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SPECTRAL COVERINGS WITHOUT EMBEDDINGS

ERIC BOULTER AND STEVEN RAYAN

Presented by Lisa Jeffrey, FRSC

ABSTRACT. In this article, we investigate a weakened version of the
spectral correspondence for twisted Higgs bundles. Namely, we construct
twisted Higgs bundles from a finite covering map and a vector bundle on
that covering but without requiring that they match the eigen-data for
some fixed twisted Higgs bundle. We investigate stability for twisted Higgs
bundles constructed in this way, and compare our covering data to that of
the traditional spectral cover.

RiESUME. Dans cet article, nous étudions une version affaiblie de la cor-
respondance spectrale pour les fibrés de Higgs torsadés. Nous construisons
des fibrés de Higgs torsadés a partir d’une application de couverture finie
et d’un fibré vectoriel sur cette couverture, sans exiger qu’ils correspon-
dent aux données propres d’un fibré de Higgs torsadé fixe. Nous étudions
la stabilité des fibrés de Higgs torsadés ainsi construits et comparons nos
données de couverture a celles de la couverture spectrale traditionnelle.

1. Imntroduction and Setup A finite, ramified covering of one variety X
over another Y such that X is embedded as a multi-section of the total space
of a locally free sheaf p : V' — Y sets in motion what is usually termed the
“spectral correspondence”, as described for the case dim(X) = rkV = 1 in
[BNRR9|. Here, the pushforward of a line bundle M — X under p|x produces
a pair ((p|x)«M, (p|x)«n), where n : M — M ® (p|x)*V is the map given by
tensoring with the tautological section of p*V — Tot(V). This pair is usually
known as a “twisted Higgs bundle” or “Hitchin pair” on Y. Conversely, one may
start with such a pair on Y and reconstruct X C Tot(V) and M as eigen-data.
This article is motivated by a weakening of this setup where X is not necessarily
given from the outset as a multi-section of a sheaf V| and instead certain choices
are made about the relationship of X to V.

In the following, we assume that all varieties are integral, projective, and
defined over C. Now, let X and Y be two smooth projective varieties with a
finite surjective map 7 : X — Y of degree r, and fix an ample line bundle H on
Y. Choose a vector bundle M on X and a locally free sheaf V on Y, as well as
a section o € H°(X,7n*V). There is a natural map ¢ : M — M ® 7*V sending
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m to m ® o, and the pushforward of this map by 7 is a V-twisted Higgs bundle
(meM,® : m,M — m.M ® V). The annihilating polynomial fg of ® is of the
form fo(n) = 0" + si" "' + ...+ s,_11 + S, where 5; € HO(Y,Sym"(V)) for
i € {1,...,r}. This polynomial cuts out an induced spectral cover Cy C Tot(V).

2. The Usual Spectral Correspondence Let X be a smooth projective
variety, and let V' be a locally free sheaf on X. A V -twisted Higgs bundle on X
is a pair (E, ®), where F is a vector bundle on X and ® : E — E® V is a sheaf
map satisfying ® AP = 0, where ® AP is viewed as a map PAP : F — E®/\2 V.
Given any V-twisted Higgs bundle, we can associate a subscheme Cg C Tot (V)
called the spectral cover of ® by the vanishing of fp := det(® — n ® Id) €
HO(Tot(V), i, (Sym™ #(V))), where py : Tot(V) — X is the bundle projection
and 7 is the tautological section of p}, (V). The map mp : Cp — X induced
from the bundle projection py is always finite locally free. If Cs is integral,
then there is a rank-1 torsion-free sheaf M on Cg so that (7).(M) = E, and
(73)«(ncy, ® Idps) = ®. Conversely, starting with a torsion-free rank-1 sheaf
M on Cg, the pair ((7¢).M, (73).(n ® Idas) is a V-twisted Higgs bundle with
spectral curve C'p whenever (mg),.M is locally free.

If, in the above construction, M is chosen to have rank r > 1, the resulting
V-twisted Higgs bundle will have characteristic polynomial fz, and ® will be
annihilated by fg [BR23| p.11].

