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Abstract. We generalize the Ky Fan–Halpern equilibrium theorem
for a Kakutani type (upper semicontinuous with non-empty closed convex

values) set-valued map defined on convex compact domains in locally con-

vex topological linear spaces [5] by replacing the convexity of the domain
by its star-shapedness. The proof is simple and relies on an extension of

the Ky Fan–Browder fixed point theorem to star-shaped compact domains

due to the author [2].

Résumé. Nous généralisons le théorème de Ky Fan–Halpern [5] sur
l’existence d’un équilibre pour une application multivoque du type Kaku-

tani (semi-continue supérieurement à valeurs d’ensembles non-vides, con-

vexes et fermés) définie sur un domaine convexe et compact dans un es-
pace vectoriel topologique localement convexe en remplaçant la convexité

du domaine par la condition plus générale qu’il soit étoilé. La preuve est

simple et basée sur une généralisation du théorème de point fixe de Ky
Fan–Browder aux sous ensembles compacts et étoilés d’espaces topologi-

ques vectoriels [2].

1. Introduction It is assumed that vector spaces are real and topological
spaces are Hausdorff. The interior, closure, and boundary of a subset A of a
topological space are denoted as usual by int(A), A and ∂A. The convex hull
(closed convex hull) of a subset A in a (topological) vector space is denoted
by conv{A} (conv{A}, respectively). Set-valued maps, simply called maps, are
denoted by capital Greek letters and double arrows Φ,Ψ : X ⇒ E. The reader
is referred to [1] for set-valued and non-smooth analysis concepts used here.

The Ky Fan–Halpern equilibrium theorem (Theorem 2 in [5]) is a far reaching
generalization of the celebrated intermediate value theorem of B. Bolzano and
of its n−dimensional extension due to H. Poincaré. It reads as follows.

Theorem 1. Let X be a non-empty convex compact subset in a locally convex
topological vector space E and let Φ : X ⇒ E be an upper semicontinuous tan-
gential map with non-empty closed convex values. Then, there exists x∗ ∈ X
such that 0 ∈ Φ(x∗).

Received by the editors on August 5, 2024; revised September 11, 2024.
AMS Subject Classification: Primary: 47H10; secondary: 54H25, 47N10, 52A07.
Keywords: Equilibrium, Set-Valued Mapping, Tangent and Normal Cones, Fixed Point,

Star-Shaped Domain, System of Non-Linear Inequalities.
© Royal Society of Canada 2025.

1



2 Hichem Ben-El-Mechaiekh

Such an element x∗ ∈ X with 0 ∈ Φ(x∗) is known as an equilibrium (or a
zero) for the map Φ. Clearly, if X ⊆ E, an equilibrium for Φ is a fixed point for
the field Ψ := I|X − Φ (I being the identity mapping). In this case of a closed
convex domain X, the map Φ is said to be tangential on X if it satisfies the
tangency condition:

(τ) ∀x ∈ ∂X,Φ(x) ∩ TX(x) ̸= ∅

where TX(x) :=
⋃

t>0
1
t (X − x) is the tangent cone of convex analysis to the set

X at the point x1.

The common proofs of Theorem 1 rely on a partition of unity argument com-
bined with the celebrated Ky Fan infsup inequality (see e.g., Theorem 3.2.1 in
[1]) or one of its equivalent formulations (see e.g., Theorem 2 in [5]) and on the
geometric Hahn-Banach separation theorem. The aim of this note is to extend
Theorem 1 to a star-shaped compact domainX in a locally convex space by using
alternatives for systems of nonlinear functional inequalities resulting from a gen-
eralization of the Ky Fan–Browder fixed point theorem to star-shaped compact
domains [2].

Two classes of maps important in topological set-valued fixed point theory
are under consideration.

Definition 2. ([3]) Let X be a topological space.

(a) A map Φ : X ⇒ Y with values in a convex subset Y of a vector space E
is said to be a Ky Fan map whenever:

(i) for every y ∈ Y, the set Φ−1(y) is open in X;

(ii) for every x ∈ X, the set Φ(x) is non-empty and convex in Y.

