2 
7 
16 
54 
56 
128 
250 

y 
2 
14 
16 
54 
112 
128 
250 

z 
4 
49 
64 
324 
784 
1024 
2500 
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ABSTRACT. In his paper [1], G. Frey shows that the existence of a non-trivial 
integer solution to Fermat's equation Is equivalent to the existence of an elliptic 
curve over Q with certain properties. In this paper, we consider the Fermat equation 
in a more general form and generalise Frey's argument to obtain a similar statement 
when the base field is the fraction field of a principal ideal domain of characteristic 
different than 2. 

1. NOTATION 

Let p be a prime number such that p > 5. Let fl be a principal ideal domain of 
characteristic different than 2 and p. Let 5 denote the set of primes dividing 2 and 
let F be Ihe fraction field of R. 

We consider the Fermat-like equation in six variables SiXp + SiYp + S^Z* = 0. 
We are intersted in solutions {SuSt,S3,X,Y.Z) = isi,St,S3,a,b,c), where o, b, c 
are non-zero elements of fl and Si, 82,33 are units in fl. We may assume that a,b,c 
are pairwise coprime. Let A = Sia'', B = sjb*, C = ssc*. 

We define an equivalence relation in the set of such solutions as follows: 
is\,st,S3,a,b,c) is equivalent to {s'^s'^s^,a',(/,</) 
if and only if {A,B,C] = {uA'.uB',uC'} (as sets), for some unit u in fl. 
We also call a solution (si .s j ,S3,a,b,c) trivial iff a, b,c are units in B. By the unit 

theorem (see [4]), there are only finitely many equivalence classes of trivial solutions 
and they are effectively computable. 

Given a solution, consider the elliptic curve over F given by 
y2 = x(x - A)ix + B). 
(This is non-singular because 2 ^ 0 in A. Also observe that there is nothing special 

about the pair iA,B); we could have chosen any other pair instead.) 
We have the associated quantities (see (4)): 
c, = 16(>l2 + B 2 - M B ) , A = 16/ l 2 B 2 C 2 , j = c*/A = 2!,iA7 + B2+AB)3/A3B7C7. 
Let I be a prime of fl not in 5 . 
If / does not divide ABC, then we have good reduction at /. 
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If / divides ABC , then / cannot divide c*, therefore wi(&i) = 0 and ui(A) > 0, so 
the Weierstrass form is minimal at / and we have multiplicative reduction at /. 

The reduction type at primes I € 5 does not have to be multiplicative. As an 
example, let fl be the ring of integers of F = Qiy/—3). The field F has class number 
1 and, as noted in (3), we have the aolution (1,1,1, C, C"1. - 1 ) . where f is a primitive 
6th root of 1. Then 2 is inert in R and it is easy to check that the given Weierstrass 
form of the elliptic curve corresponding to this solution is minimal at 2, therefore the 
reduction is additive at 2. 

In the sequel, we will use 5 as a prefix whenever we want to describe properties 
shared by all primes nfit in 5. Therefore, the considerations above give an elliptic 
curve over F with S-multiplicative reduction. 

2 . RAMIFICATION OF POINTS OF ORDER p 

In order to state and prove the theorem in the next section, we will need the 
following two propositions: 

Proposition 1 
Let £ be an elliptic curve over R with multiplicative reduction at the prime /. Let p 

be a rational prime, not divisible by /, and let Kp denote the extension of F obtained 
by adjoining the coordinates of the points of order p on E. Let A be a divisor of / 
in Kp and Kp.\ the corresponding completion. Also let Ft be the completion of F at 
/. If c(/) denotes ramification index, then we have eiKp,x/Fi) = c(Fj(Cp,i1/,')/Fj), 
where (p is a primitive pth root of 1. 

Proof 
Since K^/F is Galois, it suffices to prove the assertion for the place A such that 

A'p.A = Fj(£(p]). (F(p] is the subgroup of points of order p of E.) 
Let q be the Fi-integer such that j = {l/q) + T^oCnq", where the coefficients c„ 

are integers. 
Observe that ^jq)l,'' exists in Fj (apply Hensel's lemma to the polynomial Xp-jq 

with first approximation equal to I). Hence Fj(Cp,î,/p) = Fj{Cp,iI/p). 
We have two cases to consider: 
(i) E has split reduction at /. Then, by Tate's theorem (see |4]), we have an 

isomorphism of EiKp.\) and K^J <q> as Gat(Ft/Kp^)- modules. 
Since E\p] is contained in EiKp,\) , we conclude that there exist elements Cp, 9I/p 

in A'p.A and we have 
Kp,x. = F/(£[p]) = F/(Cp, 9,/p), which proves the assertion in this case. 
(ii) E has non-split reduction at /. Then, again by Tate's theorem (see [4]), there 

exists a quadratic unramified extension L of F/ such that E is isomorphic to the 
Tate curve £ , over L. Let Af be the compositum of KPtx and L. Then F(M) and 
Af */ < ç > are isomorphic Gal(Fi/M)-modules. 
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As in part (i), we conclude that there exist elements (p, q1^ in M and M s 
L(E[p]) = £(Cp,7I/p). Since L/F| is unramified, we get 

eit<p,x/Fi) = eiM/Fi) = e(L(CP.fl,/p)/L) = «(^(Cp^ '^ /F , ) , and thia completes 
the proof. 

Proposition 2 
Let /, p, Kp be aa in proposition 1. Let £ be an eliptic curve over F having good 

or multiplicative reduction at f. Then Kp/F is unramified at / if and only if V|(j) > 0 
or "/(i) = 0 mod p. 

Proof 
If MJ) ^ 0, then E has good reduction at /, Indeed, if this were not the case, 

then, by semistability. «1(04) = 0 and ui(A) > 0, so ««(j) < 0, which is absurd. 
Therefore , by the criterion of Néron-Ogg-Shafarevich, we get that Kp/F is un-

ramified at /. 
Now suppose viij) = 0 mod p and viij) < 0. Then we have multiplicative reduction 

at I, so it suffices to show that F/(Cp,il/p)/F( is unramified, by proposition 1. But 
this is evidently true, because viij) = 0 mod p and p is not divisible by / (see e.g. [2], 
page 130). 

Conversely, suppose that Kp/F is unramified at / and wi(j) < 0. Then we have 
multiplicative reduction , so we can apply proposition 1. Then e(F/(Cp,i,'p)/Fj) = 1, 
therefore vi(j) = 0 mod p (again by [2)). 

3. THE THEOREM 
We now return to the Frey curves of section I. We have the following: 

THEOREM 
For a prime p > 5, the following are equivalent: 
1. There exist non-zero a, b, c and units S\, sj, «3 in fl such that 

aiap + stV + S3(? = 0. 

2. There exists an elliptic curve E over F with 5-multiplicative reduction and an 
5-minimal Weierstrass equation y2 = x3 + dx2 + ex, where d, c are coprime elements 
in R. such that: 

(i) The points of order 2 are F-rational. 
(ii) the field A'p obtained by adjoining the coordinates of the points of order p on 

E is unramified over F outside the divisors of 2p. 
(iii) ni«n(0, v^ij) — Wp(28)) = 0 mod p, for all p € 5, and mtn(0, vp,ij)) = 0 mod p 

for all p, dividing p. 
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3. There exists an elliptic curve E over F with 5-multiplicative reduction and an 
5-minimal Weierstrass equation y2 = x3 + dxJ + ex, where d, e are coprime elements 
in R, for which A/16 = u2r2p, where u is a unit and r is in JL 

Proof 
1 implies 2. 
Let the notation be as in section 1. Then d = B - .A, e = -AB. Let p e S. If 

p divides e = -AB, then it cannot divide d, by coprimality of A, B. Therefore, p 
cannot divide both d and e. 

Also if / is a prime of R which does not lie in 5 , then, by 5-minimality and 5-
multiplicativity of the given Weierstrass equation, we get that I cannot divide both 
d and e. 

Therefore d, e are coprime. 
The points of order 2 are (0,0), (i4,0) and ( - 5 , 0 ) , which are of course F-rational. 

This proves (i). 
Now let i be a prime not dividing 2p. If / does not divide ABC, then ui(j) > 

0, so A'p/F is unramified at /, by proposition 2. If / divides ABC, then wi(i) = 
-2p(«i(û) + t;j(b) + vtic)), so vtij) is divisible by p, hence Kp/F is unramified at /, 
again by proposition 2. This proves (ii). 

Also, let p € 5. If p divides ABC, then «p(i) - «,(2*) < 0 and v^j) - Wp(28) = 
0 mod p (Since A. B, C are p-powers). Otherwise, if p does not divide ABC, then 
Wp(j) - iip(28) > 0. Hence, in any case, min(0,Wp(i) - Wp(28)) = 0 mod p. 

Finally, let p, be a divisor of p in fl. If p, does not divide ABC , then obviously 
Wp.O) > 0. Otherwise, ifp, divides ABC, we get «p,(i) = -2p(t;p<(a)+i;p1(6) + Upj(c)). 
Hence, in any case, p divides m»n(0,Wpi(j)), which proves (iii), 

2 implies 3. 
The given equation is-5-minimal and we have A = 16c2(d2 - 4c) and j = 28{d2 -

3e)3/(e3(d2 - 4e)), by direct calculation. 
So it suffices to show that e2(d3 - 4e) is a 2p-power times the square of a unit. 
Now, e2(d2 - 4e) is already a square, since it equals the square of the product of 

the z-coordinates of the points of order 2 on E (it is a square of an element in F and 
therefore it is a square of an element in R, since it lies in fl already). 

So it will suffice to show that the valuation of c2(d2 - 4e) at every prime / that 
divides e2(d2 — 4e) is a multiple of p. 

Let / be such a prime (i.e. I divides e2(d2 — 4e)). 
If / does not divide 2p, then, by proposition 2 and the fact that Kp/F is unramified 

at /, we get that w/(j) = 0 mod p, hence, t>((e2(d2 - 4e)) is divisible by p, by 5-
semistability. 

