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THE AMPLITUDE OF A PETRIE POLYGON
by

H.S.M. Coxeter, F.R.S.C.

The Schlidfli symbol {p,q} 1is used for a tessellation
of regular p-gons, g at each vertex. The kind of plane
thus tessellated is spherical, Euclidean or hyperbolic
according as (p-2) (q-2) - 4 is negative, zero, or
positive [1, p.200; 2, p.64]. Any two adjacent edges belong
not only to a face (or tile) but also to a Petrie polygon
ABCD ... such that ... ABC 1is one face, v« BCD: 4§
another, and so on [2, p.24]. Since the Petrie polygon is a
'regular' zigzag, the midpoints of its edges all lie on its
axis (a line or, in the spherical case, a great circle) with
the alternate vertices A, C, ... on one side, and B, D,
on the other side. The distance, of these vertices from the
axis may reasonably be called the amplitude of the Petrie
polygon; let us denote it by &. In the spherical case with
the axis as equator, & 1is the latitude of the small circles
AC ... and BD ... in the northern and southern hemispheres;
in other words, these small circles have angular radius
(n/2) - & , straight radius cosé. For instance, & = 0 for
a dihedron {p,2} (pz3), § = %n for a hosohedron ({2,q} .
(g=3), and & has some intermediate value for each of the

tessellations corresponding to Platonic solids. 1In the
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Euclidean case, AC ... and BD ... are parallel lines
and, if AB=2¢ , & = ¢ cos(n/q) = ¢ sin(n/p). In the
hyperbolic case, AC ... and BD ... are the two branches

of an equidistant-curve with 'altitude' §. We seek an

expression for 6 as a function of p and q in the

spherical and hyperbolic cases.

A C

e A

B D

Let M (on the axis) be the midpoint of an edge BC;
let N be the foot of the perpendicular from C to the
axis. Then CMN is a right-angled triangle with CM = ¢ ,
CN = § , and angle w/q at C. In the spherical case, one

of the classical formulae for spherical trigonometry yields

tan 6§ = tan ¢ cos(n/q).

But we know that cos ¢ = cos(n/p) cosec(n/q) [2, p.21].

Hence

N =

(1) tan § = {secz(ﬂ/p) Sinz(n/q) - 1}° cos(n/q).

Similarly, in the hyperbolic case, yhere
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tanh § = tanh ¢ cos(n/q)

and cosh ¢ = cos(n/p) cosec(n/q) 1. p.2011,

1
(2) tanh 6§ = {1 - secz(n/p) sinz(n/q))f cos (1/q) .

Let us apply these formulae to the 'Platonic' tessellations
and to one of the infinitely many hyperbolic tessellations. 1In

terms of the ubiquitous angles

z:%arcsec3=35016' ,
A=-21-arctan2=31°43' ,
1 e B o o .

wEZ arc sin 3= 207 54
[2, p. 293; 3, pp. 61, 158-159], (1) yields , for both
{3,3} and (3,4}, 6 = arc tan 2-8 = K;
for (4,3}, § = arc tan 27 3/2 % m - 2k = 19° 28' ;
for. (3,5}, § = arc tan % = % - 22 =262 38 ;
and for (5,3}, § = arc tan %1—2 =X -y = 10° 49 .

As a hyperbolic instance let us choose (8,3}. In this

case (2) yields

tanh § ) = 0.17417 ,

Il
N
—
N
1
N
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The corresponding angle of parallelism II(§) is given by

cos II(§) = tanh §,

so that N(8) = arc cos 0.17417 = 79° s58°*

This angle, being practically 800, can be measured in

Escher's Circle Limit III [4, p. 109]. His underlying

tessellation {8,3} is cleverly disguised. Rows of
coloured fishes swim after one another along white arcs

which cut the peripheral 'absolute' circle at 80°.
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A Class of Combinatorial Quasigroups

by N.S. Mendelsohn, F.R.S.C.

1. Introduction. In the modern theory of combinatorial designs,
varieties of quasigroups which are idempotent and which are based on
two-variable identities play a very prominent role. Such varieties are
useful in the construction of orthogonal arrays, block designs, codes, etc.
The importance of such varieties is derived mainly from three

properties viz ;

(1) 1If there are algebras in such a variety of orders belonging to
a set of integers K, and there is a pairwise balanced block design of
index 1, order v with block sizes in K, then there is an algebra of

order v belonging to the variety.

(2) If an algebra A in such a variety has a 2-generated subalgebra
B of order v and if B* is a 2-generated algebra in the variety of
order v then replacing B by B* in A replaces A by an algebra A*
which is in the variety. This observation usually enables the construction

of non-isomorphic designs which can be built from algebras in the variety.

(3) An important theorem of R.M. Wilson when applied to such
varieties enables one Lo obtain asymptotically the spectrum of the variety
from the construction within the variety of a few algebras of small

orders.
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2., The basic theorem. Let q be a prime power pt . There exists

an idempotent va.riety of quasigroups based on a finite set of two-variable
identities such that the free algebra in the variety on two generators

is of order q . Furthermore, the free algebra on two generators has a

sharply doubly transitive automorphism group.

Proof. Consider the quasigroup defined on the elements of the field
G.F.(q) using a binary operator * where x %y =)\x + (1 = 1)y where 2
is a primitive element of GF(q) . It is obvious that the algebra so
defined i{s an idempotent quasigroup. Put Fl(x, y) =x*y,

Fz(x, y) = (x*y) * y, and recursively Fk(x, y) = Fk 5, I(x, y) *y.