We denote by F∗(X,Y ) the class of Ky Fan maps from X into Y and, when
appropriate, F∗(X) := F∗(X,X).

(b) A map Ψ : X ⇒ Y with values in a convex subset Y of a topological
vector space E is said to be a Kakutani map whenever:

(i) Ψ is upper semicontinuous on X;

(ii) for every x ∈ X, the set Ψ(x) is non-empty closed and convex in Y.

We denote by K∗(X,Y ) the class of Kakutani maps from X into Y. K∗(X) :=
K∗(X,X).‘

Recall that upper semicontinuity at a given point x ∈ X for a map Ψ : X ⇒ Y
amounts to the openess of the upper inverse Ψ−1

+ (V ) := {x′ ∈ X : Ψ(x′) ⊂ V }
of any open neighbourhood V of Ψ(x) in Y. Upper semicontinuity on the set X
is upper semicontinuity at each point in X.

1TX(x) is a non-empty closed convex cone which, in the case where x ∈ int(X) is interior
to X, amounts to the whole space E. Condition (τ) is thus meaningful only at boundary points
of X. In the simplest case of a continuous function f : X = [a, b] −→ E = R, the boundary
conditions (f(a) ≥ 0, f(b) ≤ 0) are precisely the tangency condition (τ) : (f(a) ∈ TX(a) =
[a,+∞) and f(b) ∈ TX(b) = (−∞, b]) yielding the elementary intermediate value theorem of
B. Bolzano.
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Remark 3. (1) All results involving F∗ maps (in this note) extend to the
larger class of Φ∗ maps. In effect, every Φ∗ maps admits an F∗ selection (see
Remark 2 in [2] and references there).

(2) The strong regularity condition (ii) on the map Φ in definition (a) above
is a strong form of lower semicontinuity2.

(3) Given a Ky Fan map Φ ∈ F∗(X,Y ) where X is a compact topological
space and Y is a convex subset of a topological vector space E, there exists a
single-valued continuous mapping s : X −→ Y with:

(i) s(x) ∈ Φ(x) for all x ∈ X, and
(ii) s(X) ⊂ conv{y1, · · · , yn} ⊂ Y for some finite subset {y1, · · · , yn} ⊂ Y.
(Such a function s is referred to as a finite-type continuous selection of Φ.)

The starting point for this note is a generalization to compact star-shaped
domains (due to the author [2]) of the Ky Fan–Browder fixed point theorem for
F∗ maps. Recall that given a non-empty subset X of a vector space E, the star
of a given element x̂ ∈ E is the set St(x̂, X) :=

⋃
x∈X [x̂, x] of all line segments

[x̂, x] := {x̂ + t(x − x̂) : 0 ≤ t ≤ 1}. The set X is said to be star-shaped at a
point x̂ ∈ X if St(x̂, X) = X, that is, for every x ∈ X, the line segment [x̂, x]
is contained in X; the point x̂ is said to be a centre for X. The set X is said
to be star-shaped if it has at least one centre. The subset KX of all centres of
a star-shaped set X is known as the kernel of X. Obviously, every point of a
convex set X is a centre for X, that is X is convex if and only if X = KX .

Theorem 4. [2] Every Ky Fan map Φ ∈ F∗(X) of a non-empty star-shaped
compact subset X of a topological vector space E has a fixed point x0 ∈ Φ(x0).

The Ky Fan–Browder fixed point theorem corresponds to the special case
where X is convex. As in [4] this “geometric” fixed point theorem has an equiv-
alent and convenient analytical formulation in the form of an alternative for
systems of nonlinear inequalities.

Corollary 5. Let X be a non-empty star-shaped compact subset X of a topo-
logical vector space E and f : X × X −→ R be real function satisfying the
following conditions.

(i) for every y ∈ X, the function x 7→ f(x, y) is lower semicontinuous on X.
(ii) for every x ∈ X, the function y 7→ f(x, y) is quasiconcave on X.
Then, for any given λ ∈ R, the following alternative holds:
(A) there exists x0 ∈ X with f(x0, x0) > λ; or
(B) there exists x̄ ∈ X such that f(x̄, y) ≤ λ for all y ∈ X.