If / = p.- divides p, then vPiij) < 0 (by 5-semistability), so, by (iii), t>pi(e3(d2 -4e) ) 
is divisible by p. 
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Finally, let / 6 5, say f = p. 
We have two possibilities: 

Suppose p divides e. Then, p does not divide d (by coprimality of d, e), so 
p does not divide d2 - 3e. Now, by (iii), p divides Wp(j) - t;p(2*), i.e. p divides 
Wp((d2 - 3e)3/(e2(d2 - 4e))). Since p does not divide d2 - 3c, we get that p divides 
t>p(e2(d2-4c)). 

Suppose p does not divide e. Then p divides d2 — 4e. Then, obviously p cannot 
divide d2 — 3e (otherwise, it would also divide e, which is absurd). Again , since, by 
(iii), p divides Wp{(d2 - 3c)3/(e2(d2 - 4e)), we get that p divides Wp(e2(d2 - 4c)). 

Therefore, t;i(e2(d2 — 4e)) is a multiple of p for all primes / of B. 
3 implies 1. 
Since d and e are coprime, so are d2 — 4e and e. Therefore, there exist coprime 

elements v, w and units U|, uj in R such that d2 - 4e = «ii>2p and e = Uitop. Then 
H\U2W7PV7'' = u2r2p. 
Therefore, u2U] = u2, therefore u? is also a square, say u? = u2. 
Then (d - «st^Kd + U3VP) = 4c = 4uiwp. Note that the only possible common 

prime factor of d - U3«p , d + u3vp are in 5. Fix p € 5 for the moment. There 
exist non-negative integers p, v (both of them < p - 1), units «4, U5 and 5-coprime 
elements Z\, st such that 

d - u3i;p = u4puzf, d + U3Vp = usp'sj, where p + v = vPi4) mod p. 
Then 
2d = U4p"rf + Uip'zS and 
2u3t;p = usp"^ - «4P"«f • 
lfp + v = «,(4) +p, then both p and v are at least Vp(4) + 1 . Then p"»!4'*' divides 

2d and 2ii3Up. Therefore, p"»!*»*2 divides d2 and w2p, absurd, since d2 - u,t;2p = 4e 
and d, e are coprime. 

Therefore we must have p + u = Wp(4). 
Suppose p is different than u, say /1 < 1/, Then p < «,(2) and 1/ > t;p(2). Then 

p divides ri, so p" divides 2d and p divides e, absurd, since u > Wp(2) and d, e are 
coprime. 

Therefore, p = v = Vp(2). 
This being true for all p dividing 2, we conclude that we can write 
d - U3Vp = u8r5 0 P,"(2, = 2u8zp, 
d + «au" = «T2j H Pv'{7) = 2«92j, 
where u6, ur, u8, ug are units, Z3, z^ are 5-coprime and the products are taken over 

all p 6 5. 
The above two relations give 
2«3Wp = (U72Î - u6z5) fl P,'',,2, = 2(U925 - UB«5), therefore we get 
U3«p = «grj — u82j, i.e. we get a solution to the Fermat-like equation of section 1. 
This completes the proof. 
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4. FINAL REMARKS 

Let F be an elliptic curve satisfying the third equivalent statement of the theorem. 
Then the above proof of 3 implies 1 gives a solution 5 of the Fermat-like equation of 
section 1. 

Let Eg be the Frey curve associated to the solution 5 . 
An easy computation shows that the two curves E and F s have the same j -

invariant. Therefore, E and Es are isomorphic and, in particular, the isomorphism 
class of Fs does not depend on 5 . 

Moreover, one can show that two solutions of our Fermat-like equation give rise to 
isomorphic (over 7) Frey curves if and only if they are equivalent. Therefore: 

COROLLARY. There is a bijection between the set of equivalence classes of 
solutions to the Fermat-like equation and the set of isomorphism classes of elliptic 
curves satisfying statement 3 of the main theorem. 

Also, it is easy to see that, under the bijection of the corollary, equivalence classes 
of trivial solutions correspond to isomorphism classes of elliptic curves satisfying 
statement 3 and having good reduction outside 5 . Therefore, using Shafarevich's 
theorem (see [4]), we get another efficient algorithm for determining all equivalence 
classes of trivial solutions. 
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ABSTRACT. H. J. Zassenhaus has suggested that every finite subgroup ef normaliied 
units in the integral group ring of a finite group G b coqjugate to • iubgraup of G. 
While thb conjecture has not been settled for group rings, a reformulaliea within Ihe 
context of alternative loop rings has recently been established and is discussed here. 

1. Introduction. Let ZG denote the group ring of a finite group G over the integers. 

What role does G play in determining the torsion units of ZG? H. J. Zassenhaus has 

conjectured that every normalized unit in TG is a conjugate of an element of G via a unit 

in the rational group algebra QC. Several years ago the authors established a variation 

of this result for alternative loop rings. Specifically, we proved 

Theorem 1.1. [5, 3) Let r be a normalized torsion unit in the integral alternative loop 

ring ZL of a finile loop L which is not a group. Then there exist units 71,72 € QL and 

t e L such that 7j"l(7rlr7i)7i = I. 

A second, far stronger conjecture of Zassenhaus says that every finite subgroup of 

normalized units of ZG is conjugate to a subgroup of G, via a unit of QC?. Recently, 

the authors have shown that here too, with some modification, the conjecture is true 

for altemative loop rings. We have established, and it is our intent to discuss here, the 

following theorem. 

Theorem 1.2. If H is a finite subloop of normalized units in an alternative loop ring 

ZL which is not associative, then H is isomorphic to a subloop of L. Moreover, there 

exist unils 7 | , 7 ] , . . . ,7* ofQL such that 

(1) 7 » - , ( - ( 7 2 - I { 7 r , ^ 7 i ) 7 î ) . . ) 7 * Ç L . 
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Corollary 1.3. If H is a finite subloop of normalized units in ZL, then \U\ < ]L\. If 
\H\ m ]L\. then H is isomorphic to L and there exist units 71,... ,7» € QI «ucA that 
i=7r,(.. .(7a-|(7rI/f7i)7i).. .)7*. 

2. Definitions and Terminology. An allemaiive ring is one which satisfies the left 
and right alternative laws 

i(z») = i2y and (yi)i = yx2. 

Such rings are nearly associative; for example, the subring generated by any two elements 
is always associative and also, if three dements of an alternative ring associate in some 
order, then they too generate an associative subring. Composition algebras provide 
examples of alternative rings, and examples of particular relevance to this work. A 
composition algebra is an algebra A with I over a fidd F on which there is a multiplicative 
nondegenerate quadratic form q: A -* F. By multiplicative, we mean that fl(zy) = 
9(')9(y) for all z,y € i4. Since alternative rings satisfy the three Moufang identities 

iixy)x)z = xiyixz)), iixy)z)y = xiyizy)) and (xy)(zx) = (z(yr))a:, 

the loop of units in an alternative ring is necessarily a Moufang loop which is, by definition, 
a loop in which any of these (equivalent) identities is valid. In particular, if RL is an 
alternative loop ring for some commutative and associative ring R and loop L, then L is 
a Moufang loop (of a very special nature). We refer the reader to the book by Zhevlakov, 
Slin'ko and Shestakov [8] for a treatment of alternative rings and composition algebras, 
to Pflugfelder's text (7) for an introduction to Moufang loops, and to two papers in the 
literature [2, I] for the basic properties of loops which have alternative loop rings. 

In an alternative loop ring RL, the map e: RL -* R which sends Eo<< to £>< is a 
homomorphism. Thus «fr"1^) = «(<) = I for any i e L and unit 7. So, if we hope to 
establish (I), it is clear that we must restrict ourselves to subloops H whose elements are 
normalized in the sense that c(A) = 1 for all heH. 

3. Sketch of the Proof of Theorem 1.2. Let tf be a finite subloop of normalized 
units in an alternative loop ring ZL. In a proof of the isomorphism theorem for alternative 
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loop rings over 2 (4), the authors constructed a map p from the normalized tonion units 
of ZL to L. Restricted to H, this map turns out to be a one-to-one homomorphism, thus 
H is isomorphic to a subloop of L. What is more difficult is to establish an equation of 
the form (1). For this, we show that there exist units 7,- in the rational loop algebra QL 
such that 

(2) 7»-,(. • • (7î-,(7r1a7i)7j) • • • h* = p(o). 

for all a € tf. We consider the three possibilities: (i) tf is an abdian group, (ii) tf is a 
nonabelian group, and (iii) tf is a Moufang loop which is not assodative. 

If tf is an abelian group, we show that tf is generated by a single dement and elements 
in the centre of ZL and then appeal to Theorem I.I. Cases (ii) and (iii) are more 
delicate. Here we use the fact that the altemative loop algebra QL is the direct sum 
of simple altemative algebras and observe that it is suffident to establish (2) in each 
simple component. Since the associative components are fields, as we are able to show, 
and since the I of Theorem 1.1 is, in fact, p(r), each element of tf and its image under 
p have equal images in the associative components. Thus we need consider only those 
components which are not assodative. 

Now an alternative loop algebra has an involution (anti-automorphism of period 2) 
a »-» a* such that 00* is central for any or. From this, one can show that n(o) = oa* 
induces a multiplicative quadratic form on each simple component of QL. This form 
turns out to be non-degenerate, so each simple component is a composition algebra. Let 
A be such a component and ir: QL -» /I be the natural projection. Let Lo = p(tf). 

If tf is not assodative, we show that each of n'(tf) and x(Lo) generate A and that p 
induces an automorphism of A. By a theorem of Jacobson (6), any automorphism of a 
composition algebra is the product of reflections (maps of the form x •-» 7~,X7), so we 
have the result in case (iii). 