Motivated by this correspondence, we fix a finite map 7 : X — Y between
smooth projective varieties, a vector bundle V on Y, a vector bundle M on X,
and a section o € H°(X,7*V). When there is an embedding ¢ : X — Tot(V)
so that m = g o ¢ and o = *7, then this is exactly the construction from the
spectral correspondence.

3. Examples

EXaMPLE 3.1 (0 € 7*H°(Y,V)). Suppose that ¢ € #*H°(Y,V), and set
U C X to be the complement of the ramification locus. Consider the Higgs field
®| (). For any point p € m(U), we can easily check that ®|, is a multiple of the
identity, since for any ¢ € 7~!(p) the map o acts by tensoring the vector M|,
with o(p). Since @ is equal to 0 ® Id,_ s on a dense open subset, we must have
®=0QId;, p-

From now on, we assume for simplicity that o € HO(X,n*V) \ m*H°(Y, V).
To deal with sections of this form, it helps to consider the Tschirnhausen bundles
associated to our covers.

DEFINITION 3.1. Let m: X — Y be a finite flat morphism between projective
varieties. The Tschirnhausen bundle of w is the unique vector bundle E, on Y
so that m,Ox ~ Oy ® EY.

Remark 3.2. There is inconsistency in the literature of how the Tschirnhausen
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bundle is defined; some authors give it as m,0x /Oy (as in [Mir85, Theorem
3.6]), and others as the dual of this bundle (as in [CLV23] and [DP22]). We have
chosen the latter convention to simplify the notation related to covers embedded
in the total space of the Tschirnhausen bundle.

One useful feature of the Tschirnhausen bundle is that X admits a natural em-
bedding into Tot(E) ~ Specg,, (Sym(E")) corresponding to the ideal generated
by elements of the form v ® w — v - w,v,w € E(U), where - is the multiplication
from the algebra structure of 7,0 x.

ExAMPLE 3.2 (Conic double cover of P!). Suppose now that X and Y are
both isomorphic to P!, V is a line bundle, and 7 is the map [z : y] — [22 : y?]. If
V =~ O(d) for d > 0, then sections of HY(X, 7*V)\7*H°(Y, V) can be represented
by polynomials of the form

U(£E7y) = ‘Tyf(xza y2) + 9(127?]2)’

where f is a non-zero homogeneous polynomial of degree d—1 and g is a homoge-
neous polynomial of degree d. Assume that g = 0. Set [s : t] to be homogeneous
coordinates for Y. We can compute the invariant polynomials s; and ss of ® as
o(z,y) +o(—x,y) =0 and o(x,y)o(—x,y) = —stf(s,t)?, respectively, giving an
annihilating polynomial of

n* —stf(s,t)? = 0.

Notice that if d > 1, then the induced spectral curve Cs is singular with singu-
larities at the zeros of f, and the normalization of Cy is X.

In general, the computations in Example can be extended to any case
where deg(7) = 2, using the embedding of X into the total space of the Tschirn-
hausen line bundle A € Pic(Y'). (See for example [Fri98, pp. 46-47].)

PROPOSITION 3.3 (General double cover). Suppose that m: X — Y is a degree-
2 map of smooth projective varieties, M is a vector bundle on X,V is a vector
bundle on' Y, and o € HY(X,7*V)\ m*HO(Y, V) is a section of 7*V which is
not the pullback of a section of V.. Then the Higgs field ® : 1M — m, M @ V
constructed by pushing forward multiplication by o has induced spectral cover
Cs, and the normalization of Ce is X. Furthermore, the singularities of Cg
occur precisely at the points of Y where the projection of o to HO(Y,V @ A71)
vanishes, where X is the Tschirnhausen bundle satisfying m,0x ~ Oy & A~L.