Proof. The map Φ : X ⇒ X given by Φ(x) := {y ∈ X : f(x, y) > λ}, x ∈ X,
has open pre-images and convex values. If the conclusion (B) fails, then Φ(x) ̸= ∅
for all x ∈ X, that is Φ is an F∗ map. A fixed point x0 of Φ follows from Theorem
4, thus establishing (A). □

2The map Φ is lower semicontinuous at x ∈ X whenever the lower inverse Φ−1
− (V ) := {x′ ∈

X : Φ(x′) ∩ V ̸= ∅} of any open subset V in Y is an open neighbourhood of x in X.
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2. The Main Result We start with a preliminary result on the existence
of maximizable upper semicontinuous quasiconcave functionals.

Proposition 6. Let X be a non-empty star-shaped compact subset of a topo-
logical vector space E, let Y be a set of functions in {p : X −→ R : p is upper
semicontinuous and quasiconcave}3 and let s : X −→ Y be a continuous func-
tion. Then,

there exists x̄ ∈ X such that for p̄ = s(x̄) ∈ Y we have p̄(x̄) = max
y∈X

p̄(y).

Proof. Consider the function f : X ×X −→ R defined as

f(x, y) = s(x)(y)− s(x)(x) for every pair (x, y) ∈ X ×X.

Clearly, x 7→ f(x, y) is lower semicontinuous on X and y 7→ f(x, y) is quasi-

concave on X. Obviously, for λ = 0, the alternative (A) in the conclusion of
Corollary 5:

f(x0, x0) = s(x0)(x0)− s(x0)(x0) = 0 > 0, for some x0 ∈ X,

is ruled out. Thus, the alternative (B) of that corollary holds, i.e.,

there exists x̄ ∈ X such that f(x̄, y) = s(x̄)(y)− s(x̄)(x̄) ≤ 0, for every y ∈ X.

Hence, p̄ = s(x̄) satisfies p̄(y) ≤ p̄(x̄),∀y ∈ X. □

A particular instance of this proposition corresponds to the case where s is a
continuous selection of an F∗ map Γ : X ⇒ Y as per Remark 3 (3).

Corollary 7. Let X be a non-empty star-shaped compact subset of a topolog-
ical vector space E, let Y be a convex subset of functions in {p : X −→ R : p is
upper semicontinuous and quasiconcave}, and let f : X × Y −→ R be a function
verifying the following hypotheses.

(i) for every p ∈ Y, x 7→ f(x, p) is lower semicontinuous on X;
(ii) for every x ∈ X, p 7−→ f(x, p) is quasiconcave on Y.
Then, for any λ ∈ R, one of the following holds:
(A) there exists x∗ ∈ X with f(x∗, p) ≤ λ for all p ∈ Y ; or

(B) there exist x̄ ∈ X and p̄ ∈ Y with

{
f(x̄, p̄) > λ
p̄(x̄) = maxy∈X p̄(y)

Proof. The map Γ : X ⇒ Y defined by Γ(x) := {p ∈ Y : f(x, p) > λ},
x ∈ X, has open pre-images by (i) and convex values by (ii). If the conclusion
(A) fails, then Γ(x) ̸= ∅ for all x ∈ X and Γ is therefore an F∗ map. Having a
compact domain X, Γ admits a continuous selection s : X −→ Y (see Remark 3
(3) above). Proposition 6 yields the conclusion (B). □

3Equipped with a suitable topology.
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As mentioned earlier, equilibrium theorems require the mappings to satisfy a
tangency condition. A discussion of tangency on star-shaped domains is clearly
in order. But first, some basic and trivial facts about star-shaped sets are worth
mentioning.

Proposition 8. The kernel KX of a star-shaped set X in a topological vector
space is:

(i) convex.
(ii) closed, whenever X is closed.