The most difficult case is that in which tf is a nonabelian group. Here we let x and 
y be nonconunuting elements of Lo and let B be the subalgebra of QL generated by 
x and y. Similarly, we consider the subalgebra B of QL generated by x and y, the 
preimages under p of x and y respectively. It can be shown that p: H -* Lo extends to 
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a ring isomorphism B -* B which induces.a ring isomorphism x(B) -» x(B). We show 
that this map extends to an automorphism of the composition algebra A which, by the 
tbeorem of Jacobson already mentioned, is the product of reflections. Thus the proof is 
complete. 
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MINIMUM NUMBER OF STAGES FOR LOW-ORDER 

EXPLICIT RUNGE-KUTTA-NYSTRÔM PAIRS 

Fadi MALEK, P. W. SHARP and Rémi VAILLANCOURT * 

Presented by T.E. Hull, F.R.S.C. 

Abstract. Second-order initial value problems with the first derivative absent can be solved 
using explicit Runge-Kutta-Nystrôm pairs. We report that the minimum number of stages 
for pairs of order (p - l,p), P = 4,5,6, is respectively 4,6,6 if the firet stage of the next step 
is as the last stage of the previous step, and 4,5,6 otherwise. 
Résumé. Les paires de formules explicites du type Runge-Kutta-Nystrôm résolvent les 
équations diiférentielles du second ordre, où la première dérivée est absente. On montre que 
le nombre minimum de stages des paires d'ordre (p - l,p), P = 4,5,6, est respectivement 
4,6,6 si le premier stage du pas suivant utilise le dernier stage du pas précédent, sinon ce 
nombre est 4,5,6. 

AMS Subject Classification: 65L05. CR Categories: G.1.7 
Key words: Ordinary differential equations, special second-order equations, explicit Runge-
Kutta-Nystrôm pairs. 

1. Introduction 
Explicit Runge-Kutta-Nystrôm (RKN) pairs are designed to solve directly second-order 

systems of non-stiff ordinary differential equations of the form 

(l.l) y" = fix,y), yixo) = yo, y'(*o)=yJ. 

where / : R x Rn -• Rn and the first derivative is absent, without redudng (1.1) to a system 
of first-order equations. 

RKN pairs consist of at least three formulae: two formulae of different orders for the 
solution, y, and one formula for the derivative, y*. The derivative-formula and one of the 
solution-formulae are used to advance the approximations. The second solution-formula is 
used to estimate the local error in the solution. Pairs often have a second derivative-formula. 
This is used to estimate the local error in the derivative. 

Pairs with three formulae require fewer stages than pairs with four formulae. However, 
the numerical testing of Dormand, El-Mlkkaway and Prince [1] suggests that the local error in 

* Each author was partly supported by the Natural Sciences and Engineering Research Council of Canada. 
The work of tho second and third authors was also partly supported, respectively, by the Information Technol-
ogy Research Centre of OnlaTlo and tho Centre de recherches mathématiques of the Université de Montréal. 
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the derivative should be controlled to ensure reliability of the pair. Because of this evidence, 
we report on pairs which use four formulae. 

As for Runge-Kutta pairs, RKN pairs are usually derived with as few stages as is practi-
cable. Table 1 lists the previously known or newly found minimum number of stages required 
for paire that consist of (p - l)st- and pth-order formulae for the solution and derivative 
(the references for the known results are given in Section 3; the new pairs are listed in the 
Appendix). The number of stages is listed for two general types of pairs: those that re-use 
the last stage on the next step, and those that do not. We refer to the firet type as ( p - l,p)F 
paire and to the second type as (p- l,p)NF paire. The letter F stands for FSAL (First Same 
As Last) and NF stands for Non-FSAL. 

Table 1. The minimum number of stages for (p — l,p) pairs, p = 4,5,6. 

p 
(p-l,p)NF 

(P-1.P)F 

4 5 6 

4 5 6 

4 6 6 

It is proved in [2] that the number of stages listed in Table 1 is the minimum possible. 
Proofs are by contradiction. For each value of p it is assumed that a pair exists with one stage 
fewer than the one given in Table 1. Then it is shown that dther the order conditions for the 
derivative-formulae cannot be satisfied or that the (p—1 )st- and pth-order derivative-formulae 
aire the same. In this note, we give the proof for the case (5,6). 

2. Definitions and order conditions 
Explicit Runge-Kutta-Nystrôm pairs, which use four formulae, generate approximations 

to y(xi) and y'ixi) according to the formulae 

(2.1) Vi+i^Ui + hiu'i + hf^bjfj, 
>=» 

j 

(2.2) yi+l =Ui + hiu'i + A? £ bjfj, 
i=i 

where hi = Xi+i — Xi and 

fl = fixu Ui), fi=flxi + hiCj, m + hiCju'i + h? 5 3 aikfk ) ' j = 2,...,s. 

The two formulae in (2.1 ) are of order p and the two formulae in (2.2) are of order p — 1. If the 
numerical approximations are advanced from i; to Xi+i using the order-(p— 1) formulae, then 
ttj = yi, tij = %. If the numerical approximations are advanced using the order-p formulae, 
then rn = yi, u'i = t/{. 

»s+i="i+ft«Êrç/i. 
i=i 
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The order conditions for the (p- l)st-order derivative consist of the quadrature conditions 

(23) É^rrr k={)A p-2' 
and the non-quadrature conditions 

s 
(2.4) ^S;5?>fc(o,c) = 0, k = l,...,Nq-l, q=l p - 1 , 

<=i 

where Nq is the number of order conditions of the order q. The S^k for order conditions up 
to the order six are listed in Thble 2, where repeated j Indices imply summation and 

(2.5) Qi,k := 
cfc+2 t-t 

— /JotjCj, t = 2,...,s. (Jt-|-l)(ik + 2) 
}=i 

Table 2. The S^fc(a,c) of orders one through six. 

9 
1,2,3 

4 

5 

6 

«î!» 
none 

Qtt 
CiQn Qa 

<%Qii CiQiz Qa (hjQji 

The order conditions for the pth-order derivative-formula consist of the quadrature conditions 

(2-6) ^ 6 ^ = ^ . * = 0 , l , . . . , p - l . 
i = l 

and the non-quadrature conditions 

(2.7) £fc;^fc{o,c) = 0, k = l,...,Nq-l, q=l,...,p. 
i = l 

For a FSAL pair, c, must be one, b, must be zero and 

(2.8) a,,i=bj, j = l s - 1 . 

By the definition of a pth-order solution-formula, the weights bj, j = l,...,s, satisfy the 
quadrature conditions 

(2.9) 
» 1 

U^ok+iMfc-^r k=0 p-' 
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Equations (2.9) then imply that Q,* = 0 for k = 0,...,p-2. This means that the non-
quadrature order conditions for an s-stage (p — l)p)F pair are the same as those for an 
(s — l)-8tage {p — l,p)NF pair. We use this observation to shorten the non-existence proof 'i 
for the pairs of order (4,5). '-' 

For convenience, we shall take c° = 1 even when Ci=Q. 
r 

3. Results 
Four-stage (3,4)F pairs exist (see [3], for example). We state that three-stage (3,4)NF 

pairs do not exist. 

THEOREM 1. No three-stage (3,4) RKN pairs exist 
Sbc-stage (4,5)F pairs exist (see [3], for example). We state that four-stage (4,5)NF and 

five-stage (4,5)F pairs do not exist. A new five-stage (4,5)NF pair is given in Table A.I in 
the Appendix. 

THEOREM 2. No four-stage (4,5)NF nor five-stage (4,5)F RKN pairs exist. 

Seven-stage (5,6)F pairs exist (see [4] for example). New six-stage (5,6)F and NF pairs 
are given respectivdy in Tables A.2 and A.3 In the Appendix. We show by contradiction that 
five-stage (5,6) pairs do not exist. One step in the proof uses Theorem 2. 

THEOREM 3. No five-stage RKN pairs of order (5,6) exist. 
PROOF. We assume that a pair exists and consider the non-quadrature order conditions cf Qu 
in the first column of Table 2, namely 

(3.1.fc) btâQn + S^Qai + btâQv + S ^ Q B I =0. k = 0,l. 
(3.2.*) btâQti+btâQn+btâQu+btâQs^O, k = 0,1,2, 

If the rank of the coefiicient matrbc of the four linear equations (3.1.0) and (3.2.0)-(3.2.2) in 
the four unknowns Qn is four, we must have Qn = 0, t = 2 , . . . , 5. But if Qti = 0, then 
ct = 0, and the method reduces to a four-stage pair for which we know that such (4,5)-paire 
do not exist by Theorem 2. 

Hence these four equations must be linearly dependent. Thus there exist 0,0,1,6, not 
all zero, such that 

(3.3.») ab'i + pb'i+ih'iCi + 6b'i<?i=Q, i = 2 5. 

Multiplying the tth equation by cf for fc = 1,2,3, and summing over t, we obtain, from the 
quadrature conditions (2.3) and (2.6), the system 

« 
0' 
0 . 
0 T-
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Since the determinant of the coefficient matrbc is not zero, this system has the unique solution 
(a + 0,1,6) = (0,0,0). Hence a = -0 £ 0, for otherwise no pair exists. However (3.3.i) 
imply that 6$ = fe,, t = 2 5. Thus, by (2.3) and (2.6) with fc = 0, y, = Ji- Hence no such 
pair exists. I 

Appendix 
The appendix contains the Butcher tableaus of a five-stage (4,5)NF pair, a six-stage 

(516)F pair and a six-stage (5,6)NF pair. These pairs are not Intended to be optimal pairs 
from each class, but they only confirm the existence of at least one pair with the required 
number of stages. 

Table A.I. A five-stage (4I5)NF pair. 
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"Rtble A.3. A sbc-stage (5,6)NF pair. An entry of the form (a, 6) 
represents the algebraic number a + by/E. 
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ON THE DIAMETER OF THE ATTRACTOR 
OF AN IFS 
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Abstract 

We investigate methods for the evaluation of the diameter of the attractor of an 
IPS. We propose an upper bound for the diameter in n-dimensional space. In tbe 
case of an ailine IFS, we indicate how this upper bound can be calculated. 

