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Abstract. We correct the proof of Theorem 4.1 from [C. R. Math.

Acad. Sci. Soc. R. Can. 44 (2022), no. 4, 88–112].

Résumé. Nous corrigeons la démonstration du théorème 4.1 dans

l’article [C. R. Math. Acad. Sci. Soc. R. Can. 44 (2022), no. 4, 88–
112].

1. Introduction There is a flaw in the proof of [5, Theorem 4.1]. To explain
this, let us recall the setup for [5, Theorem 4.1]. Let P be a right LCM monoid,
i.e., a left cancellative monoid such that for all p, q ∈ P , the intersection pP ∩qP
is either empty or of the form rP for some r ∈ P . Let S = {[p, q] : p, q ∈ P}∪{0}
be the inverse semigroup associated with P in [4, Proposition 3.2]. (If P is not
left reversible, then S is isomorphic to the left inverse hull of P via the map that
sends 0 to 0 and sends [p, q] to the partial bijection qP → pP given by qx 7→ px.)
Let

SIso := {[p, q] : paP ∩ qaP ̸= ∅ for all a ∈ P}

be the inverse semigroup from [5, Section 4], and denote by Gtight(S
Iso) and

Gtight(S) the tight groupoids of S
Iso and S, respectively (see [1] and [2]). The C*-

algebra C∗
r (Gtight(S)) is the reduced boundary quotient C*-algebra of P . Since

Gtight(S
Iso) is identified with an open subgroupoid of Gtight(S), there is a canon-

ical inclusion of reduced groupoid C*-algebras C∗
r (Gtight(S

Iso)) ⊆ C∗
r (Gtight(S)).

Explicitly, we have

C∗
r (Gtight(S)) = span({T[p,q] : [p, q] ∈ S}),
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where T[p,q] is the characteristic function of the compact open bisection
Θ([p, q], DqP ) (see [5, Section 3] for this notation), and C∗

r (Gtight(S
Iso)) is identi-

fied with the C*-subalgebra generated by the partial isometries T[p,q] for [p, q] ∈
SIso.

Assume that S satisfies condition (H) from [5, Definition 3.1], and suppose
π : C∗

r (Gtight(S)) → B is a representation in a C*-algebra B. Then, [5, Theo-
rem 3.4] says that π is injective if and only if its restriction to C∗

r (Gtight(S
Iso))

is injective. It is asserted in the proof of [5, Theorem 4.1] that to prove this
latter claim, it suffices to prove that π is injective on the dense *-subalgebra
A0 := span({T[p,q] : [p, q] ∈ SIso}). However, this assertion is false: If we take
P = Z, then C∗

r (Gtight(S
Iso)) = C∗

r (Gtight(S)) ∼= C∗(Z), and under the canoni-
cal isomorphism C∗(Z) ∼= C(T), A0 is carried onto the *-subalgebra of Laurent
polynomials in C(T). Given any infinite, proper compact subset K ⊆ T, the
map C(T) → C(K) given by f 7→ f |K is a non-injective *-homomorphism that
is injective on A0.

2. The Proof of [5, Theorem 4.1] We give a proof of [5, Theorem 4.1].
We shall use the notation from [5] freely. The core submonoid of P is

Pc := {p ∈ P : pP ∩ qP ̸= ∅ for all q ∈ P},

with associated inverse semigroup

Sc := {[p, q] : p, q ∈ Pc}.

[5, Theorem 4.1] is stated with the assumption that the full and reduced
groupoid C*-algebras of the tight groupoid Gtight(S) coincide. It is clear that
the following version stated for reduced groupoid C*-algebras implies [5, Theo-
rem 4.1].

Theorem 2.1. Let P be a right LCM monoid and S the associated inverse
semigroup as in [4, Proposition 3.2], let Qr(P ) = C∗

r (Gtight(S)) denote its reduced
boundary quotient C*-algebra, and let Qr,c(P ) = C∗(T[p,q] : p, q ∈ Pc) ⊆ Qr(P )
be the C*-subalgebra generated by the core submonoid. Suppose that S satisfies
condition (H) from [5, Definition 3.1]. Then, a ∗-homomorphism π : Qr(P ) → B
to a C*-algebra B is injective if and only if it is injective on Qr,c(P ).

Proof. Let π : Qr(P ) → B be a ∗-homomorphism that is injective on Qr,c(P ).
We wish to show that π is injective, and by [5, Theorem 3.4] it is enough to show
that π is injective on A := C∗(T[p,q] : [p, q] ∈ SIso). If P is left reversible, then
P = Pc and there is nothing to prove, so assume P is not left reversible. Since
S satisfies (H) from [5, Definition 3.1], the groupoid Gtight(S) is Hausdorff by
[2, Theorem 3.16]. Thus, we have a canonical faithful conditional expectation

E : Qr(P ) → C(Êtight). We follow the strategy of the proof of [3, Theorem 5.1]
and will show that there is a linear map φ defined on π(A) such that φ ◦ π(a) =
π ◦ E(a) for every a ∈ A. One can see that this amounts to showing that

π(a) 7→ π(E(a)), a ∈ A
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is well-defined. We will be done if we show that ∥π(a)∥ ≥ ∥π(E(a))∥ for all a in
the canonical dense subalgebra A0 := span(T[p,q] : [p, q] ∈ SIso) of A.

Let a =
∑

f∈F λfT[pf ,qf ] ∈ A0 be a finite linear combination of the generators

of A, where F is a finite index set, [pf , qf ] ∈ SIso, and λf ∈ C. For each f ∈ F ,
let rf be an element of P such that pfP ∩ qfP = rfP .