As mentioned in the introduction, in the classical Ky Fan–Halpern equilibrium
result (Theorem 1 above; stated in fixed point form in [5]) whereby the domain
X is a compact convex set, the tangency condition (τ) is expressed in terms of
the tangent cone TX(x) := SX(x) of convex analysis (SX(x) :=

⋃
t>0

1
t (X − x)).

While convex for any given convex set X, the closed cone TX(x) may not be
convex for non-convex domains; in which cases, suitable tangency concepts are
required. Recall some known concepts of tangent cones from non-smooth analysis
(see [1]).

Definition 9. Given a non-empty set X in a real topological vector space E
and an element x ∈ X, define:

(i) the tangent cone to X at x as

TX(x) := SX(x) where SX(x) :=
⋃

t>0

1

t
(X − x).

(ii) The adjacent cone to X at x as

TA
X (x) := lim inf

t↓0+
{1
t
(X − x)}.

(iii) The Bouligand–Severi contingent cone to X at x as

TB
X (x) := lim sup

t↓0+
{1
t
(X − x)}.

(iv) The Clarke circatangent cone to X at x as

TC
X (x) := lim inf

t↓0+,x′→Xx
{1
t
(X − x′)}.

One readily sees that for any subset X in a topological vector space and any
x ∈ X, we have:

• Always, TC
X (x) ⊆ TA

X (x) ⊆ TB
X (x) ⊆ TX(x).

• If x ∈ int(X), then TC
X (x) = TA

X (x) = TB
X (x) = TX(x) = E.
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• TA
X (x) is the set of all limit points of generalized sequences {xt}t>0 with

xt ∈ 1
t (X − x). TB

X (x) is the set of all cluster points of generalized sequences
{xt}t>0 with xt ∈ 1

t (X − x).
• In the particular case where E is metrizable, we have the simpler sequential

characterizations:

TA
X (x) = {v ∈ E : ∀tn → 0+,∃vn → v such that x+ tnvn ∈ X,∀n}.

TB
X (x) = {v ∈ E : ∃tn → 0+,∃vn → v such that x+ tnvn ∈ X,∀n}.

TC
X (x) = {v ∈ E : ∀tn → 0+,∀xn →X x,∃vn → v such that xn + tnvn ∈ X,∀n}.

• If X is locally convex at x, that is, there exists an open neighbourhood of x
in E such that X ∩ U is convex, then

TC
X (x) = TA

X (x) = TB
X (x) = TX(x).

Obviously, a convex subset of a locally convex space is locally convex at each
of its points.

• IfX is star-shaped and x ∈ KX is a center ofX then TA
X (x) = TB

X (x) = TX(x).
Indeed, note first that given x ∈ KX , and given any real 0 ≤ λ ≤ 1, for any
vector u ∈ X, we have λu + (1 − λ)x ∈ X ⇔ λ(u − x) ∈ X − x. Thus,
λ(X−x) = X−x for all 0 ≤ λ ≤ 1. Consequently, SX(x) =

⋃
1≤λ λ(X−x) =⋃

0<t≤1
1
t (X − x).

For the sake of simplicity, let us assume that E is metrizable to show the
inclusion TX(x) = SX(x) ⊆ TA

X (x). To do this, let v ∈ SX(x) be arbitrary,
that is, v = λ(u − x) for some u ∈ X and some λ ≥ 1. Now, let {tn} be
any real decreasing sequence convergent to 0+ and let {xn} be any sequence
of elements of X converging to x. We may assume with no loss of generality
that 0 < tn ≤ tnλ < 1 for all n. Consider, for each n ∈ N, the vector
vn := (1− tn)λ(u− x) ∈ E. Clearly, limn→+∞ vn = v. In addition,

x+ tnvn = x+ µn(u− x) with 0 < µn = (1− tn)tnλ ≤ 1

=⇒ x+ tnvn ∈ X for all n ∈ N.

∴ v ∈ TA
X (x).