Key Words: attractors, diameter, fractals. 
AMS Subject Classifications: S8F12, 28A80 

1 Introduction 

Apart from its theoretical interest, the evaluation of the diameter of the attractor of 
an iterated function system (IFS) is useful in many algorithms. Dubuc-Elqorlobi [3] have 
considered adaptive methods to reduce the computations in the deterministic algorithm 
[1] and Hepting-Frusinkiewicz-Saupe (5) have proposed an algorithm that renders the 
geometry of the space which contains an attractor characterizing each point according 
to its distance to the attractor. In these methods it is assumed that the diameter of the 
attractor or at least an upper bound is known. However, no clue was provided on how lo 
determine this diameter although it is clear that computer graphic tests can lead to good 
approximations. In this paper, we propose a class of upper bounds for the diameter of the 
attractor of an IFS in a complete metric space. The existence of a smallest such upper 
bound is proved in n-dimensional space. If the IFS is ailine, we suggest a method which 
enables us to compute this smallest upper bound. Finally, we show that in a particular 
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case the diameter of the attractor is equal to the diameter of the convex hull of the set 
of fixed points determined by the IFS. 

2 Approximation of the diameter of an IFS 

We recall first some basic results of IFS theory. Let (X, d) be a complete metric space. 
The class of all non-empty closed bounded subsets of X is a complete metric space for 
the Hausdorff metric h [7]. Given TV contractions / I , / J , . . - , / N : A- - • X, the finite set 
F = {/i,/2,.-.,//v} is called an iterated function system or IFS. Let Z,(/i) denote the 
Lipschitz constant of the contraction /i , t = 1,2,..., AT. The following theorem can be 
found in Hutchinson [6]. 

Theorem 1 Let F = { / I , / » , . . . , / N } be an IFS of the complete metric space iX,d). 
Then there exists a unique non-empty compact sel A called attractor of the IFS such that 
A = FiA) = \J?atfiiA). 

Lemma 2 Let F = {/t,/»,. . . , /w} be an IFS ofthe complete metric space iX,d) wilh 
attractor A. Let E be a non-empty closed bounded set such lhat /,(J5) C E for each i. 
Then ACE. 

A proof is given in (4). 

Proposition S Let F = {fufti-.-Js} be an IFS ofthe complete metric space iX,d) 
with attractor A. Then for anyxeX, Ac Bix,rx), where r, = maxi<,<N i- i${ • 

Proof. If io is in the closed ball 5(x,r r ) , then for every i € {1 ,2 , . . . , ^} , /[(xo) e 
B(x,rz). This is a consequence of the following inequalities 

difiix0),x) < difiixo)Jiix)) + dif;ix),x) 
< Lifi)rx + difiix),x) 

< rz. 

Thus, / .{^(x,^)} C Bix,rx) which implies that .4 C F(x,r,) by Lemma2. O 

Proposition 4 Let F = { / i .A, . . . , /*} be an IFS ofiïïT,*). We define * : ÏÏP-* ÏÏI 
by *(x) = r r . TTien • is continuous and Aas a global minimum. 
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Proof. $ is clearly continuous. Let Hi be the fixed point of f\. For each x not contained 
inB(n„rni) 

*(!!,) < ^x.n.) (1) 
< *(x). (2) 

where the inequality (2) is justified by the fact tbat Çli e A C B{x,rx). Since 4 is 
continupus on the compact fi^^rn,), it reaches on this set a lower bound which is also 
the global minimum due to (2). D 

We deduce from Proposition 4 that from all balls £ (x ,r x ) that contain the attractor, 
there is at least one with smallest diameter. This diameter is our best upper bound for 
the diameter of the attractor. 

From now on we shall consider only affine IFSs of n-dimensional space, i.e., IFSs such 
that the contractions are affine transformations of JR". 

What can be said about the nature of the set of points at which the minimum of the 
function $ is reached ? 
Proposition 5 The set of solutions ofthe minimization problem infu6«" *(u) is a closed 
convex set and consists of a unique point if the function * is strictly convex over SV. 

Proof. We note first that * is convex. This results from the convexity of each function 
x —» i^fyfW which is clear since 

dixjiix)) = | | x - / . ( x ) | | (3) 

= WAiX + Bil (4) 

where Ai is a linear map and Bi is a vector. Let 5 be the set of solutions of the 
minimization problem infu6«" • (u) . We know from Proposition 4 that 5 / 0 . Moreover, 
5 is closed since $ is continuous. If both x and y attain m = infueK" *("), then 

m < *(Ai + (1 - A)y) < A*(x) + (1 - A)*(y) = m, (5) 

so Ax + (1 - A)y also attains m. Hence S is convex. Now if * is strictly convex and 
i / y, then for A = 1/2 the second inequality in (5) is strict and leads to the contradiction 
m < m. O 

Let us see how to approximate the diameter of an attractor in Euclidean space. We 
will consider two approaches. The first one is experimental. It consists of drawing an 
approximation of the attractor and the assumption that the diameter of the obtained set 
is a good evaluation of the real diameter. This is motivated by the following proposition. 
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Proposition 6 Let F = {fi, ft,..., fn} be an IFS with attractor A. Then for any 
non-empty bounded set E 

\SiA) - *(F"(£?))| < ^j^jhiE, FiE)) 

where L = maxi<i<Ar Lifi).1 

Proof. This is an immediate consequence of a result in Berger [2] which states that the 
function diameter is Lipschitz with constant 2. O 

The second approach is to compute the minimum of the function 9. We explain in 
an example how this can be done. The dragon is the attractor of the IFS {fi, ft}, where 
/i(x,y) = (l/2x + I /2y,- l /2x + I/2y) and /,(x,y) = (-I/2x-|-I/2y-f-l ,- l /2x-I/2y). 
For a given point «(x,y) we determine the value of *(u) = maxi<,<2 ̂ ll'wffi- We know 
that Lifi) = y/maxi<j<t Xj, where the Ays are the eigenvalues of AjAi and At is the 
matrix associated to /;. Thus Lifi) = Lift) ='y/2/2. By comparing d(u,/i(u)) and 
d(u,/i(u)) we find that 

*(ul = l t-w* (x-3/4)» + ( y + l / 4 ) J < l / 8 
otherwise 

Instead of the minimization problem infu€Ra $(w), we can consider the equivalent one 
infu6fi> *'(«). The function 92 has no critical points inside or outside the circle defined 
by the equation (x - 3/4)* + (y + 1/4)* = 1/8. On the circle the critical points are 
solutions of the Lagrangian system 

MX'-V) = p 

(x-3/4)* + (y+l/4)* = l/8 

where F(x,y) = x2/2 + y*/2 - A{(x - 3/4)* + (y + 1/4)* - 1/8}. These solutions are 
x = 3(^/204-1/4), y = -(v^/20+1/4) and x = -3(^/5/20-1/4), y = (v/5/20-I/4). 
By comparing the value of * at these points we deduce that infuen> *(«) = ^~$/f. 
Thus the diameter of the dragon is less than J ^ l . 
In the general case and for an IFS F = { / I , / J , . . . , / N } , we determine the TV domains 

'We recall thai h is the Hausdorff metric. By S{A) we denote the diameter of a set A. 
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Di 

Di,Dt,...,DN defined by 

i i-LÙi) - i-UM 

The function *(«) is equal to ^ r t j ^ o n A - We find the critical points of **(u) which 
is a differentiable function on every Di. The study is made separately in the interior and 
on the boundary of Di. We calculate the value of $ at the critical points and retain those 
lhat minimize $. 

The following proposition says that there is a special case where the diameter of the 
attractor is equal to the diameter of a finite set. 

Proposition 7 LetF = {fuft,--., fs) be an affine IFS wilh attractor A. Let fl, denote 
the fixed point of fi, and let O be the convex hull of {iluilt,... ,ilN). If fjiili) € O for 
aUi,j e {l,2,...,N}, then the diameter of A is equal to the diameter of O. 

Proof. Since all the fixed points ft; are contained in the attractor, we have tf(O) < 6iA). 
The condition />(n,) 6 O implies that /,(CJ) C O. Thus A C O which shows that 
HO) > 6iA). • 

Example The diameter of the Sierpinski gasket is equal to the diameter of the triangle 
whose vertices are the fixed points of the three contractions. 

The computation of the diameter of a finite set in Euclidean space is a common 
problem in computational geometry. Efficient algorithms are given in Preparata and 
Shamos [8]. 
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ASYMPTOTIC BEHAVIOR OP THE DAVEY-STEWARTSON SYSTEM 
Marisela Guzman-Gomez 

Presented by G.F.D. Duff, F.R.S.C. 

A b s t r a c t : This paper Is devoted to the study 
of the asymptotic behavior of the Oavey-Stewartson 
system tbat models gravity-capillary waves. 

1. Introduction 

We consider the initial value problem for the Davey-Stewartson system (DSS): 

iu, + Suxx + ulni = X\u\iu + bwpx, teSt, {x,y)elR2, (l.l),, 

V« + mipvy = g^d"!') . ^•1'fc 

witb the iaitial condition 
u{x,y,a) = uo{x,y). (1.1), 

The Davey-Stewartson system appears as envelope equations in modulation of water waves 
at the surface of a three dimeasioaal flow [1,2,3). The parameters S, X, b and m depend on the 
fluid depth, surface tension, gravity and wavenumber and can assume both signs; 6 and A can be 
normalized such that \S\ = |A| = 1. The boundary conditions depend on tbe sign of m. For m > 0, 
u and tp vanish at infinity while for m < 0, tbe boundary conditions are of radiation type. 

A detailed discussion of the well posedness or finite time blow-up for DSS according to the 
values of the parameters is presented in Ghidaglia & Saut [4\. 