It follows easily that Fi(x, y) = )‘i x4+ (1 - )\i)y . Hence

2

F(1, 00 =2, F(1, 00 =%, ooy B (1,0 =29 " aa. Thes

q
cvery remaining element of the field can be expressed as a word in

1 and 0. Furthermore, each of the mappings x =+ ox + B where «
ranges over the non-zero elements of GF(q) and B ranges over all
elements of GF(q) defines an automorphism of the quasigroup and in
fact the set of all such mappings constitute a doubly transitive group
of automorphisms. If we put Fo(l’ 0) = 0, the elements of GF(q)
are, Fo(l, 0), Fl(l, 0) 5=t Fq _ 1(1, 0) and the multiplication table

can be represented by q2 equations Fi(l’ 0) *F.(1,0) =F (1, 0)

] SR |
where i © j is some element of GF(q) . Since there is a doubly
transitive group of automorphisms then 1 and O may be replaced by
variables x and y yielding n2 identities of the form

Fi(x’ y) * Fj(x’ y) =B o j(x, y) . These identities are the basis

of the required variety. It is clear that the free algebra on two

generators is isomorphic to the quasigroup which we have constructed on GF(q).
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Corollary. Let q be any prime power. There exists an idempotent

variety of quasigroups whose spectrum is an asymptotic subset of

the set of v for which v=1 mod q(q -1) or v=4q mod q(q - 1) .

proof. Take the variety to be the one defined in Theorem 2. If A

is an algebra in this variety such that IAI =v, we define on A a
balanced incomplete block design with block size q by taking for

each pair of elements x, y in A the set of elements in the sub-

algebra generated by x and y to be the block containing x and y.
Hence v satisfies v(v - 1) =0 mod q(q - 1) and v-1=0 mod(q - 1) .
By Wilson's theorem the spectrum is an asymptotic subset of those v

which satisfy these two congruences. The congruences viv = 1)

0
mod q(q = 1) and v -1=20 mod (q - 1) are equivalent to v =1

mod q(q = 1) or v =q mod q(q = 1) .

Remark. 1f ) 1is any generators of GF(q) , which is not necessarily

a primitive element, the construction of the main theorem still yields a
variety with the stated properties. The varieties so obtained for
different )\ are in general, distinct. To prove these statements is not
difficult. The proof that 0 and 1 generate the whole quasigroup is

a bit tricky and is not given here.

3. Application. For a given graph G a theorem of C.C. Lindner (not
yet published) states that it is possible to associate with each vertex

a latin square such that two latin squares are orthogonal if and only if
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the corresponding vertices in the graph are joined by an edge. The
basic theorem of this paper is used to obtain information on the

spectrum of such designs. The results will be published elsewhere.
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THE WUCLEUS IN ALTERNATIVE RINGS WITH [UDEMPOTENT
Irvin R. Hentzel, Erwin Kleinfeld and Harry F. Smith

Presented by J. Aczéf, F.R.S.C.

It is difficult to construct examples of nonzero alterna-
tive rings R whose nucleus N is zero, Eevlakov. Sliﬁko,
§estakov and §ir;ov[6] have given one such oxample. Since the
nucleus plays such a central role in the structure theory of
alternative rings, it seems reasonable to ask for some suffic-
ient conditions on R that will guarantee N # 0, Somehow charac-
teristic two seems to be different and it is necessary to impose
characteristic not two on R, by which we understand that there
should exist no elements whose additive order is two., Then any
one of *he following three conditions turns out to be sufficient:
(i) That R contain an idempotent e # 0,

(ii) that R be an algebra over a field, whose nil radical is
finitely generated,

(iii) that R have descending chaia conditions on two-sided
ideals.

No doubt there must be many other sufficient conditions, but

these are enough to establish our statement that indeed N = 0

happéns only rarely for ualternative rings. Perhaps the most

striking of these conditions is the first, since it does not

involve any structure theory, either in the statement or the

proof,

Departments of Mathematics, Iowa State University, Ames, Iowa

50011 and University of fowa, lowa City, Iowa 52242, U.S.A.
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We now give some brief clues about the proof of condition
(1). A detailed account of this and other assertions will
appear elsewhere, We remind the reader that in every alterna-
tive ring with idempotent e one has the Peirce decomposition

of R into a direct sum of submodules

R = Ry} @Ry ®Roy B Rog»

where e acts as a left identity or annihilator, depending on
whether the left subscript of the submodule is 1 or 0, and as a
right identity or annihilator, depending on whether the right
subscript of the submodule is 1 or 0. Further details may be
found in [1]. Basic to our proof is the identity that for all

a,b,c,d,f in Ry

(1) (a,[ca]f+f{cd],p) = 0.

Interestingly enough this identity fails for rings of charact-
eristic two, but holds in rings of characteristic not two. This
also has an implication for free alternative rings with idem-
potent and free generators a,b,c,d,f in the designated sub-
module, for then identity (1) results in a torsion element of
order two., Next we use (1) to establish

(2) n =[ajobrollx01vo1] + [xo1vo1llaiobio] lies in N.

In general however n need not be in the center of R [ 3. If

N = 0, then all elements of the type given by (2) are zero,
Then one can show in successive stages that all elements of the

form xlo(Y1ozlo) + (y10%210)%X10 must be in N, hence zero until

finally Rpqy and Ry; are in N and hence zero, at which point e
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must e in N, hence zero. We have reached a contradiction, so
that (i) is established. Conditions (ii) and (iii) may be
proved by appealing to [2]. [4]s [5)s [6] and (i). Two further

jdentities are worth cingling out:

(3) p = aro([Proc10]d10) - drolle10d10lai) + c30(ldi0a10lvy10)
- dyo([ajgbioleio) lies in N N Ryg»

(4) (ajpsb1grc10)(d10:f100810) lies in the commutative
caater of R.
By skillfully combining (3) and (4) it can be proved that in
every free alternative ring with idempotent, assuming charact-
eristic # 2,3 and at least four generators, any four elements
of R, satisfy a dependence relation over the center. These
results also lead to a new proof of Albert's classification of
simple alternative rings with idempotent [1], replacing

simplicity with more general hypotheses.
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Central Configurations of the n-Body Problem in El‘
A by Julian I. Palmore]'
Presented by P. Ribenboim, F.R.S.C.

We prove the existence of many classes of central configurations in
Euclidean space E4 using topological methods.

Recall the setting of the n-body problem. Let the masses (ﬁ:i)E R:
be fixed. The configuration space of the n-body problem is a subset of the
linear space

M= {0x)00000%) E(E%“nmﬁ1= 0}.

We remove from M the fat diagonal A = UAij where Aij = (xGM]xi=xj} and
the union is over all i < j. Then M - A is the configuration space and the
dynamics are given via a vectorfield on T(M - A).
The Newtonian potential appropriate to E[' is the divergence free
potential on M - A defined by
m.m,
Vi(x) = =f —2Ld
. 15 || xg=x,|F
i3
A configuration (xl,...,xn) € M-A 1is a central configuration [2]

if there is a A € R\ {0} such that for i =1,...,n we have
}.mixi = —gradivm(x) "

Here gradivm(x) is the gradient of V‘n by x As a consequence of this

i

definition it follows that a configuration (%)5000x ) € M=-4A, Emill x'l||2 =1

is a central configuration if and only if (xl....,xn) is a critical point of

vml(sm - 4) uwhere 5, = [x€ MIZmi||xilF =1} and Sy — 4 denotes s - (s NA).
Let x and y be two critical points of v, in Sm - A. Then

x ~y 1f there is an a € S0(4) such that x = ay. A class of central confi-

gurationS 1g an equivalence class under this equivalence relation.

e e
! Research supported in part by NSF grant MCS 78-00395.