PROOF. Suppose that 7 has degree 2 and ramification divisor R. Then there
is a line bundle A € Pic(Y) so that Ox(R) ~ 7*\ and 7.0x ~ Oy @& A~
Swapping preimages of 7 gives rise to an involution ¢ : X — X whose fixed set
is exactly the support of R. We have a natural decomposition of H°(C,7*V) ~
HY(C,7*V)® H?(C,7*V) into sections which are fixed by ¢* and those which are
negated by ¢*, and this decomposition directly corresponds to the decomposition

HY(X,7*V) = H'(Y, 7.7*V) ~ HO (Y, VoVer™!) = HY (Y, V)eH (Y, Vi)
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by writing sections of HO(X,7*V) as 7*f + sm*g, where s is a section of 7*\
with div(s) = R, f is a section of V, and ¢ is a section of V ® A~!. For any
section 0 = m* f+s7*g € H(X,7*V) ~ H(Y,V)® H°(Y,V®A~1) with g # 0,
the corresponding Higgs field ® will have invariant polynomials

si(m(p)) = 2f(7(p)) + s(p)g(n(p)) + s(t(p))g(7(p)) = 2f(7(p)),
s2(m(p)) = (f(7(p)) + s(p)g(7(p)))(f(7(p)) + s(¢(p))g(7(p)))
f(m(p)? = t(x(p))g(m(p))?,

where t € H°(Y, \?) is the section so that 7*t = s2. From this, we can see that
the annihilating polynomial of ® is

" =2fn+ f2—tg® = (- f)*—tg*

and the Jacobian corresponding to this annihilating polynomial is

(2 — £2(f =) J(f) — g° I (t) — 2tgJ (g))
=2 = N2(f =n)J(f) — g(gJ(t) +2tI(g))),

so that Cg is smooth at any point with n # f(p). Recall that X embeds in
Tot(\) as the hypersurface n? — t, so since X is smooth the Jacobian of ¢ does
not vanish at a zero of t. Consider a point (p, f(p)) € Cp C Tot(L). Then
either ¢ or g vanishes at p. Clearly, if g(p) = 0 then the Jacobian of the annihi-
lating polynomial also vanishes at p, and Cy is singular at (p, f(p)). If instead
g(p) # 0, then t(p) = 0, so the Jacobian of the annihilating polynomial becomes
(0 —g*(p)J(t)p), so that when g(p) # 0, (p,0) is a singular point if and only if
J(t), = 0. However, since X embeds in Tot()\) as the hypersurface n? — ¢, any
point with ¢(p) = 0 and J(¢), = 0 would correspond to a singular point of X.
Since X is smooth, we can conclude that (p, f(p)) is a smooth point of Cg if and
only if g(p) # 0.

Since we have a natural finite map X — Cg given by sending a point (p,n) €
X C Tot(A) to (p,n * g(p)) which is clearly an isomorphism away from zeros of
g, X is the normalization of Cg. (|

We can extend some of the techniques to a more general case where 7 : X — Y
is an Abelian cover, meaning that the induced field inclusion K (Y) — K(X) is
Galois with Abelian Galois group I'. K (X) is naturally isomorphic to K (Y)[I']
as a K (Y)-algebra, so as a I'-module K(X) decomposes into

K(X)=Pr,

pef‘

where I is the Pontryagin dual of I'. This decomposition extends to a decompo-
sition of Oy -modules:
mOx ~EPL,

pel
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for some line bundles L, € Pic(Y) with L; ~ Oy. We can also associate to each
L, the (unique up to scaling) section s, € H*(X,7*L;") such that v-s, = p(7)s,,
for any vy € I'. Similarly, for any vector bundle V' on Y, we have an isomorphism

PEYV,VeL,)~H(X,xV)
pef“

X
hy = s,m" hy,

for h, € H(Y,V ® L,), which decomposes sections of a bundle V into corre-
sponding irreducible representations. The Higgs bundle (F,®) = (.M, m.0)
has spectral curve given by the symmetric polynomials of o(7~1(y)) at a point
y € Y. Thus the k*® symmetric polynomial is given by

tly) = > Aiola)- o)

for any x € 7~!(y), which we can compute using the representation decomposi-
tion of ¢ and the algebra structure of 7,0 x.

Before we move on to examples involving triple covers, we recall some results
from [Mir85|] on general triple covers. (Note an important notational difference
between |[Mir85] and this paper: what Miranda calls the Tschirnhausen module
is the dual of the Tschirnhausen bundle as described in Definition [3.1} )

PROPOSITION 3.4 (Proposition 4.7, [Mir85]). Let X and Y be projective va-
rieties and let m : X — Y be a finite flat map of degree three with associated
Tschirnhausen bundle Er (so that m.0x ~ Oy & EY). Then the line bundle
associated to the branch divisor of  is det(E,)?2.