Tbe purpose of this paper is to study tbe asymptotic behavior of global solutions of DSS and to 
prove that when t — ±oo u tends to a solution of the associated linear equation and tp tends to 0. For 
certain values of the parameters we also show the existence of the scattering operators n + : Kf. -> tt-
and H. : u_ - . u+, as bijections of tbe Hilbert space E = (u € L2{1R2) : \\v\\t+\\Dv\\t+\\xv\\t < 00} 
or of a neighborhood of zero in L2{R2). 

A large amount of literature has been devoted to tbe study of tbe scattering theory of the 
Nonlinear Schrôdinger equation (NLS) with power nonUnearity [«[''"'u in JR". We refer lo (6) 
for complete references. In [5] Ginibre & Velo proved the existence of the scattering operator for 
NLS equation in E with A > 0 and 1 + ± < p < 1 + ;^_. When " t » t ^ + H " + 1 < p < ! + 1 the 
construction of the scattering operator in a neighborhood of zero in /f'(IR') was studied by Strauss 
(8) and in general by Tsutsumi (11). For p > 1 + * Tsutsumi and Yajma (10] proved asymptotic 
freedom of NLS equation in i2(JR2) for initial conditions in E. 

In this paper we obtain similar results for DSS. The study is based on tbe invariance of the 
system under some transformations. We use this idea not only when S = 1 and m > 0 where it is 
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a simple consequence once solutions In C(JR, E) are established, but also when 5 = 1 and m < 0 
where only weak solutions are obtained and for solutions In C(fl, JL^JR1)) when * = - 1 and m > 0. 
Decay of solations of DSS has been studied by Tsutsumi (9| who constructs weak solutions of DSS 
that decay in V. 

2. N o t a t i o n a n d B a s i c R e s u l t s 

Wm'P(JR2) denote the Sobolev Space of functions equipped with the usual norm; 
ll"ll«* = (Eos iHSm/ l^un^an d H'{Sl2) = «"•»(«'). |H|p = HuU,,,, Ml = [HÎ + ||Vu||î + 
IMIi- BUR2) refers to ff'fJR') endowed witb its weak topology; Ci{R2) Is the set of bounded 
continuous functions. 

The system can be classified as elliptic-elliptic, elliptic-hyperbolic, hyperbolic-elliptic and 
hyperbolic-hyperbolic according to the respective signs of {S, m): (+,+), (+,-), (-,+), (-,-). We 
first recall some results due to Ghidaglia & Sant [4] concerning existence of global solutions. 

If any one of the following hypotheses (Al), (W), or (A3) is satisfied tbere exists a global 
solution (u, ip) of (1.1): 

a) uoeHl{lR2), m > 0 , S=l and A>moa!{-6,0) (Al) 

b) tioeff'fJR1), m < 0 , S=l and f - ^ + max(-A,0)] |K| | | < 1 (A2) 

c) uo 6 i2(ffi2), m > 0 and Huoil» "small enough" (A3) 

Under hypothesis (Al), the solution is unique witb « and Vip 6 C{1R,H1{]R,2)); if (A2) is true, 
u 6 C{lR,Hl{]R2)) and ip e L^Bl.CtW)); when (A3) Is satisfied the solution is unique with u 
and V<p e C(JR,L2(jR2)). In all tbe above solutions tbe mass Is conserved, | |«(0IIî = I W I î , while 
the energy S = f {S\ux\2 + \uy\2 + f |u|4 + |(v>2 + mip2)) dxdy is conserved by solutions of DSS 
that satisfy (Al). Under hypothesis (A2) one can construct weak solutions such that tbe inequality 
£{t) < £(0) is verified. 

Under hypothesis (Al) or (A2) and if the solution satisfies the inequality £{t) < £(0) then 
||Vu(t)||> is bounded. 
We also have : 

Uvl + m<pl)dxdy<\\u\\*, if m > 0 (2.1) / < 

1/ W2
x + m^)dxdy^<^=\\\u\l\\2 and M U < IINÎIIÎ if m < 0. (2.2) 

If m > 0, DSS is equivalent to the integral equation u(t) = 5(t)tio - ijS{t - r)F(r)dr 
wbere S{t) stands for tbe evolution operator of the linear equation tU| + Suxx + ttvt/ = 0 given 
by 5 (0 = ie'^'+wV"), F{v) = Xfrfv + 6t;K-(|t;|2) and K the integral operator tbat solves 
^ = ^ ( H ' ) from (1.1)». 

In the next section we study the long time behavior of global solutions of DSS. 
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3. Asymptotic Behavior of Solutions with data in £ and 12{]R2). 

T h e o r e m 3 . 1 . Let m, S and A be as hi (Al). 
a) For initial condition tto 6 E, tAere exist unique scattering states ut € E «ucA that the solution 
iu,ip) of {l.l) satifies: 

lltié - 5(-tWt)||E - 0, ||VV(Ollî-0 os t - àoo (3.1) 

and for any p > 2 (Aere exists a positive constant Cp such that: 

IKOlIp^Cptî-1. (3-2) 

b) For any u+ e E, there exists a unique «o 6 E «ucA tAat «Ae so/ution (u, >p) of {l.l) satisfies 

| | t i + - S ( - t ) u ( t ) | | E - 0 ond HV^t)!!,-» 0 as t ~+oo. (3.3) 

e) For any II_ e E, tAere crista o unique «o € E sucA tAol «Ae solution (u, v) of {l.l) satisfies 

||tt_ - S(-t)u(t)||i: - 0 ond ||VV»(0I|J - 0 os t - - o o . (3.4) 

T h e o r e m 3 . 2 . iet m, «, A and «o os (A2). //uo € E there exist scattering states u± 6 L^Bt2) 

such that a solution (u,v) o/(l-l) satisfies 

\\u± - S{-t)u{t)\\t - 0 and MOIU - 0 os t - ±oo (3.5) 

and for any p > 2 tAere crista a positive constant Cp sucA that (3.2) is satisfied. 

T h e o r e m 3 . 3 . Let m > 0. 
a) There exists t > 0 sucA (Aat if IMh < « there are scattering states u± € L2{IR.2) with 

||u±||j < ( such that the solution {u,<p) of {l.l) satisfies Hm, -«±00 ||u(t) - 5(t)tt±||2 = 0. 
6) TAere existe e > 0 sucA that given a scattering state u+ € I^JR ' ) u>i(A ||«+||i < « (Aere 

exists a unique initial condition «o € L2{]R2) with ||uo||3 < < sucA (Aa( (Ae soludon (u,v) satisfies 
Um^+oo ««(t) - S(t)tt+l|2 = 0. 

c) There exists « > 0 sucA that given a scattering state «_ € L2{1R2) with ||tt_[|j < « (Aere 
exists a unique initial condidon u© 6 L2{1R2) with ||uo|b < f such that the solution {u,ip) satisfies 
l i m ^ - o o H 0 - 5 ( t ) t t _ | | j = 0. 

Remark. Tbeorem 3.1b) and c) imply that the wave operators W^ : u± — a© are well defined 
as mappings from E to E. Theorem 3.1a) implies that W± are one-to-one and onto and one can 
construct the scattering operator iy+l W- : tt_ — 11+ in the elliptic-elliptic case; similarly theorera 
3.3 implies tbe existence of the scattering operator in a neighborhood of zero in L2{llt2) in tbe 
hyperbolic-elliptic and elliptic-elliptic cases. 
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We will use tbe Invariance of DSS nnder the transformations: 

nu,q»~io,rP) with « ( x . V . O = è e < , ' ' , + ^ t t ' ë ' è ) ' ^ ' ^ ) = è K ^ l ï ' è ) i 

'ioM*! ». *). *»(*. ». 0) = («(*. ». * + 'o), v(«, ». « + *o)) 
i.e if (ti,v>) satisfies DSS, {v,tp) also satisfies DSS with the new variables jf = 5, K = £, T = £. 
Note that T7 = Id. 
Lemma 3.1. Let (o,0) = T{u,<p), X=(X,Y), x=(x,y). 

«) IKr)|l» = ll«(0lb (3.6) 
b) \\VviT)\\t = ||x5(-0tt(0Ilî = «««(O + 2iWtt(()||I (3.7) 
c) ||Xo(r) + 2tTVV(r)||, = ||Vtt(«)||» (3.8) 
à) ||«(r)||p = (,-ÎI|tt(0||P (3.9) 
e) 110x11? = 16t4||^|ll (3.10) 

Tbe proof is a direct consequence of the defimtion of the transformation T. 

Proposition 3 .1 . If uo, m, A and A are as in (Al), with in addition tio € E, then {u,<p) solution 
of (1.1) satisfies u e C(JR,E). 

Proof: Let {u,ip) the unique solution of (1.1), take v{x,y, 1/2) = -iei ' ' x , + 1 ' ' ' /2H0(x, j ) as the 
initial condition and get {v,rp) the solution of DSS with v e C{IR,n1{lRi)). Let {U,q)= T{v,rp); 
by uniqueness of solutions of DSS, u(i,y,() = U{x,y,t+ 1/2). All of these solutions satisfy the 
conservation of tbe energy. 

Then by (3.8),(3.9) and (3.10), (17, q) satisfies the pseudo-conformal equality: 

\\xU{x,y,t)+2itVV{t)\\2t + %t2\\Vit)\\\ + 8bt* J{r,2x+mr,l) = constant (3.11) 

then U and u belongs to C(JR, E). | 

Proof of theorem 3.1a): 
Let us prove (3.1) when ( -» +oo (the case t -• -oo is identical). Let {u,ip) the unique 

solution of (1.1) in C(2R,E) and {v,rp) the solution of DSS with Initial condition at ( = 1/2 defined 
by 0(1,y, 1/2) = T{u{x,y, 1/2)); v € C(iR,E), then «(O) = oo € E and limr.^ | |o(r) - vo\\v = 0. 
By uniqueness {v,tp) = T{u,ip). The solution ofthe linear Schrôdinger equation 5(r)oo satisfies 
lirar-o l|5(r)«o - «oh = 0. thus UraT-,o ||o(r) - J(T)tio||E = 0. 