Therefore, TX(x) := SX(x) ⊆ TA
X (x) = TA

X (x), yielding TA
X (x) = TB

X (x) =
TX(x). This remark describes the well-known convex analysis fact that every
centre to a star-shaped set is a point of so-called pseudo-convexity. Note that
in general, TC

X (x) ⊊ TX(x) for x ∈ KX .

In this note, we shall call normal cone to X at x the negative polar cone to
TX(x) :

NX(x) := TX(x)− = SX(x)
−
= SX(x) = (X − x)−

= {p ∈ E′ : ⟨p, x⟩ = max
y∈X

⟨p, y⟩}.
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The Clarke normal cone to X at x is the negative polar cone to TC
X (x) :

NC
X (x) = TC

X (x)− := {p ∈ E′ : ⟨p, v⟩ ≤ 0,∀v ∈ TC
X (x)}.

Note that if X is locally convex at x ∈ X, then NC
X (x) coincides with the

closed convex cone NX(x) of convex analysis.

Definition 10. Let X be a non-empty subset of a topological vector space
E. A map Φ : X ⇒ E is said to be tangential on X if it satisfies the condition

(τ) ∀x ∈ ∂X,Φ(x) ∩ TX(x) ̸= ∅

In case of certain non-convex domains (e.g., bi-lipschitzian homeomorphic
deformation of convex sets, proximate retracts, lipschitzian retracts, etc., see
[3]) tangency has been expressed in terms of the Clarke circatangent cone TC

X (x).
Since TC

X (x) ⊆ TX(x) always, in the case of star-shaped domain, tangency as in
Definition 10 is less restrictive.

We are now ready to state and prove the main result of this note.

Theorem 11. Let X be a non-empty star-shaped compact subset in a locally
convex topological vector space E. Then every tangential map Φ ∈ K∗(X,E) has
an equilibrium.

Proof. Let Y = {p|X : p ∈ E′} (a convex set) and define the function
f : X × Y −→ R by f(x, p) := infy∈Φ(x)⟨p, y⟩ for all (x, p) ∈ X × Y.

As the support functional x 7→ σΦ(x, p) := supy∈Φ(x)⟨p, y⟩ associated to Φ
is upper semicontinuous, then x 7→ f(x, p) is lower semicontinuous on X. In
addition, as the infimum of linear forms, p 7→ f(x, p) is concave on Y.

Note that condition (τ) implies the normality condition:

∀x ∈ ∂X, p ∈ NX(x) =⇒ f(x, p) ≤ 0.

This normality condition opposes the alternative (B) of Corollary 7 with λ =
0. Hence, the alternative (A) of that corollary holds: there exists x∗ ∈ X with
infy∈Φ(x∗)⟨p, y⟩ ≤ λ = 0 for all p ∈ E′.

If 0 /∈ Φ(x∗), by the Hahn-Banach separation theorem, there exists p ∈ E′,
there exists λ ∈ R with p(0) = 0 < α < p(y), for all y ∈ Φ(x∗). This implies
0 < α ≤ infy∈Φ(x∗)⟨p, y⟩ ≤ 0, a contradiction. Thus, 0 ∈ Φ(x∗). □

Note that in view of the facts that a star-shaped set is pseudo-convex at each
of its centres and that the kernel KX is a convex and closed set (by Proposition
8 above, as X is closed), the tangency condition (τ) takes a simpler form on
∂X ∩KX . Also, if X is an epi-lipschitz compact domain in a metrizable topolog-
ical vector space, or more generally a compact L−retract (see [3] and references
there), tangency condition (τ) must be expressed in terms of the Clarke circatan-
gent cone TC

X (x); moreover, in this case, X must also have a non-trivial Euler
characteristic.
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As an immediate consequence of Theorem 11, we obtain an extension of Theo-
rem 2 in [5] which is itself a generalization of the Kakutani–Ky Fan–Himmelberg
fixed point theorem. First, following Halpern [5], given a subset X in a vector
space E and an element x ∈ E, define the inward set and the outward set of x
with respect to X as