LEMMA 3.5 (Lemma 5.1, [Mir85]). Let Y be a variety, and let A € Pic(Y) be
a line bundle. Suppose p is a point of Y with local ring (Op, m) such that Y is
smooth at p. Take X to be a triple cover of Y of the form V (n3+an+b) C Tot()\),
where 1 is the tautological section of A\, a € H°(Y,\?), and b € H°(Y,\3). Then
X has a singularity above p if and only if one of the following conditions holds:

(a) a €m and b € m?, in which case (p,0) is a singular point of X ;
(b) a € m and A € m?, in which case (p,—3b(p)/2a(p)) is a singular point of
X.

Here A := 4a® + 2702 is the cubic discriminant of the polynomial defining X .

ExXAMPLE 3.3 (Triple cover P! — P!). Suppose that X and Y are both iso-
morphic to P!, and = is the map [z : y] ~— [23 : y3]. If V = O(d) for d > 0, then
sections of HY(X,7*V) \ m*HY(Y, V) can be represented by polynomials of the
form

o(z,y) =z’ f(2°,y°) + 2®yg(2®, y°) + h(®,y?),
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where f and g are homogeneous polynomials of degree d — 1 which are not both
zero, and h is a homogeneous polynomial of degree d. Assume that h = 0. Set
[s : t] to be homogeneous coordinates for Y. We can compute the invariant
polynomials s1, sz, and s3 of ® as 51 = o(x,y) + o(wr,y) + o(w?z,y) =0, 55 =
o(z,y)o(wr,y) + oz, y)o(w?z,y) + o(wz,y)o(w?z,y) = —3stf(t,s)g(t,s), and
s3 = o(x,y)o(wz,y)o(w?z,y) = st2f(s,t)3 + s%tg(s,t)3, giving an annihilating
polynomial
0 — 3stf(s,t)g(s,t)n — st f(s,1)> — s*tg(s,t).

The corresponding spectral curve Cg will be integral with arithmetic genus 3d—2
if f and g are not both identically zero by Euler characteristic computations
analogous to |[BNR89, Remark 3.2]. The cubic discriminant of the annihilating
polynomial is given by

A(s, t) = 278212 (tf(s,1)% — sg(s,1)%)2.

We claim that the singular locus lies over the divisor tf(s,t)3 — sg(s,t)3. This
divisor appears with multiplicity 2 in the discriminant, so by Lemmal[3.5]there is a
singularity above any point where tf(s,t)3 —sg(s,t)? vanishes and st f(s,t)g(s,t)
does not. Suppose that p is a common zero of stf(s,t)g(s,t) and tf(s,t)3 —
sg(s,t)3. By Lemmait is enough to show that st(tf(s,t)*+ g(s,t)?) vanishes
to order 2 at any such point.

If tf(s,t)® — sg(s,t)® vanishes at [0 : 1], then f(0,1) = 0 and if tf(s, )3 —
s5g(s,t)3 vanishes at [1 : 0] then g(1,0) = 0, so X has a singularity above common
zeros of tf(s,t)® — sg(s,t)* and st.

If [s : #] is a shared zero of f and tf3 — sg3, then either [s : ¢] = [0 : 1] or
g(s,t) = 0. Similarly, should [s : ] be a common zero of g and tf3 — sg®, then
either [s: t] =[1:0] or f(s,t) =0. In any of these cases, ([s: t],0) is a singular
point of X.

The computations of the cubing map on P! can be extended to work in the
general situation of a cyclic triple cover.