Let w(() = T(5(r)vo); w{t) is also solution of the linear Schrôdinger equation. Thus w{t) = 
5(()u)(0) witb io(0) e E. By (3.6), (3.7), (3.8) : 

\\u{t)-w{t)\\7 = \\v{T)-S{T)v0\\t, 
\\vu{t) - vw{t)\\7 < T||Vo(r) - V5(r)oo||, + ||Xo(r) - x5(r)oo||2, 
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||xS(-t)(ti(t)- .t;(0)||, = |lV(o(r)-S(r)o0)||a, 
then | |5(-0(u(t) - t«(t))||E < MT) - SiT)vo\\s because S{t) is unitary in « ' ( « ' ) . Define 
u+ = to(Q); u+ 6 E is the scattering state satisfying (3.1). 

Using the conservation of the energy, ||v(T)||Mi remains bounded. By (3.9) and Sobolev 
embedding theorem &{]R:2) C Hl{R2) tot p > 2, then: 

||tt(t)||p = t î - ' iwmi lp < CptJ- 'HTNlH' < Cptî"1. 

Estimate (3.2) follows; (2.1) and (3.2) imply that: 

l|Vv(Olli<IMî<c(i + 0-'. i 

Proof of Theorem 3.1b): 
Given u+ 6 E, define o+(T) = r(5( t )u+) ; S(t)tt+ as weU as v+{T) is a solution of the linear 

Schrôdinger equation, let o(r) be the solution of DSS with initial condition w+(0) € E; then v{T) 
and v+(T) are in C{SR, E) and 

H T ) - V+{T)\\E < \\v{T) - V+{0)\\T: + \\v+{T) - o+(0)||E, 

therefore \imT^o* \\v{T) - v+{T)\\xi = 0. 
Define u ,^ = T- l(o(l/2)), u ,^ e E and there exists (u, v>) that satisfies DSS with «(1/2) = 

m/ j . uo = "(0) is tbe desired initial condition. By lemma 3.1, ||S(-()u(t) - u+Hu < | |o(r) -
o+(r)| |E, then (3.3) is obtained. | 

Proof of t h e o r e m 3.2: 
If «o € E, m, A and fr are as in (A2) take 0(1, y, 1/2) = -iei<x'+,'' ,/2ao(x,!/) as tbe initial 

condition and get («(x^ . t j .^x .y . t ) ) a global weak solution of DSS with u 6 C{]R, H^St2)) and 
rp e Ico(JR,C6(iR1)) tbat satisfy: 

l|Vo(t)||| + 5HOIIÎ + 5 {/V-î + "tl} < £{1/2) (3.11) 

Let {U, 1?) = T(o, tl>) and (u, ip) = FtftiU, q) defined for t > 0, then (u, <p) is also a solution of 
DSS and u(x, y, 0) = U{x, y, 1/2) = T(o(i, y, 1/2)) = no. 

v e C(JR+, HliR2)) implies that o(T) - . «0 as T — 0+ with respect to the weak* topology of 
ff1^'). i.e., for any 5 6 ^- ' ( JR 2 ) , Êl(«(T)) - ff(oo), as T - 0+. 

Now, define Çj{g) = {g,f) Vj e HliBt2), where ( , ) is the usual inner product in L2{m2), 

then: 
lim GMT)) = 5,(00) V / € H1{1R2) 

T-t0* 
equivalently, 

lim (o(r), /) = (00, /> v/ e tf'(ffi2). 
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Let P be the linear operator P : H^R1) ^ (Tdefined by P{f) = nmT^o* («(T), / ) . P is a bounded 
linear operator from a dense subspace of L*(JR2), therefore it can be extended to L2{Ri) and 

Tlim4(o(T). / ) = {vo, f) V/ e ^(JR1) . 

Also, limr^o+ ||o(r)[|, = lluolli and thus limT_o+ \\oiT) - «olli = 0. 
Define U+{t) = T(5(r)«o), then U+{t) = 5(t)l/+(0) and by (3.6) : 

\\U{t) - U+{t)\\t = Tlim+ | |o(r) - 5 ( r ) ^ | | , < H T ) - voh + | K - 5(r)oo[|2 - O when r ^ 0+. 

Let ii+ = S(l/2)l/+(0), then 

«Jj?»I|u(t) - S(t)tt+ll2 = .Jj?» N ' " 1/2) - S{t - l/2)tt+||, 
= 4Jimo[Ii;(()-5(t)Kf(0)|I, = 0. 

Inequality (2.2) together with the Cauchy-Schwartz inequality and (3.11) imply that when ( -» +oo: 

IWOIIco < ci||0(r)iu < ci|||u|»||» < c,J||o(r)|||||Vo(r)||2 < ̂ . , 

The proof of tbeorem 3.3 is similar to that of theorem 3.1. 
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SOME PROPERTIES OF a-BLOCH FUNCTIONS 

Lou ZENOJIAN 

ABSTKCT We gi»c ibe conlinuity of fi" àai Bg, ptcdiul apace of B" , alio • new charsctctiltlioo of fi" 
•ad BQ which «re teal cxieBiiou 1er oaei ol B «ad Bi,. 

Presented by P.G. Rooney, F.R.S.C. 

1. Introduction 

Let D = {: : jsj < 1) denote the open unit disc in the complex plane. For an analylir funclion / 

oa Dif e mD)).0<* Kt*. The o-Bloch space B' it the net of all functions /€# ( £ ) » for which 

•upd - | s | 2 ) ' ' | / , ( » l |< oc 
i 

Uttle o-Bloch space, BS, consists of all functions J € H(D) for which 

U m d - l f l ' n / ' M - O l'1-i 

It is known lhat B" is a Banach space under the norm |/(0>| + | |/ | |s>. and Bg C B". When a = I, 

we have B" = B and Bg - Bo, where B and Bo are Bloch space and little Bloch space iespectively(see 

[1, 4-11) for an account of the theory ot B° and BS ). 

We set v>,(') = (a - O / d - Sz) to be a canonical Mobius map of D onto D determined by ae D 

and 17(0,r) = {z e D : \ç,{z)\ < r) a pteudobyperboUc disk with center a £ £> and radius r e [0,1]. 

Suppose that 9(2,01 = ioff|v.(s)| is the Green funclion of D with logarithmic singularity at a € D. 

Hardy and Littlewood have proved that([5] [2]): for 0 < o < 1, fl" = Lip{ 1 - u), Bf = Iip"(l —u). 

We know that Lip0 can be used to describe the dual space of Hardy space H' tot 0 < p < 1((2]). So 

we see B' and Bg are very important in the theory of Hardy spaces. 

In this paper constants ate denoted by C which may indicate a different constant from one occur-

rence to the next. 

2. Continuity of B" and Bg. 

I9t0 Utlktmatici ful/'ecl Ctanifimtioa (Itii «nieten). 30D48, 30090. 
A'ff wvrde sad fkntes. o-Bloch function, huit o-Bloch function, plcdukl epace, continuity. Catleioo meaiute. 

Tjrpnet by Aj^S-T^l 



98 IOU ZENOJIAN 

Theorem 2.1. Let 0 < a, 0 < oo, then 

fo; B'CB». BgCBl 

lb) \ia<,BS=\)0<fB' 

«i na<,BS=no<,B» 

Proof, (a). From f e B'.vre have 

Jim |/'(r)|( I - jr)1 )« < ||/||fl. l̂im ( 1 - W»)»- = 0 

Hence Bg C Ba C B^ C B*. 

f5)- Uo<« B? £ U<.<« B" 'R obvious. Now we suppose / € Uo<d ^"' ,' ,en *''*'* Mis'B « e (0,5), 

such that f e B". For a' € (a.a). from the proof ot (a) we know / £ Bg', so f e Ua<ji£o a n d 

Ie)- C\a<êBo Q n„,«^* '« obvious. Suppose 0 6 (a.oc),/ £ f lo^»^' t h e n t h e r e e""'6 

fl' 6 to, ^). we have / £ B"', so from the proof of (a), / € B{f and hence / £ ("lo^ Ba - D 

Theorem 2.2. .Let 0 < a, 0 < oo, tAen 

Proof. We only prove (i): L U , B ê * BÎ. f»): PI.*/! * ' î4 ^^ 
0). Taking /(z) = £ £ „ ^{,''.,1. From Tbeorem 1 of [10] / j BJ for a < 0, bat / £ B?. SO 

(ii). Taking g{t) = EJ^, ^ J ^ T . From Theorem 1 of [10], / £ B" for all a < /J, bat / £ B". So 

f U , * ' * * " - D 

8. Predaal space of B". 

In [1], it was shown that tbe prednal ot Bloch space can be identified as 

Ctd) = {/ E B{D) : j Mx{r,f') < oo) 

where Mt{r.f) = ( £ / „ " I/(r«")P«»),/'-

We extend: the result to B°, that is 

Theorem 8.1. Let 0 < a < I, Ihen tbe predaal space of B" is isomorphic to 

Gilo) = {/ £ HID) : j {I- r)'—Mtfr, / ' ) * < oo] 



SOME PROPERTIES OF a-BLOCH rONCTIONS 00 

endowed wilh Ihe norm ||/|lc,(<.i = 1/(0)1-1- /gd - <i)l~*jWi(r>/')dr. 

Proof, hel (pe<<ïi(o)r,a. = (fir* land /(rl = Er=oa«J" " " ««•» , 0 »'* , h a ,• for0< *< 1. 

oa oo 
p(y( rr 11 = JI i. rV( ï" ) = J ] o.fc. T" 

So 

Since 

therefore 

l̂y» = < / . « > = bm 53 o.t.r" (sfiGifai) 
— a=0 

/'tr,= f:na.r-'=</tl).rr:LnF>=V([T-L-F) 

de)dr - / o 1 ' l - | r | r l 2 » y 0 | l -rr |» 

Hence from IHIctai- = suPf*o nX'f.'.. ' w e o b t a i n 

\f'ir)\ < IMlG1,.rllj7^j?lb1.o. < Cd - Irl'l-IMlc,.»)-

Thus / £ B°; the choice g(z) = z*|n = 0,1,...) shows that / £ B° is uniquely determined by 

v e Gî(O). 