22

Palmore

Identify Ea and H, the quaternions. The subgroup Oof unit
quaternions, S3, acts freely on H and leaves invariant M, Aij' A, Sm
and V . We denote by Q the quotient manifold of s - A by 8 For
each (mi) (= ]R: Qm is homeomorphic to Pn-Z (H) - Kn-z where Pn_z(n)
is quaternionic projective space of (quaternion) dimension n - 2 and
Zn-2 is the (nontrivial) union of n(n - 1)/2 codimension 1 quaternionic
projective subspaces.

Let Gm denote the potential function induced on Qm by Vm.

A clags of central configurations is identified with a submanifold
of Qm of critical points of Gm of dimension 3 which results by the residual
action of S0(3) on a critical point of Gm.

Clearly, every critical point of 6m in Qm is degenerate. We call
a centrai configuration class nondegenerate if the associated critical points
in Qm have maximal rank: that is, the submanifold of critical points is a
nondegenerate critical manifold. In this case critical point theory gives the
existence of many classes of central configurations provided the homology of
Qm is sufficiently rich [1].

Let H, be integral singular homology .

Theorem A. For any n >3 and for any i, 0 < i < 3n - 6 Hi(mn_z(]n -En_z) =

H (P, o(B) -8 )@ (n-1)H (@ )-8 ) B =0 for 1>3n-6.

The homology H, 1is torsion free.

Let Bi = rank Hi(qm) and x(Qm) be the Euler characteristic.
Corollary A.1l. ZB1 =n!/2 for any n > 3.

Corollary A.2. x(Q)) = (-1)™(n - 2)! for any n > 3.
n-1

Corollary A.3. The Poincaré polynomial of Q, is ma+ kt3) for any n > 3.
k=2 -
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o ~
The index of x 1is the index of the Hessian of vV, at x. We

denote the index of x by ind(x).

Theorem B. Let x € Qm be a critical point of ;';m' Then ind(x) >n-2.

By choosing a line El c El‘ a subset Ym c Qm is generated which

is homeomorphic to P__,(R) - A P, (H) - A A critical point

n-2 c

x € Ym of Vm is called a collinear central configuration.

n-2"

Theorem C. Let x € Ym C Qm be a critical point of Vm' Then ind(x) = n-2
and x has maximal rank = 4n - 10.

We call a central configuration regular in El' if its convex hull

has dimension 4.

Theorem D. 1f n =5 there are only two classes of regular central configura-

tions. A member of each class spans a 4-simplex and has maximal rank = 4n-11.
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CHARACTERIZING UNIVERSAL FIBRATIONS
Peter I.Booth, Philip R.Heath and Renzo A.Piccinini

Presented by P. Ribenboim, F.R.S.C.

The notion of Universal Fibration has been defined in different ways.

A fibration p_ : E_——»B_ is said to be: (1) Free Universal if the fibre

homotopy classes of fibrations over a space X correspond bijectively to

the free homotopy classes of maps from X into B_ ; (2) Grounded Universal,

essentially a based version of (1); (3) Aspherical Universal if the total

space of the associated principal fibration (whose precise definition will
be given later on) is weakly contractible, and finally, (4) Extension Uni-
versal if any partial map pair into p_ can be extended. Dold has proved
the equivalence of (1) and a strengthened form of (3) for Principal G-
bundles, while Steenrod has shown that (4) implies (1) in the same context;
Allaud, using an analogue of Dold's argument and the theory of quasi-
fibrations, proved that under restrictive hypothesis, (2) and (3) are
equivalent for (grounded) Hurewicz fibrations.

Using techniques developed in ([1], [2] and [3]) we obtain a unified ap-
proach to the presentation and comparison of Universal Fibrations. No proofs
are given here; the reader will find them in the homonymous paper to appear
in the Proceedings, Algebraic Topology Conference, Vancouver 1977, Springer

Lecture Notes in Mathematics # 673.

GENERAL DEFINITIONS AND MAIN THEOREM - We work in the context of the convenient
category K of k-spaces as in [3]. Borrowing the notation of J.P.May [5], let
F bea category with a distinguished object F together with a faithful
underlying space functor jf —» Z¢ ; for technical reasons we shall assume
that for every object X of ¥ , F(F, X) # @ . An ¥ -space isa
morphism p : X — A of A such that A is a CW-complex and, for every
aeA, p'](a) e Obj jf; the latter condition will impose a corresponding
constraint in the morphisms of F . The notions of Gr-homotogy and -
homotopy equivalence are easy to define; we then put the following crucial
condition on jf : every morphism of Z is an jz-homotopy equivalence over
a point

Given an f—space r:Z —B and amap f : A —» B we denote the
pull-back space by AlﬂfZ ; according to ([5],Lemma 1.2), the projection
re s ANZ —5 A is an F-space. Given maps q : Y —>A and 1 :Z —> B
we define Y.z to be the set ackTELBji(Ya » Z,)  conveniently topolo-

gized [3], where Y = q~l(a) v Ly = r_l(b). Also, let q+r : Y+Z —» AXB

25
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be the map which takes ‘any f : Ya_—’zb into (a , b). An ¢4-fibration is
an object of a non-empty, full subcategory A of the category of f—spaces
and ?—maps defined by the following axioms: Al) F —p is an /- fibra-
tion; A2) If r : Z —» B is an (ﬂ-fibration, A is a CW-complex and
f: A—B is a map, then rg: AngZ —» A is an ﬂ-fibration; A3) If
r:2Z~—B is an (,q-fibration, s W ——pBi is-an ?-space and g : Z —r
W is an g-map over B which is a homeomorphism, then s is an A -fibra-
tion; Ad) If q : Y —»A and 1 : Z —» B are ﬂ-fibrations, then q*r :
Y+Z —» AX B has the Covering Homotopy Property with respect to all CW-
complexes.