EXAMPLE 3.4 (General cyclic triple cover). Let 7 : X — Y be any cyclic
triple cover map, and suppose that V is a line bundle. Then, the Tschirnhausen
bundle of 7 is of the form L; @& Ly, where L' and L;' correspond to the
¢ and ¢? sub-representations of Z/3Z on Ox, respectively, for ¢ a primitive
3'4 root of unity. It follows that there is a unique section s € H°(X,7*Ly)
up to scaling so that ¢ - s = (s and a unique section t € H(X,7*Ly) up to
scaling so that ¢ -t = (?t. Now for any vector bundle F on Y, we can use
the decomposition of the group HY(X,7*V) into subrepresentations to uniquely
write any section o0 € H*(X,7*E) as 0 = 7* f+sm*g+tn*h, where f € HY(Y, E),
ge H'(Y,E® L"), and h € H'(Y,E® Ly ).

In particular, since ¢-s% = (%s?, there is a section a € HO(Y, L? ®L51) so that
s = tr*a. Similarly, since ¢ - t2 = (t2, there is a section b € HO(Y, L3 ® L") so
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that t? = s7*b. From this we can see that since s*t?> = str*(ab), we must have
st = *(ab).

Now take o = st*g+tr*h € H°(X,7*V) with g and h not both zero. Pushing
forward multiplication by o gives the annihilating polynomial

n® — 3abghn — a*bg® — ab*h?

through analogous computations to Example|3.3] and the cubic discriminant will
be
A = 27(a*bg® — ab*h®)? = 27a*b*(ag® — bh*)?.

Note also that the branch locus of 7 is given by a?b? by [Mir85 Proposition 7.4],
implying that we should expect the singular locus of the induced spectral curve
Cs to be ag® — bh®. Indeed, using the singularity analysis from Lemma
we see that the induced spectral curve is singular at any point where ag® — bh>
vanishes and abgh does not. For any point p where abgh vanishes, a?bg> + ab’h>
will vanish to order 2 at p if and only if ag® — bh? vanishes at p, so Cg is singular
at every point of the divisor ag3 — bh3.

Cram 3.6. Ifw: X — Y has prime degree r, the induced spectral cover Cg is
birational to X whenever o € HO(X,m*V)\ n*HO(Y, V).

PROOF. We can construct amap ¢ : X — Cp C Tot(L) as ¢(x) := (7(z), o(x)).
(Since o is a section of 7* L, o(x) naturally belongs to the fibre of 7(x) in Tot(V).)
Furthermore, composing ¥ with the natural projection of the spectral cover C'g
is exactly m. Since 7 is a finite map of prime degree, then v has degree r or
1. If o is not a pullback section, then for a general choice of y € Y we will
have o(7~1(y)) containing 7 distinct points. This shows that we must have 1 of
degree 1, so that it is a birational morphism. O

The next example shows that we cannot expect the above claim to hold when
r is composite.

EXAMPLE 3.5. Again, suppose that X and Y are both P! and 7 is the map
[z :y] = [z : y?]. If we take V = O(d) with d > 1, then we can take o €
HO(X,m*V)\ 7 H°(Y,V) to be of the form o = z3yf(z*, y*) + 22y?g(x*, y*) +
xy3h(z*, y*) using the fact that 7 is Galois with group Z/4Z. Notice that m
decomposes as m = p o p, where p : P1 — P! is the map [z : y] — [2? : y?]
corresponding to the intermediate Galois cover of order 2. If f and h are zero in
o, then o belongs to p* H?(p(X), p*V). Let ¥ be the Higgs field given by pushing
forward multiplication by o along p. Since o € p*H(p(X), p*V), Example
tells us that ¥ = 7 ® Id, ps, where 7 € HY(p(X, p*V) is the unique section with
p*T = 0. We are now in precisely the situation of Proposition with the map
p: Pl — P the section 7 € HO(P(X),p*V) \ p*H(Y,V), and a vector bundle
p«M on P(X), so that ® has annihilating polynomial of degree two and the
natural map X — Cp is the composition of the normalization of Cp with p.
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4. Result

THEOREM 4.1. Let w: X — Z be a finite surjective map of smooth projective
varieties, M a torsion-free sheaf on X, V a locally free sheaf on Z, and o a
section of H*(X,n*V). Let ® : m,M — m,M ® L be the Higgs field which is the
pushforward by 7 of the map o : M — M ® ©*V given by m — m @ o. Then
there is a normal variety Y and two finite maps p: X — Y andq:Y — Z
so that o = p*1 for some section T € H°(Y,q*V), ® can be constructed as the
pushforward by q of the morphism 7 : p, M — p,. M ® ¢*V given by m — m Q T,
and the spectral cover Ce has mormalization isomorphic to Y .