As a function on Gtight(S), the element a is a linear combination of charac-
teristic functions on the compact open bisections Θ([pf , qf ], DrfP ) for f ∈ F .
Here, we used that DqfP = DrfP by [5, Lemma 4.2]. By [2, Proposition 3.14], we
have E(a) =

∑
f∈F λf1F[pf ,qf ]

, where F[pf ,qf ] is a certain compact open subset

of DrfP (we shall not need the precise definition of F[pf ,qf ] here; that F[pf ,qf ] is
compact open suffices for our purposes).

Each nonempty subset F ′ ⊆ F determines a compact open subset of Êtight

given by

UF ′ :=
⋂

f∈F ′

DrfP \

 ⋃
g∈F\F ′

DrgP

 .

Since
⋃

f∈F DrfP =
⊔

∅ ̸=F ′⊆F UF ′ and F[pf ,qf ] ⊆ DrfP for all f ∈ F , the support
of E(a) is contained in

⊔
∅ ̸=F ′⊆F UF ′ . Thus, there exists ∅ ̸= F ′ ⊆ F such that

∥E(a)∥ = max{|a(u)| : u ∈ UF ′}.

If E(a) = 0, then clearly ∥π(E(a))∥ ≤ ∥π(a)∥, so we may assume E(a) ̸= 0,

in which case UF ′ is nonempty. Since the ultrafilters are dense in Êtight and

E(a) = a|Êtight
takes on only finitely many values on Êtight, we can find an

ultrafilter ξ ∈ UF ′ such that ∥E(a)∥ = |a(ξ)|.
Note that rfP ∈ ξ for all f ∈ F ′ and rgP ̸∈ ξ for all g ∈ F \ F ′. Since P is

not left reversible and ξ is an ultrafilter, for each g ∈ F \ F ′ we can find kg ∈ P
such that kgP ∈ ξ and kgP ∩ rgP = ∅ (see [1, Lemma 12.3]). Since ξ is a filter,
we have ⋂

f∈F ′

rfP ∩
⋂

g∈F\F ′

kgP ̸= ∅,

and this intersection must be of the form bP for some b ∈ P with bP ∈ ξ.
Moreover, we have bP ⊆ rfP for all f ∈ F ′ and bP ∩ rgP = ∅ for all g ∈ F \F ′,
so that DbP ⊆ UF ′ . Since ∥E(a)∥ = |E(a)(ξ)|, ξ ∈ DbP , and T[b,b] = 1DbP

, we
have ∥E(a)∥ = ∥T[b,b]E(a)∥. Moreover, since bP ∩ rgP = ∅ for all g ∈ F \ F ′,
we have for η ∈ DbP that E(T[pf ,qf ])(η) = 0 unless f ∈ F ′ (note that E(T[pf ,qf ])
has support in DrfP by [2, Proposition 3.14]). Hence,

∥E(a)∥ = ∥T[b,b]E(a)∥

= sup
η∈DbP

|T[b,b](η)E(a)(η)| =

∥∥∥∥∥∥T[b,b]E

∑
f∈F ′

λfT[pf ,qf ]

T[b,b]

∥∥∥∥∥∥ .(2.1)



14 Chris Bruce and Charles Starling

Now [5, Lemma 4.2] implies T ∗
[b,1]T[pg,qg]T[b,1] = 0 for all g ∈ F \ F ′, while

[5, Lemma 4.3] implies that T ∗
[b,1]T[pf ,qf ]T[b,1] ∈ Qr,c(P ) for all f ∈ F ′. We have

ker(π)∩C(Êtight) = C0(U), where U ⊆ Êtight is an open invariant subset. Since

1Êtight
∈ Qr,c(P ), π(1Êtight

) ̸= 0, so that U is a proper subset of Êtight. The

groupoid Gtight(S) is minimal by [4, Lemma 4.2], so U must be empty. Thus, π

is injective – and hence isometric – on C(Êtight), so that ∥E(a)∥ = ∥π(E(a))∥.
Thus, we can make the following estimate:

∥π(a)∥ =

∥∥∥∥∥∥π
∑

f∈F

λfT[pf ,qf ]

∥∥∥∥∥∥
≥

∥∥∥∥∥∥π(T ∗
[b,1])π

∑
f∈F

λfT[pf ,qf ]

π(T[b,1])

∥∥∥∥∥∥ submultiplicativity, π(T[b,1]) an isometry

=

∥∥∥∥∥∥π
∑

f∈F ′

λfT
∗
[b,1]T[pf ,qf ]T[b,1]

∥∥∥∥∥∥ by choice of b

=

∥∥∥∥∥∥
∑
f∈F ′

λfT
∗
[b,1]T[pf ,qf ]T[b,1]

∥∥∥∥∥∥ π is isometric on Qr,c(P )

=

∥∥∥∥∥∥
∑
f∈F ′

λfT[b,b]T[pf ,qf ]T[b,b]

∥∥∥∥∥∥ T[b,1] an isometry

≥

∥∥∥∥∥∥E
∑

f∈F ′

λfT[b,b]T[pf ,qf ]T[b,b]

∥∥∥∥∥∥ E is contractive

=

∥∥∥∥∥∥T[b,b]E

∑
f∈F ′

λfT[pf ,qf ])

T[b,b]

∥∥∥∥∥∥ T[b,b] is in the multiplicative domain of E

= ∥E(a)∥ by (2.1)

= ∥π(E(a))∥ π is isometric on C(Êtight).

Thus, the map π(a) 7→ π(E(a)) is a well-defined linear idempotent contraction
on the dense *-subalgebra π(A0) of π(A), so it extends to a linear map on π(A).

To complete the proof, suppose that π(x) = 0 for some x ∈ A. Then, π(x∗x) =
0, implying π(E(x∗x)) = 0. Since π is faithful on the image of E we must have
E(x∗x) = 0, and since E is faithful we get x∗x = 0, implying x = 0. □
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