IX(x) := {y ∈ E : [y, x) ∩X ̸= ∅} and OX(x) := {y ∈ E : x− (y − x) ∈ IX(x)}

respectively; [y, x) := {(1 − t)y + tx : 0 ≤ t < 1}. A map Ψ : X ⇒ E is said
to be inward (outward, respectively) on X if, for all x ∈ X, Ψ(x) ∩ IX(x) ̸= ∅
(Ψ(x) ∩ OX(x) ̸= ∅ respectively). It is readily seen that Ψ : X ⇒ E is inward
on X if and only if the field Φ := Ψ − I : X ⇒ E satisfies Φ(x) ∩ TX(x) ̸= ∅
for all x ∈ X. Also, Ψ : X ⇒ E is outward if and only if Γ : X ⇒ E given by
Γ(x) := x− Φ(x) = x− (Ψ(x)− x), x ∈ X, is inward. In addition, x0 ∈ Γ(x0) if
and only if x0 ∈ Ψ(x0).

Corollary 12. Every inward (or outward) map Ψ ∈ K∗(X,E) where X is a
non-empty star-shaped compact subset X in a locally convex topological vector
space E has a fixed point.

Proof. The set-valued field Φ : X ⇒ E defined as Φ(x) := Ψ(x)− x, x ∈ X,
is in K∗(X,E). Moreover, for all x ∈ X, the stronger tangency condition

Φ(x) ⊆ X − x ⊆ TX(x),

holds. An equilibrium for Φ is a fixed point for Ψ. □

This result extends the main result (Theorem 2) of Park [6] to Kakutani
set-valued maps as inwardness rules out the existence of an invariant direction
(Birkhoff–Kellog condition).

Noteworthy equivalences between various fundamental mathematical results
hold as described by the loop: Brouwer fixed point theorem⇒Knaster–Kuratowsk–
Mazurkiewicz principle ⇒ Ky Fan–Browder fixed point theorem ⇒ Ky Fan in-
fsup inequality ⇒ Theorem 1 (Ky Fan–Halpern; see [1]) ⇒ Kakutani–Ky Fan–
Himmelberg fixed point theorem (see [1]) ⇒ Ky Fan matching theorem for open
covers of convex sets (see [2]) ⇒ Theorem 4 (Ky Fan–Browder Theorem for star-
shaped domains) ⇒ Corollary 12 ⇒ Kakutani fixed point theorem ⇒ Brouwer
fixed point theorem.

In conclusion, we note that Theorem 11 implies the existence of stationary
solutions to set-valued dynamical systems. Indeed, let us recall that a subset
X of some Banach space E is said to be locally viable with respect to (w.r.t.)
a differential inclusion x′(t) ∈ Φ(x(t)), where Φ ∈ K∗(X,E), if for any given
x0 ∈ X, there exist T > 0 and x ∈ C1 such that x′(t) ∈ Φ(x(t)), 0 ≤ t ≤ T,
x(0) = x0, and x(t) ∈ X for all t ∈ [0, T ]. In this context, the dynamical nature
of the tangency condition (τ) on X is strikingly expressed by the set-valued



Equilibria for Set-Valued Maps on Star-Shaped Domains 9

extension of the Nagumo viability theorem. Namely, if E ⊇ X is locally compact
and Φ ∈ K∗(X,E), then:

X is locally viable w.r.t. x′(t) ∈ Φ(x(t)) if and only if,

for every x ∈ X, Φ(x) ∩ TB
X (x) ̸= ∅,

with the Bouligand–Severi contingent cone TB
X (x) (see [3] and references there).

If X is compact, then it is viable (globally) w.r.t. x′(t) ∈ Φ(x(t)), that is,
there exists a trajectory of the differential inclusion such that x(t) ∈ X, for all
t ∈ [0,∞). Theorem 11 contains an extension of Theorem 3.2.1 of [1] to star-
shaped (instead of convex) viability domains.

Corollary 13. Given a compact star-shaped subset X of a Banach space E,
if X is a viability domain with respect to a differential inclusion x′(t) ∈ Φ(x(t)),
Φ ∈ K∗(X,E), then X contains a stationary solution.
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