Remark 4.2. In the above theorem, when p is an isomorphism the spectral curve
is birational to X, and when ¢ is an isomorphism, the resulting Higgs bundle
has the form 7 ® Id,, ps for some 7 € H(Z, V). Of course, when both p and ¢
are identity maps, then 7 is an isomorphism

PROOF. First, note that there are natural maps p : X — C¢ C Tot(V) given
by p(z) = (n(z),0(x)) € Tot(V), which is well-defined since ¢ is a section of
7V as well as mg : Cp — Z defined as the restriction of the natural projection
Tot(V) — Z to Cp. Both maps are finite, and satisfy rgop =7. Let v: Y — Cyp
be the normalization of C's. Then we have a map p: X — Y so that p=vop
and a map ¢ := g oV : Y — Z so that m = g o p. Notice that the section o is
constant on fibres of p, and is therefore also constant on fibres of p, so we can
construct a section 7 € H°(Y,¢*V) so that p*r = . Pushing forward o by p
gives amap 7 : p. M — p. M ® ¢*V which is again multiplication by the section
7, as described in Example Clearly, pushing forward 7 by ¢ gives the Higgs
field ®. O

Remark 4.3. By considering the case where ¢ is the identity in the above theorem,
one can check that the only nilpotent V-twisted Higgs bundles resulting from
this construction are those with zero Higgs field.

COROLLARY 4.3.1. Letw: X — Y be a branched covering of prime degree,
and let ® be the Higgs field induced by the data (m,M,V,0). Then either ® =
7 ® Idy, ar for some 7 € HY(Y,V) or X is the normalization of Csg.

5. Stability Let X and Y be projective varieties and let f : X — Y be a
finite map. Choose an ample line bundle H on Y. In this case, f*H is also an
ample line bundle, and H*(X, & @ m* H*) ~ H'(Y,n.£ ® H*) for any torsion-free
coherent sheaf & on X and any integers 7 and k. In particular, if we define the
normalized Hilbert polynomial as

0 i )
pHﬂ'(k) = Z(_l)lh(y;"lfzfslf)

=0

for a choice of ample line bundle and torsion-free sheaf, then we get the relation

(5.1) preme(k) = deg(f)pu x. e (k)
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for every integer k.
If we define the inequality < (resp. <) on Hilbert polynomials as

pH,5 < (resp. X)pm,e <= pu,5(k) < (resp. )pm,e(k)Vk >> 0,

then it becomes clear that for any pair of torsion-free sheaves €, F on X, pr« g g <
prm,e if and only if py ».9 < D . ¢

Recall the definition of Giesecker stability: given an ample line bundle H, a
torsion-free sheaf & is Giesecker H-(semi-)stable for any subsheaf F C & with
0 < rk(F) < rk(€), we have py 5 < (X)pm,7.

PROPOSITION 5.1.  Consider the context of Theorem and take H € NS(Z)
to be an ample class. The V-twisted Higgs bundle (m.M,®) defined by the data
(m, M, V,0) is H-(semi-)stable if and only if the sheaf p. M is w4 H-(semi-)stable.

PrROOF. Recall that any finite map f : V — W of varieties induces an equiva-
lence of categories between coherent Oy -modules and coherent f,Oy-modules,
and it is clear from the equation this equivalence of categories preserves
Giesecker stability for appropriately ample line bundles.

In the context of Theorem the V-twisted Higgs bundle (7, M, ®) is natu-
rally a (f3)«Oc,-module, so it is H-stable if and only if p, M is f H-stable. O

In the case that m# : X — Z has degree 2, we can more directly relate H-
stability of the V-twisted Higgs bundle to the starting data.

PROPOSITION 5.2. Letw: X — Z be a finite surjective map of degree 2 between
smooth projective varieties, and fix an ample class H € NS(Z). If we take M to
be a vector bundle on X and V a vector bundle on Z and choose a section o €
HO(X,m*V)\1*H°(Z,V), then the V -twisted Higgs bundle defined by (7, M, V, o)
is H-(semi-)stable if and only if M is 7 H-(semi-)stable.