The notions of Free, Grounded and Extension Universality in ﬂ are
clear. As for the Aspherical case, given an f -fibration p_: E,—>B_,
we take ¢ : F—» * and form c*p_ : F+E_—> *+XB_;then we say that

p, is Aspherical Universal if Tl'n[ F+E_ ) = 0 for all n and all choices

of base point for F*E_

Main Theorem - Every Grounded Universal A -fibration is Free Universal; cvery
Aspherical Universal A -fibration is Grounded Universal. An A -fibration

is Aspherical Universal if, and only if, it is Extension Universal.

PARTICULAR CASES - (I) Hurewicz Fibrations - Let SfF be the category of

spaces of the homotopy type of a fixed space F and whose morphisms are

homotopy equivalences. We take AF to be the category consisting of Hurewicz
fibrations over CW-complexes and fibres of the homotopy type ofi [F.
(I1) Principal G-bundles - Let G be a topological group; ?G

denotes the category whose objects are right G-spaces Y such that, for
every y € Y, 7: G —»Y, ;:(g) =y-g is a homeomorphism. Define JZG
to be the category of principal G-bundles over CW-complexes.

(II11) H-Principal Fibrations - Let H be an H-space in the sense

of [4]; 5’}{ is the category of spaces X with a right action of H such
that, for every y e Y, Y:H —Y, F(h) = y-h is a homotopy equi-
valence. Take ‘AH to be the category of H-principal fibrations in the

sense of [4].

Theorem - Let Pe : E4o—=> B, be an o?F, A or WH - fibration. Then
piy wis Universal in the four senses described earlier if, and only if, it is

Universal in any one of these four senses.
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(Iv) .Trivial Fibrations - Let F and :7; as in (I). We take un

to be the category of all trivial fibrations over CW-complexes with fibre in Jz;,

that is to say, fibrations that are, to within a homeomorphism of their total
spaces, projections of the product of their base space and a space in SZF'
The trivial fibration c : F =% » is both Grounded and Free Universal;
it is not, however, neither Aspherical Universal nor Extension Universal.

A further example shows that, if the base spaceihre restricted to
being simply connected CW-complexes, then a Grounded Universal Fibration is

not necessarily Universal in any other sense.
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HOW GENERAL IS LOMONOSOV'S INVARIANT SUBSPACE THEOREM?

by Heydar Radjavi and Peter Rosenthal

Presented by P. Filfmore, F.R.S.C.

This report is a description of some recent work we have done in
collaboration with several other mathematicians ([3],[4]).

In 1973 V. Lomonosov proved a theorem about existence of invariant sub-
spaces that includes the following result: if A is a bounded linear operator
on a complex Banach space, and if AB = BA for some operator B that is not a
multiple of the identity and that commutes with a non-zero compact operator,
then A has a non-trivial invariant subspace; (see [7],[9] and [10]). It is
hard to tell whether or not an operator A satisfies this hypothesis. In fact,
it appeared conceivable that all operators A might satisfy it, and thus that
it would follow from Lomonosov's theorem that all operators have invariant
subspaces.

In joint work with Don Hadwin and Eric Nordgren [4], we have shown that

there are operators A that do not satisfy the hypothesis of Lomonosov's theorem:

the unilateral weighted shifts which Shields [11] calls "quasi-analytic."
Following Shields [11], we regard these operators as multiplication operators

MZ on certain spaces of functions analytic in the unit disk. The commutant of

MZ consists of multiplication operators M° for suitable analytic functions g,
so our result reduces to showing that the only compact operator K commuting

with such an M0 is K = 0. This requires many of the results of [11]. We

N

first prove that there is an integer N such that K" = 0 for all such K; this

is accomplished by showing that K* has many finite-dimensional invariant sub-
spaces on which its spectrum is (0j. For any fixed such K, say KO' we then use

N

the fact that K* = 0 for all compact operators commuting with M° to show that

the Hadamard product of the restrictions of Ka and any other matrix on those

29
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finite-dimensional invariant subspaces is also nilpotent of order at most N. A matrix

theory lemma is proven that implies that the matrix of such a K* has a zero

0
column, from which it follows that K§ vanishes on a dense set and therefore
is 0.

The above example is perhaps surprising in view of Cowen's proof [1]
that the (unweighted) unilateral shift does satisfy Lomonosov's hypothesis.

We have also worked on further generalizing Lomonosov's theorem. After
a preliminary attempt we made with Nordgren and Radjabalipour [8], the follow-
ing result was obtained in collaboration with C.K. Fong, E. Nordgren and
M. Radjabalipour [3]: if AB = BA for some B that is not a multiple of the
jdentity and that satisfies an equation of the form BK = KF(B), where K is a
non-zero compact operator and F is an analytic function mapping a bounded
open set containing o(B) into itself, then A has a non-trivial invariant
subspace. (Lomonosov's theorem, of course, is the case where F(z) = z). Our
proof of this result relies heavily on Lomonosov's work.

It is possible (though unlikely) that a generalization of Lomonosov's
theorem covers all operators on Hilbert space. It seems probable that quasi-
analytic shifts do not satisfy the hypothesis of the above theorem either,
although this should be checked. They do, however, satisfy the hypothesis
of Daughtry's theorem [2], (see also Kim, Pearcy and Shields [5]): they
have rank one commutators with some compact operators, since their adjoints

have point spectrum, (see [6]).
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Projective Characters of Groups of Lie Type
by
Leonard Chastknfskyl
and

Walter Peit1

Presented by P. Ribenboim, F.R.S.C.
1. We introduce the following notation. Fq is the field of cardina-

lity q = pn, p a prime, and K 1is its algebraic closure. Let Gn. G,
denote a universal Chevalley group constructed over Fq and K respectively.
We consider Cl € G C€G..
=
Let o denote the Frobenius automorphism of K or Eq. The automor-

phism of G_ or Gq is also denoted by o.

If a,p are complex valued class functions on a group H then

@B) = @,p), = T%I' iHﬂ(x)ﬂ(x_l).
s 4

2. If H is a finite group, a P.I.M. 1s a projective indecomposable
K{H] module. There is a one to one correspondence between isomorphism classes
of P.I.M.'s and irreducible K[H] modules such that the irreducible K[H]
module M corresponds to the P.I.M. P 4if and only 1f M is isomorphic to
the unique irreducible submodule of P.