Conversely let jfz) = E^o»» 1 ' £ flo "U"1 /Ul = E r ^ a ^ £ G,^). Then define ^(r) = 

E^ii «a'a»""1 for 0 < T < I. we shall show that {ip(r) : 0 < r < 1} is a Cauchy net. From the 

equality 

Hn + lin f [l-ê1)sim-lds = l, n > I 

we have 

ip{r) = 2 / (1 - z'xf) ni.(rs)-'(ii + 1)8. «• )d) 
' • m=l 

B- f II-»2) f flrsei,)G'lse,'\e—d$ds (1) 
» Jo Jo Jo 

where G(r) = z(g{i)-glO)), so O'lt) = zp(z)+ /0VUe,,)«,'<i» for z = re'', which implies thai 

GeB". 
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Using (11 we get 

Mr)-*KB)| 

= \- I / (l-«,)(/'fr««,')-/,(B»«,'))G,(«£-*')t-'*dWs| 
' Jo Jo 

<C j ll-sf—Mtlt.fl-fi,)** (/.tz) = /trz|) 

So |?|r) - ifiR)\ — 0 as r. B — 1 by a simple application of the Lebesgue Convergence Theorem. 

Now we define Ihe linear fanctional </•(/)= lim,_t vHr). Its boundedness follows from 111 

| v ( / l | < sup / ( I - s l ' — iWiU./'W» 

The theorem is proved. D 

4. Carleson measure charnrterizalion of B° and B° functions. 

Setting 

S(a,n = {z £ I> : |ic| < |z| < jtrj + (1 - |«.|)Marffi-| < (] _ \a\)^ 

rtf 

we have 

»2I I - lu-D» < |5(tr.t)| < St'd - |tr|)'. H > i 
A positive measure p on D is e ailed a Carleson type measure if there exist constants C and ( : 0 < 

t < I, snch that pf 5(to, I)) < Cd — |to|)( for all w e D. fi is called a vanishing Carleson type measure 

:» iimi , , fl-'l"!')) = n 

It is obvious that Carleson measure(vanishing Carleson measure) is a Carleson type measure (van-

ishing Carleson type measure) for I = Usee [4, 6] for more on Carleson measure). 

In this section we consider measure Pa,0,r,/,O < 0,p < oc,0 < a < oo , / £ HID), defined 

by d^.^ . / fz» = [D'' / («tf i - |»|»)H',+''-,)-1dm(z). where Dff{t) is the fractional derivative 

of/(*) = Er^0"1' i^aei by D'flt) = ^2T=o(n + ')*0aî"- We give Carleson type measure 

characterization of o-Bloch fnnctioBsand vanishing Carleson type measure characterization of little 

o-Bloch functions,that is 

Theorem 4.1. l e t / £ H{D) and 0 < P,p < oo,0 < o < oo, then 

(s) f eB" Hand only i(Paj,f,t is « Carletoa type measure. 

(h) f e Bg it and only ifPa,f,f.t '» o vanishing Carieson type measure. 

To prove the theorem we need the following lemmax. 
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Lemma l([e]) . For z £ £ aad r : 0 < r < 1. i / l r + i-)/d + f-) < jzj < 1 Ihen Ihere «zisl w £ D 

sad p:0< p < I, sach that Dts,r\ C 5(u>,p). 

Lemma 2. Iei 0 < p.^ < « . 0 < o < oc,0 < r < 1,1 < j < cc, and / £ HiV). Ihen Ihe tollowing 

ere equivalent 

(a/ / € B" 

lb) sup, |i?H/(z)|il - | i |••)°+ , , - , < oc 

tc) s u p . / D l / > , / f c ) | ' ( l - | : | i ' l " » * * - , , - » d - | v - . ( : l I , l , « ' m ( z ) < o c 

Proof. We denote (ai is equivalent lo (b) by (o) — (t). The proof of (a ) — (hi and (a) — (c) is similar 

respectively lo thai of Theoiem 2.1 and Theoiem 2.3 of [P]. so we omit the detail. D 

Lemma 3. i e i 0 < p.3 < •M.O < a < oc,0 < r < 1,1 < / < oc, and / 6 H(D). then the tallowing 

are eg u valent 

là) / £ BJ 

(b) j D ' / W l d - |z|2)•+1,- , - 0. |z| - 1 

W } D WfitWll - |z|»)»l-+/»-»»-a(l - |v.(z)|»)»dm(z) - 0 , H - 1 

Proof. The proof of (o) •- (h) follows from [3. Theorem 6(ii)]. (a) ** (c) is similar to that of Theorem 

2.4 of [8], so we omit the detail. G 

Proof of theorem 4.1. (a). If / £ B". Fix I : 0 < l < §. By Lemma 2 we have 

paitirillS{w,tn= l | I > ' / ( z ) | M - | z | ' ) " - + ' ' - , ' - , d m ( z ) 
«l-,<l 

<sup|i?' , / (z) | 'd- |z | , ) '" , w-1' / (I -| .- |JrldmU) 
•" /5(«>.0 

oupi^z^i- iz iv—^.y; . 1 . , , 
< suplP'/fzJI'd - |z| ,)"<,+' ,- ,»l(l - |u>|) 

f 

Here we used that l - | z | 3 >(1- |u i |Xl - ( . ) . for z £ 5(111,1). Hence ^a^,,,/ is a Carleson type measure. 

llPo,j,f,t >s a Carleson type measure, then for each m e D. there exist constant C and 1:0 < I < 1, 

sucb that paifitttl(Slw, I)) < Cd - |te|)l. 

If < = 1, then Pa.s.s.t >< a Carleson measure; by [4, P.239, Lemma 3.3] 

sup / ID'/fzJI'd - H a ) r i , , + ' - " " ' ( ' " \v,U)\t)àm{z) < oo 
a JD 

therefore / £ B° by Lemma 2((a) •- (e)). 
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If t ? n . for B £ £ : ro < |ii|(ro = *gj-) . Ihere exisUr = ^ ( 0 < l < 1 ) such that 

» , T + l 4 4 3ir , , . 

4 < Ï T t < Ï 2 T T < | 8 | < , 

From the Lemma 1 and its proof there exist tc = fficrt*"** 6 D and t = ^ , snch that D{ri, r) C 

5(u),0. So 

/ iC/lrll't 1 - M»)'«-f'-,»-»ilm(«) 
Jotm.t) 
< / ll-ltF)-*dit.j*.tU) 

/ i | « , i i 

< fg.f.r.tiStn.tn 
- ( i -Hx i -M 
- • ( I - H K I - D i - t 

and 

sup / |D"/ ( i ) | 'd - l z | , )» '" + - ' , - , , - »dm(t )<-c 

Then (a) follows from Lemma 2. 

(b). Using Lemma 3 instead of Lemma 2, the ptoof is similar to that of (a). D 
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A NOTE O N T H B STRON G LAW OF LARGE N U M B E R S 

OF T R I A N G U L A R ARRAYS 

Fuchuu Huang, Peili Wang and Xueren Ding 

Presented by G.F.D. Duff, F.R.S.C. 

A b s t r a c t A necessary aud sufficient condition is given for almost sure convergence of 
triangular arrays with a common distribution. 

If-Xn, » > 1 are independent identicaUy distributeds random variables, 5,, = 53" A', 
and EA'i exists, then the Kolmogorov strong law of large numbers ensures S,,/»» -» EXi 
almost surely. But this result can not extend directly to triangular arrays. That is, given 
a triangular array of independent random variables (all defined ou a common probabUity 
space) such that its «th row consists of ii independent aud identically distributed random 
variables Xni,...,X„„ according to a common distribution F with mean zero, Sn,, = 
2 " = i Ani, •* i s a q"681»011 whether or not 

^ — f 0 a.s. (•) 
n 

In [Ij, J.H. Romano and A.F. Siegel give au example to show that (*) may fail to hold if 
F has only first finite moment of zero. Their counterexample is au F , that is a symmetne 
distribution and F{f) = 1 - j j , if < > 1. Then, using an inequaUty of FeUer (see [2], p. 
149), they proved 

n = l v ' 

So, by the Borel-CaateUi Lemma, P ( ^ > 1 infinitely often) = 1, therefore S„„ /n di-
verges almost surely. They also proved that if F has mean zero and a fourth finite moment 
pt, then S„/n^ 0, regardless of the row structure. Indeed, 

f;P(i^,>,) < f 3%^ 
n = l ^ ' »=> 

< oo, V f > 0. 

So by the Borel-Cantelli Lemma, (*) holds. 

In this note we prove the following 

T H E O R E M . (*) holds if and only if F has mean zero aud a second finite moment. 

Proof. By the famous Hsu-Robbins theorem (see (3), p. 363), we know that 

n=l v ' 

< oo, < > 0, (**) 
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if and only if EAii = 0, EXf, < oo. If (**) holds, then by the Borel-CautelU lemma. (*) 
holds. Else if (**) does not hold, since S„n, n = 1,2, . . . are independent random variables, 
by the Borel-Cantelli lemma for independent events, P (*%** > 1 infinitely often] = 1. 

However, since F has mean zero, by the usual weak law of large numbers, Snn/n —» 0, so 
Snn/n diverges almost surely,, that is (*) does not hold. This completes the proof of the 
theorem. 

Noting that (**) means the complete convergence of S„„/n, we have 
Corollary. ^J"- 4 0 if and only if ^J»- ^ A 0. 