PROOF.  Since 7 has degree 2, there is a unique line bundle A € Pic(Z) so that
mOx ~ Oz @ X~1. There is also a natural involution ¢ : X — X induced by
7 which swaps sheets of the double cover. Let s € HY(X,7*)\) be a non-zero
section so that t*s = —s. Using the decomposition HY(X,7*V) ~ H*(Z,V) &
H%(Z,V ® A1), we can uniquely decompose o as ¢ = 7*f + s ® m*g, where
feHYZ, V), ge H (Z,V ® A1), and g # 0. Let ¥ be the M\-twisted Higgs
field corresponding to the data (mw, M, A, s). It is easy to check that the spectral
cover of ¥ is exactly the embedding of X into Tot(\) induced by s. Using the
above decomposition of o, we can write the V-twisted Higgs field ® induced
by (7,M,V,0) as ® = f®Id;, ;s + g ® U. Since ® and ¥ have the same
invariant subsheaves, ¥ is H-(semi-)stable if and only if ® is. Furthermore,
applying Proposition to ¥ gives that ¥ is H-(semi-)stable if and only if M
is 7* H-(semi-)stable, and so combining the two equivalences gives the desired
result. O
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5.1. Pushforward from the normalization Let X be a projective variety with
smooth normalization v : X — X. We set Ox = v+O%. Let J be the con-
ductor ideal sheaf of v. (As a reminder, J is defined as being maximal among
ideal sheaves of Ox which are also ideal sheaves of O x or alternatively as the
annihilator sheaf J := Anng, (0x/0x).)

PROPOSITION 5.3.  Let & be a torsion-free coherent sheaf on X which is also an
Ox-module. Then there is a unique coherent sheaf € on X so that v,& ~ F.

This is a generalization of [Ses82, Chapter 8, Proposition 10].

PRrROOF. Let U be any affine open subset of X. We first show that any isomor-
phism ¢ : F; — Fy between torsion-free O x (U)-modules is an O x (U)-module
isomorphism. For any f € F1(U),a € Ox(U),m € J(U), consider )(m-a- f). By
definition of the conductor, m-a € Ox(U), so m-¢(a-f) = Y(m-a-f) = m-a-(f).
Since Ox(U) is an integral domain and J5 is torsion-free, this implies that
Y(a- f)=a-¥(f), implying that ¢ is an isomorphism of O x (U)-modules. This
shows that any € as in the statement will be unique up to unique isomorphism.
We choose the candidate & ~ v*F/Tors(v*F). For any affine open subset U of
X, &(v™1(U)) is given by F(U) ®o () Ox(U)/Tors. For any f € F(U) and
acOxU), fea=(a-f)@1+[f®a—(a-f)®1], and for any m € J(U),

m-(f®a)=m-a- flel+[feo(m-a)—(m-a-floll=m-a flel

since m-a € Ox (U). This clearly shows that the torsion-free part of v*F(v=(U))
is exactly F(U), so that v, ~ F. O

COROLLARY 5.3.1. Consider the context of Proposition and suppose that
H is an ample line bundle on X. If F is a torsion-free coherent sheaf on X and
v, F is Giesecker H-(semi-)stable, then F is Giesecker v* H-(semi-)stable.

The converse of this corollary holds when X ~ P! or when X is a curve whose
singular points are all ordinary double points by [ALR10, Corollary 4.2] and
[ARM12, Main Theorem].

6. Questions We close this short article with a few research questions of
interest that arise from the constructions above:

(1) Can we place any restrictions on the type of singularities that ¥ can have
in the case of Theorem IR

(2) Is there a “nice” characterization of the singularities that can occur in the
spectral curves of Higgs bundles fitting the hypotheses of Proposition [5.2]

(3) Can we find counterexamples to the converse of Corollary

(4) In |[ABK25|, an association is made between V-twisted Higgs bundles for V'
a rank-2 vector bundle and pairs of Higgs bundles twisted by L1, Lo for two
associated line bundles. Is there any similar association in the context of
our generalized construction?
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