A well known result of Steinberg asserts that there is a set S of
K[G_] modules, indexed by a certain subset of the weight lattice of G_, such

n o g
o
that every irreducible K[Gn] module is isomorphic to exactly one of I1 M, ,
i=1

where each M, 1s the restriction to Gn of some module in S.

i

1 The first author was supported by the Canada Council and the second author
was partially supported by NSF Contract GP33591.
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It is natural to ask whether there is a similar procedure for construc-
ting the P.I.M.'s of K[Gn]. The answer here is not as nice and simple as it
is for the irreducible modules, but there is at least an algorithm for obtaining
them.
Let Stn denote the Steinberg module of K[Gn] and let Tn denote
the Brauer character afforded by Stn. Then Stn is both irreducible and
projective. Furthermore the degree I‘n(l) is the order of a Sylow p-group of G.
Let B(S) be the set of Brauer characters afforded by the modules in
S. 1If 94 € B(S) let tpi be the element of B(S) of least degree such that

T is a constituent of @+. It can be shown by looking at the highest
24%4

1
weights of the corresponding modules that such a gpi always exists and is unique
and that rl 1OCCul‘S with multiplicity 1 as a constituent of cpi@i. Suppose
that ¢ = 1'19(: is an irrcducible Brauer character of1 Cn with ¢ the character
afforded by the corresponding P.I.M. Let ¢' = l'lwio and set Y = Fnc;'.
where @' 1s the contragredient to ¢'. Then T~ occurs as a constituent of
¢'e with multiplicity 1. Hence (¥,p) = (T‘n.w'w) = 1. (These inner products
make sense as T vanishes on p-singular elements where the Brauer characters
are not defined.) Since Y 1is projective it is the sum of characters afforded
by P.I.M.'s. In this sum & occurs exactly once. Which other characters afforded
by P.I.M.'s occur?

If 6 # ¢ 1s an irreducible Brauer character of c, with © the corres-
ponding projective character then the multiplicity of © as a summand of Y
is (y,0) = (rn,¢'6), and this ig equal to the number of times I‘n is a consti-
tuent of ¢'6. There is a natural partial ordering of the irreducible Brauer
characters (induced by the partial ordering of the highest weights of the corres-

ponding modules) which will be denoted by <, such that if I‘n is a constituent

of ¢'60 then 6 )» ¢. Hence with respect to this ordering the matrix expressing
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the Y's in terms of the ¢'s 1s unipotent and upper triangular. Thus it
is possible to solve for the ¢'s in terms of the ¥'s,

3. The above ideas can be applied to the groups st(z") and SLJ(Zn).
Modifications of the arguments yield similar results for the groups Suz(Z")
and SUs(Zn). In these gr?ups we are to compute (Fn.w'e). The idea is to
write ¢' = n¢1° , 6 = nei and to find the multiplication of oy and 91 as
Brauer characters of Gn. Then we use a graph to expand ¢'6. In this way we
have obtained formulas for the degrees of all P.I.M.'s for the above mentioned

groups. For example if ¢e is the P.I.M. corresponding to the trivial Brauer

character then we prove

Theorem 1. (1) ¢, (1) = hal (e G, = 5L3(2“) or su3(2").

(11)" It Gn = Spa(Zn,z) for n even and Suz(2") for n
odd then
2n,,2n n n
$.(1) = 27 (27 =T.2% (-1)>),
¢ n
where T = (-1—;\/—3)n + (-1—;-@)". the n™! Luccs number.

We have also obtained some results about the Cartan invariant
oo = (¢¢,¢‘). The arguments here are much more difficult.

Thecrem 2. (1) If c. = Spk(Z“IZ) for n even and Suz(2") for n odd

3n 2n n n,n+l, .n n+l .n
c6‘ 27 277 274 (1)2 % 2 Un 2 (2 +1)Tn,

where T 1is as in Theorem 1, and Un = a" p“+ Yn where

x-a) (x-B) (x-y) = s At % 4 8,
(11) If n 1is large enough, then for each of the groups Sp“(zn),

suz(2"), SLJ(Zn) and SUJ(Zn). oo is larger than the order of a Sylow 2-group.
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The results in Theorems 1 and 2 were proved in [1] for Suz(8). Ir
particular, it was observed there that statement (ii) of Theorem 2 contradicts
an old conjecture. Theorem 2 shows that this conjecture is badly false for an

infinite class of groups.
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EXTREMUM PROBLEMS FOR THE MULTI-DIMENSIONAL CASE
OF KONIG AND SZUCS OF BILLIARD BALL MOTIONS

1.J. Schoenberg
Presented by H.S.M. Coxeten, F.R.S.C.

Let
(1) U, : 0<x,£1, (V=1,...,n),

be the unit cube in R". Let (a,) be a point interior to U  and
(2) Ltll: x =Avu+av. (V= 1,6005n);y

be a rectilinear and uniform motion, where u = t denotes the time.
we interpret (2) as the motion of a billiard ball (b.b.); as we
wish to reflect the b.b. in the usual was on striking the 2n facets
x,=0o0r 1 of Un. we use the zigzag function {(x) of period 2,
defined by {x) = x in [0,1], and (x) =2 - x in [1,2]. The path
of the b.b. within Un may now be described by the equations

(3) r]']; SHx = <lyu+av> (W = 1,0ieynt =00 ¢ Wlea )

A classical theorem of Kronecker (See [2_]) and its general-
ization (See [1]) show the following: I1f the n components (3\,)
are arithmetically linearly independent, then the motion (3) is
ergodic, i.e. the path nrllis dense in U . If 1 <k £n-1,
while the ( A,) admit precisely n-k linearly independent linear
homogeneous relations with integer coefficients, then the path r]i
is contained in and is dense in a finite k-dimensional skew poly-
tope ﬂ: This was shown by K8nig and Szlics in [2] for 'k = 2
and n = 3. This result shows that the b.b. motions generalize
naturally as follows: Let PR li..... ,\;), (1'="1, i k)5 be
k linearly independent vectors, where we assume that 1 < k £ n-1.

We now replace (2) by

k
2 E i i
(4) L X = %)v“i"av' (V1,003 —ioo <uy<oe ),
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which we interpret as a k-dimensional optical signal starting from
the point (a ) inside U, at the time t = O, and spreading uniformly
within the k-flat Ll;. As we now think of the 2n facets of U, as
mirrors, the reflected path of the signal is a finite or infinite
k-dimensional skew polytope ﬂ: described by the equations

k
(5) ﬂg: xv=<§ )\:‘ui+av> (6,7 T I | ui<oo).

In order to avoid lower-dimensional problems we shall assume

that the original signal (4) is in a general position.