So, though the complete convergence is much stronger than the almost sure conver-
gence in general, the two convergences are equivalent in the case of triangular arrays with 
common distribution. 
N o t e added in proof: An article by W.E. Pniit t "Summability of independent random 
variables", .7. Math. Mech. 15 (1966), 769-776., contains the "IT part of the present 
Theorem in a very general form. 
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ROUND-OFF STABILITY OF ITERATIONS ON PRODUCT SPACES 
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ABSTRACT Ostrowski's result [Z. Angew. Math. Mech. 47(1967),77-
81; MR35#7560] on the stability of Picard sequence of iterates 
for Banach contraction is extended to Matkowski contraction on 
product spaces. 

Keywords ; Stable iteration, Banach contraction, Matkowski 
contraction, fixed point. 

Mathematics Subject Classifications(1991);65D15, 41A25,47H10,54H25. 

1.INTRODUCTION. In computing, a solution of an equation is usually 
approximated by an iterating sequence I x,, I, say. In practice, 
because of rounding off or discretization of the function, an 
approximate sequence is used in place of the sequence l x 0 ) . In 
general, the approximate sequence and the sequence I xn I need not 
converge to the same point (see, for instance, Harder-Hicks 
[2],p.704). Alexander M. Ostrowski [6] appears to be the first to 
investigate sufficient conditions concerning the stability of 
iteration procedures for contracting maps (see Theorem 2.1 below). 
Recently Harder-Hicks [2] and Rhoades [8] have obtained similar 
results for maps satisfying certain contractive conditions. The 
purpose of this paper is to extend Ostrowski's {now classical) 
theorem to Matkowski contraction systems on a finite product of 
metric spaces. 
2. PRELIMINARIES. Let (Y, d) be a metric space and T : Y~y. 

For a point x0 in Y, let 

(*) *„.i = •nr. xn) 
denote some iteration procedure. Let the sequence IxJ be convergent 
to a fixed point p of T. Let lyj be an arbitrary sequence in Y, and 
set 

e„ = d(y„*i. fiT. y j ) , n - 0,1,2, 
If lim £„ = 0 implies that lim y„ * p, then the iteration process 
defined in (*) is said to be T-stable or stable with respect to T 
(see Harder-Hicks [2), Rhoades [8]). 

In 1967, Ostrowski [6] obtained the following first result on 
T-stability {see Harder-Hicks (2] and IstrSCescu [3), p.101, wherein 
Ostrovski (1964) should be corrected to Ostrowski {1967)): 

THEOREM 1. Let (Y, d) be a complete metric space and T : Y~Y such 
that T is a Banach contraction, that is, 
(2.1) d(Tx, Ty) s k dfx, y) 
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f o r aiJ x , y 6 IT ; where k<l i s a nonnegative number. Let p be the 
f i x e d p o i n t of T. Let x^ be an arbi trary p o i n t i n y and put 

*u*i " TXn' n " Of 1, 2, 
Let tyj be a sequence in Y, and en = cf(yi,*i' ^n) , n = 0 , 1, 2, . . . . 
Then, for n = 0, 1, 2, . . . , 

(1) d(p. y ^ ) s d(p, x^ ) * k^dix,, y0) + g*"'̂ -
Also 
(2) lim yn = p if and only if 11m €„ = 0. 
REMAlS'l. The last relation (2) says that the functional iteration 
(*) given by the Picard sequence of iterates,i.e., 
Xn^ " f{T, xn) = Txn is stable with respect to Banach contraction T. 
Further, since in the case of Banach contraction, 
d{xB, p) * k''d{xi>, n g / d - k ) , (1) gives an upper bound for the error 
in estimating d{yn, p) . 

In all that follows, we generally follow the following 
notations of Matkowski [5] (see also Czerwik [1], Matkowski [4), 
Reddy-Subrahmanyam [7] and Singh-Gairola [9]). 

f aik for i*k, 

i, k = 1, 2,. 
1 - aik for i = k, 

and Ci*' are defined recursively by 
rciV cin.k.i * cin,i ci%t. for i * k 
IcA" ctfln - cfn.i c^U. for 1 = k, 

i, k = l,.../n-t-l, t " 0, 1,—,n-2. If n = 1, we define cf? = a^. 

Matkowski [5, p. 9] has shown that the system of inequalities 
n 
V aik rk < r^ i = 1, 2,...,n, has a solution r, > 0, i = 1, 

2 , . . . n , i f and only i f 
(2 .4) ci*/' > 0, i = l , . . . , n - t , fe=0, . . . . n - l ; JI » 2 
h o l d s . Moreover, there e x i s t s a p o s i t i v e number h <r 1 such that 

n 
( 2 . 5 ) J] alk rk i bri, i - l , 2 , . . . n , 
for some positive numbers r^ rx, ...,rn, (see Czerwik (11 and Singh-
Gairola [9, p. 795]). Indeed, such an h may be found by 

(2.6) h " maxi (r^g aik rk). 
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Let ( J:i, d i ) , i - 1 , 2, . . . , « , be metric apacea, 

X t" X^ * Xt * .. .* x0 , 
and x" : = {xf, .. .,x?), xf e J^, i = 1 , . . . ,ii; Jn = 0, X, 2 
Also x : • (Xi , . . . ,xn), Xj e JT, , i = 1 , . . . ,n . 

Matkowski*s theorem [4-5] i s as follows: 
THEOREM 2. Let (*,, d^ , i •» 1, 2 , . . . , n , be complete metric spaces 
and 

T, t Jf - Xi , i = 1, 2 , . . . ,n , i>e such that 

(2.7) dti^x, ^y) s g a i J t dJt(xJt, yk) 

for every xk, yk e Xk, i, k = 1 , . . . ,ii, where aik are nonnegative 
numbers defined in (2.2) such that {2.3) and (2.4) hold. Then the 
system of equations 
(2.8) Xj =» TjX, i= !,...,« 
has exactly one solution p = (pl,... ,p0) such that p1 e X1, i = 1, . . . ,r. 
For any arbitrarily fixed x0 e X, the sequence of successive 
approximations 
(2.9) xf*1 = TjX", i° l,...,i2. 
converges and 
(2.10) pi = limx/,, i = l,...,n. 

The above theorem is usually known as the Matkowski contraction 
principle(Mcp).Further,T := (T^ ..., rn) satisfying{2.7), (2.2)-(2.4) 
is called Matkowski contraction (see Reddy-Subrahmanyam [7] and 
Singh-Gairola [9]). If p eJf is a solution of (2.8), then p is 
called a fixed point of T := {r^ ... ,rn) . 

We shall need the following lemma due to Harder and Hicks [2]. 
LEMMA. If c is a real number such that 0 < |c| < 1 and (b̂ l is a 
sequence of real numbers such that .b^-Oasj-00, then 

lim {y;ca-lbJ) = 0. 

3.STABILITY RESULTS. The following stability theorem shows that 
the functional iteration for r:= (T^ ...,:rn) defined by (2.9) is 
T-stable whenever T fulfills the requirements of the Mcp. 

THEOREM 3. Let (Ĵ , dj) be a complete metric space and 
Ti : X- Xi , i = 1,... ,n, such that T: = (T1, ..., TJ is a Matkowski 
contraction. Let p= (Pt, ....P,,) ̂ e the fixed point of T. Let 
x0 = (X!0,... ,x^) be an arbitrary point in X, and put 

xf*1 = TiX" , m = 0, 1,..., i = 1, •..,«. 
Let iyfi denote an arbitrary sequence in X^ i = l,...,ii, and set 
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«" • «My"*1. Tiy"), m - 0, 1 i - !,...,«. 
Then, for m = 0, 1,..., and i = l,2,...,n, 
ID ^(p^ y D i diipi, x D + h-̂ r, * g * ^ ej, 
where ^ > djlxj1, y^) are some positive numbers and h is defined by 
(2.6). Also 
(II) 11m yj" = pi if and only if lim €7 = 0. 

PROOF. For any in, 
(3.1) diCPi, yf1) s di{pi. xf1) • d^T.x», ^y») • d^^y», yf1) 

« d^p^ xf') + fja^dkU*", yjf) +67, i = 1 n. 
Now we estimate the middle term on the right hand side of (3.1) . 
From the homogeneity of the system (2.5), we may assume without 
any loss of generality (indeed, if necessary increasing the values 
of ri, i = l,...,n) that di(x', y° ) s rj, for some positive numbers 
ri, i = l,,..,ji satisfying (2.5). Then 

diixl, yî) s diUJ, Tiy*) * d^y», yl) 
a 

,0 - d^TjX0, ̂ y0) + ̂ 5 ̂  JJ a^j *$ ihri* cj. 

Analogously d^xf, yf) « h(hr i + e?) + ci = h 2 ^ + he? + e}. 
Induct ively di {xf. yf) s h " ^ + h»"1 «J * h-» e} + + h e?"2 + ef1 . 

m-l 
.-. g a i J t dk{xf, y?) s h»2Xi • g * - ^ . 
Its substitution in (3.1) establishes (I). 

To prove (II), first assume y * ~ Pi as m - », j » J,...,n. 
Then, for any i, 

eî-d^yf1, Tj*) 

* diiyT1, Pi) * diiTip, ^y») 

^ àiiyT*. Pi) • |:aiJtdk(pt. y,?) 

* «Myf*1. Pi) * (g ai*) -max (d^Pi, yf) dn{pn. yf)}. 

Since each di(pi, yf)- 0 as m - «, lim €7 = 0. 
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Now suppose e" - 0 as m - ». Since the Mcp guarantees the 
existence of exactly one solution of (2.8) and, by hypothesis, 
p is a solution of (2.8), the sequence ixf) converges to 
p1 , i = !,....«, (cf. (2.9)-(2.10)). Recall that 0 < h < 1 
^cf. (2.5)). Thus, from (I), 

lim di{pi, yf*1) s lim { V h * ^ ) . 

Since ( ej IĴ , is convergent to zero, an appeal to the lemma of 
Harder and Hicks establishes (II). 

COROLLARY. Theorem 1. 

Proof. Take {Y , d) * (Jf^d^ , T = T, i = 1 n, and 
n = 1 with a^ = k, d(x0,y0) = ̂  in Theorem 3. 
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