DEFINITION 1. We say that the signal (4) is in general
vogsition (G.P.), provided that
(6) the n by k matrix ” )\1‘” has no vanishing minor of order k.

Let 0<e {¥, x = (x,), and consider the cube
n
(7) Ce : IIx - ¢l < €
where c¢ = (4,...,%), and |x - c||, = mex (|x, = #])-
DEFINITION 2. Wwe say that the path (5) is ¢ -admissible,

and denote it by ng(g ), provided that the original signal (4)

is in general position, and that the reflected path H:(I never

penetrates into the cube (7), hence that
k n o _
(8) kN = 8

As the opposite of the ergodic case, we study the following

PROBLEM 1. To determine, or estimate, the guantity
(9) €k,n = Supremum @
for all ¢ having a ¢ -admissible path [Tete s,

THEOREM 1. We have the inequality

1 K
(10) Pin =2 “"5n (1 €k £ n-1).
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Theorem 1 is established by constructing a path r1ﬁ(g) for
values of ¢ which are as close to % - 75; as we wish. In [3]
1 have shown that the equality sign holds in (10) for the case when

k = 1. We can now do the same for the other extreme case when k =n-1.

THEOREM 2. We have that

il el gl 1 A
(11) Calas Bl T =gy v el

The simplest case when n = 3, and therefore

(]2) ¢2'3 = % ’
leads to what 1 call Kepler's tetrahedron. J. Kepler was the first

to notice that four appropriate vertices of the cube U3 are the
vertices of a regular tetrahedron T. As any two facets of T inter-
sect in a facet of U3 forming equal angles with that facet, it should
be clear that the surface of T carries areflected signal f]g. It
carries, of course, many such, but let us single out one of them and
denote it by F1§. This signal rj% is readily found tc be % - ad-
missible, and it is essentially the only []% in G.P. which is % -
admissible. This is an apparently new characteristic extremum
property of kepler's tetrahearon: Any other signal []; in general
position, must penetrate into the cube Co

¢

Theorem 2 generalizes this extremum property of T: There is

, with ¢ = 1/6.

an essentially unique signal r12'1 which is in general position and

is Eir - admissible. It is explicitly given by the equations
fﬁ"'l x, = <’u4> S I R
(13) PR _ n-1
X, = <ul+“2*"'+“n-1 + —2—>) (FeaCuy oo ).
3 . . X k.1 k
THEORsHM 3. we construct explicitly the signal a5 = 25;-) for
(14) (k,n) = (2,4) and (k,n) = (2,6).
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In view of Theorems 1,2, and 3, I wish to state the following

CONJECTUKE 1. The value of the guantity (9) is

(15) €k1ﬂ= %-2-);- Y (lékén-l)‘

The proofs of our results will appear elsewhere; they are
based on a discussion of monochromes and n-chromos in Rk. This
approach was already used in [3] to establish Conjecture 1 for

the case when k =1
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A PROOF OF A THEOREM OF COXETER
Joachim Assion
Fakultdt fiir Mathematik, Universiti@t Bielefeld, FR Germany
Prnesented by H.S.M. Coxetern, F.R.S.C.
The braid group Zn is defined by the generators x5 for
1%i<n-1 and the relations
xixjxi = xjxixj v li=3li =1
and
X3Xg5 = XgXg |li-3| # 1.
For every finite factor group F  of Zn there exists a positive
integer m such that Fn is a factor group of
Zn(m) 1= Zn/<(x?)2n>.
A theorem of Coxeter [2] states that Zn(m) is finite if and only
if (m-2)(n-2) <4 holds. The purpose of this paper is to show how
Burau's representation of the braid groups [1] may be used to

prove Coxeter's theorem.

Let K be a commutative field and let k be a non - zero

element of K. Let

and

n-i-1
where It is the unit txt matrix. Then the mapping

s —> X,
x4 i

41
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induces a homomorphism D of 2 onto (Xil 1¢i¢n-1) ¢ GL(n,K)
as Burau (1] has shown.

Let fe HomK(KZ,K) such that (x,y)f = x+y. Then Af = f.
Therefore Xifn = fn for all i where fne HomK(Kn,K) such that
(k1""’kn)fn B Z:ki. Eence ker(fn) is D(Zn) - invariant. If

{eq,...,en] is the canonical basis of K" and if ¥y T €4 = €441
then {yq,...,yn_1} is a basis of ker(fn). With respect to this

basis the following matrices are associated with the elements

Y, i= Xi{ker(fn):

[fi-2
y Y. &’ B

I

——
|
=
.
—
e
=]
1
o
-
s ——

n-i-2

Write D for this (n-1) - dimensional K - representation of 2.
Let U = (Y ,ee0y¥, o) and W = (vq,000s¥, o)+ Then ¥ is
U - invariant and Ulw B ﬁ(Zn_q). Therefore ﬁ(Zn_1) is isomor-

phic to a section of ﬁ(Zn).

Now let K be the field € of complex numbers. Choose k = k(m)

T G i

as follows. Let pr(X) 1= f&a(-1)lxle z{x]. Then (1 + X)pr(X) =
14 ()X, Let P := {pr] reiq. Now choose k &€ € such that
I is the polynomial of lowest degree inside of P such that
pm_q(k) = 0. Then D yields a ¢ - representation of Zn(m) such

that o(ﬁ(xq)) = m.
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vector space V. Let {91""’en-ﬂ be the canonical basis of V.
-1

By definition of k and by hypothesis = k' = o where (2,m)t
2m. Moreover t=n by hypothesis. ¥ence one may assume that t = n.
A=l 5 ‘
Let z = i=1(3=o k )ei. Then D(Zn(m)) leaves z unchanged.
If ﬁ(Zn(m)) were finite then, by lFaschke's theorem, there would
exist a complement W of <z> in V. Now, for each i, <e;> is the

eigenspace of ﬁ(xi) corresponding to the eigenvalue -k. Hence

all the vectors e; would be elements of W.

an abelian subgroup of ﬁ(ZB(m)) of index at most 2 then [Yf,ng =
= 1. Hence k = 1, and m = 2 by definition of k. If such a sub-
group of 5(23(m)) does not exist then by Et; th. 26.#] the center
C of ﬁ(ZB(m)) consists of scalar matrices and 5(Za(m))/c is iso-
morphic either to the alternating group of degree 4 or 5 or to
the symmetric group of degree 4. Hence m¢ 5, since no non - triv-
ial power of ﬁ(xq) is a scalar matrix. Therefore:

1) It ﬁ(Z3(m)) is finite then m&5. .

Let B(2,(5) = (q,Y,,Y5). Write Wy = Y;° 7 and W, = [¥,,
Y;qu]. if {94'92195} is the canonical basis of the € - vector
space V where ﬁ(Za(5)) is operating on then ey is left inva-
riant by (wq,wé7. Write W1 resp. W2 for the elements induced by
W, resp. W, on V/<ey>. Then o(W1) =5 = o(Wz), [hq,waj # 1 and
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71WSW1 £ W;W,lwg for 1£a£4. Hence <W1,W2)is infinite by [4;
th. 26.1]. Therefore:
(2) ﬁ(Zu(S)) is infinite.
Suppose there were positive integers m and n with (m-2)(n-2)
>4 such that ﬁ(Zn(m)) is finite. Then m,n> 3, and m<5 by (1)
and (2). By the lemma the groups 5(24(4)) and 5(26(5)) are in-

finite.

Clearly, Zz(m) e Cm’ Moore has shown in 1897 that Zn(2) is
isomorphic to the symmetric group of degree n. It is well - known
[3; 6.6] that 23(3) ~ SL(2,3), 25(5) = SL(2,5) x Cg and that Z5(4)
is isomorphic to the centralizer of an involution of SU(3;35)+ Put
N = ((xqua)xg,x;qx55 in the Z“(B) case. Then N is a non - abel-
ian normal subgroup of order 27 which is complemented by <x,,X5>.
Therefore 24(5) ~ GU(3,2). An enumeration of the cosets of
ChqyXpy¥z> in 25(3) yields 125(3)l = 3|sp(4,3)| . Since 25(3) has
Sp(%,3) and GU(#4,2) as epimorphic images Z5(5) >~ Sp(4,3) x 05-
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PERTURBATIONS OF C*-ALGEBRAS, II
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John Phillips and Iain Raeburn

Presented by P. Fill .R.S.C.
INTRODUCTION gnted. oy ilemone, F.R.S.C

Let A and B be subalgebras of a Banach algebra C and define
||A-B|]| = sup{|[a-B; ||, |[b-A||: acA;,beB;} where A, » B, denote the unit
balls of A,B respectively. The main question raised by Kadison and Kastler
in [9] was the following: if A and B are von Neumann subalgebras of B(H)
for some Hilbert space H and if ||A-B|| is small, are A and B isomorphic
(or unitarily equivalent). For general Banach algebras, this question has been
reduced to a problem in algebra cohomology, at least in the presence of a linear
homeomorphism close to the identity [8,14]. However, except when A is an

injective von Neumann algebra, these hypotheses are very difficult to verify.

For this reason, other methods have been introduced to study these
questions, especially in the context of C*-algebras [3,4,5,11,12]. So far, the
problem has been solved for abelian C*-algebras [3,11]; ideal C*-algebras [3];
and A.F.-algebras [5,12].

Using techniques adapted from [11] together with a little sheaf cohomology
we employ the Dixmier-Douady classification theory to solve the problem for

certain type I C*-algebras. Complete proofs will appear elsewhere.

THE MAIN RESULTS

1. Definitions: Let R denote the real line and S] denote the unit circle.
If T 1is a topological space, let R be the sheaf of germs of R-valued
functions on T and U the sheaf of germs of S]-valued functions on T .

See [15] for notation on sheaf theory. We denote by ﬁ"(T,Z) , the nth Lech

W= *k 2 4
Dalhousie University; University of New South Wales
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cohomology group of the space T with coefficients in the integers, Z .
Moreover, as noted in [6, 10.7.13] we have H™TA) = ﬁ"H(T,Z) for all n>0.
As in [6, 10.9.1], if A is a separable continuous trace C*-algebra with spec-

trun A , then A defines a unique element &§(A) in MO(A,Z) .

2. Theorem: Let K be a Hilbert space and suppose A ,B are C*-algebras on
K with ||A-B]| < gE . If A is separable with continuous trace, then so is
B and there is a homeomorphism ;\ - ﬁ such that the induced isomorphism

1B(R,2) » 13(8,2) takes &(A) to &(B) .

To prove this theorem, we first identify A and B with a single space
T via a homeomorphism A~ B constructed in [11]. We then carefully construct
an open cover {Ti} of T and 2-cocycles {uijk)’ (vijk} ecz({Ti}{U) which are
representatives for 6(A), 6(B), respectively under the identification

HZ(TﬁU) = ﬁ3(T,Z) . By construction we see that | ijkl < V2 so that

uijk-v

; ; mom
is a 2-cocycle with arg fijk & (-i,-ﬁ) . Thus, we can apply

& 4=
Figk = Yiskigk
Log to obtain {gijk) , an element of Cz((Ti),R) . Since R 1is a fine
sheaf, {gijk) is trivial. By exponentiating we get that {”ijk) and
{Vijk} are equivalent, i.e. 6&(A) = &(B) .

The relevance of this result to the isomorphism problem will be seen below.

3. Definitions: Let K(H) denote the C*-algebra of compact operators on the
separable Hilbert space H . A C*-algebra A is called stable [1] if
= p8K(H) (where © denotes the completion of the algebraic tensor product in
the minimal C*-cross-norm.) Two C*-algebras A and B are said to be stably
isomorphic [1] if AeK(H) = BeK(H) .
Using results of [6, ch. 10] and [7] it is not hard to show that if A
and B are separable continuous trace C*-algebras then A is stably isomorphic

to B if and only if there is a homeomorphism A-+B carrying &(A) to &(B).

Thus, we get:
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4. Corollary: Let A and B satisfy the hypotheses of theorem 2, then A
is stably isomorphic to B .

Now, in order to eliminate the "stable" conclusion we proceed by more
direct but nontrivial computations to prove the following theorem.

5. Theorem: Let A and B be C*-algebras on a Hilbert space K with

[1A-B|] < —%7 . Let X be a compact Hausdorff space such that A = C(X)eK(H).
s

Then A 1is unitarily equivalent to B via a unitary in (AuB)".

Combining this with the previous corollary, using techniques of [11] and

results of [6] enables us to prove:

6. Theorem: Let A and B be C*-subalgebras of B(K) with ||A-B|| < 3%5‘

If A 1is a separable, stable, continuous trace C*-algebra, then B = A .
In certain special cases we have been able to obtain stronger results:

7. Theorem: Let A and B be C*-algebras on K with ||A-B|| < k ( 110-9).
If A is a unital continuous trace C*-algebra and &(A) = 0 then there is a

unitary u in (AuB)" with uBu* = A and ||1-u|| < 2400k + 4458k .

POSSIBLE DIRECTIONS

Since any postliminal C*-algebra has a composition series where each of the
quotients has continuous trace [6, 4.5.5] our results might shed some light on
this case. For example, if 0 c I < A/T where I and A/I have continuous
trace, then ||A-B|| small implies that we can form 0 c J < B with ||I-J]]
small and ||A/I -B/J|| small [11, lemma 2.6]. Now, if we could prove a
version of theorem 6 which would yield a unitary u close to 1 so that
wu* = T , then we would let B = uBu* so that 0c I cB and ||A/I-B/1]]
is small. Let C = C*(A,B) and represent C/I on a Hilbert space K . We
now apply our (hypothetical) improved version of theorem 6 to A/I and B/I
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to get an isomorphism ¢: A/I -+ B/I close to the identity. Then

¢1 = id: A/I - C/I and wz = ¢oid: A/I » C/1 are two close extensions of the
same C*-algebra A/I by the ideal I [cf., 13]. If these two extensions are
equivalent (via a unitary in C) then A =B . This problem may be more

tractable [cf., 13].

References

1. L.G. Brown, Stable Isomorphism of Hereditary Subalgebras of C*-algebras,
Pac. J. Math., 71, #2, (1977), 335-348.

2. E. Christensen, Perturbations of type I von Neumann algebras, J. London
Math. Soc. 9 (1975), 395-405.

< , Perturbations of operator algebras, Invent. Math. 43
1977), 1-13.
4. , Perturbations of operator algebras II, Ind. Univ. Math.
J. 26 (1977), 891-904.
b , Near inclusions of C*-algebras, preprint.

6. J. Dixmier, Les C*-algebras et leurs representations, Gauthier-Villars,
Paris, 1969.

7. Dixmier, Champs continus d'espaces hilbertiens et de C*-algebres, II,
J. Math. Pures et Appl., 42 (1963), 1-20.

8. B.E. Johnson, Perturbations of Banach algebras, Proc. London Math. Soc.
34 (1977), 439-458.

9. R.V. Kadison and D. Kastler, Perturbations of von Neumann algebras I,
Stability of type, Amer. J. Math. 94, No. 1 (1972), 38-54.

10. R.V. Kadison and J.R. Ringrose, Cohomology of operator algebras, II,
Extended cobounding and the hyperfinite case, Ark. Mat. 9 (1971), 55-63.

11. J. Phillips, Perturbations of C*-algebras, Ind. Univ. Math. J., 23 (1974),
1167-1176.

12 and 1. Raeburn, Perturbations of A.F.-algebras, Can. J.
Math., to appear.

13s and 1. Raeburn, On extensions of A.F.-algebras, preprint.

14. 1. Raeburn and J.L. Taylor, Hochschild cohomology and perturbations of
Banach algebras, J. Functional Anal., 25 (1977), 258-266.

15. F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups,
Scott, Foresman and Co., Glenview, I11., 1971.

Received August 25, 1978



C. R. Math. Rep. Acad. Sci. Canada - Vol. 1 (1978) No. 1

An Explicit Construction of Some Discrete
Unitary Series of Representations of u(p,q)

* L
F. Lemire and J. Patera

Presented by H. Zassenhaus, F.R.S.C.
Gel'fand and Graev [1] have constructed certain discrete unitary series

of irreducible representations of the algebra u(p,q). In this note we show

that using similar methods further such series can be constructed.

Following [1] we fix a positive integer n and for k = 1,200,507k

choose pairs  (1),1}) with 1 € {050 kE 5 1 € {1,...,k+¥1} and

g i}" . Let H{(ik.i."‘)} be the Hilbert space having an orthonormal basis

labelled by the set of all arrays of integers (mij)liijjin with fixed top row

(mln""'mnn) and the other components satisfying:

(1) mjk?-mj+1k’ 2 50 PR SRS

N

A

@Y my g gt 28y g 20 gt ke

(3) By kel imjk > mj+1,k+1 ) i< S il'c ’

m

=y 1
RN E e T

*) Bt 2
(by convention we set mo’k+1 =+ o and m'k+2,k+1 = -~ o, If E(m) 1s the

basis vector in H{ Gy :Ll")} associated with the array m we define linear
operators
By E@) = (r, -, )@, u= 1,2,...,0

where rk=m1k+...+mkk for k=1,2,...,n and ro-O.

1 1 u-1 u -
Eu"ﬁ-l E(m) = a1 E(mu_l) + ..o ta E(mu) PR T Y e o

49



50
Lemire and Patera

1y . . e

u-1 T (m1 k—mj,k-l_1+j+1) m (mk,k-z-mj.k—1'1+5)
3 2 i=1 i=1

where au—l =e - ’
i;r‘rj(mi,k_l-mj’k_l-i+j+1) (mi'k_l-mj.k_l-i+j)

(mﬂ_l) denotes the array obtained from m replacing mj.u-l by mj,u—l-l

] 3
and Ni—l is the number of negative factors in the expression au—l (N.B. Nu-l

depends only on the indices {(ik'ié)} and not on the array m ).

% o
= E
Ei1, " B

H= 2,005 &

For certain values of the indices ((ik'ii)) [cf. 3] these operators
generate an algebra isomorphic to gl(n,C). In particular,when ik = 0 and
iﬂ =k+1 for k=1,...,n-1, we have the finite dimensional representations
of gl(n,C) as described by Gel'fand and Tsetlin [2].

Let € = {81,52,...,£n}, where €, =+1,¢€ #*1 for 12>2 and
exactly p terms equal to + 1 . A set of indices {(ik'ié)) is said to be
compatible with e iff in H{(i,,1;)} we have BE uei ™ Cuc1Bua,u for
p=2,...,n . Observe now that if ((1k’i£)) {s compatible with € then in

H{(ik’ii)) the operators i E for #=1,...,n and 1(E + E )

M W,u-1 H=1,4

for Eu_leu =+ 1 are all skew-Hermitian. Since these operators generate a

real subalgebra u(p,q) of gl(n,C), we have for each such set of indices a

series of unitary representations of wu(p,q) .
A straight forward analysis of arg(ai_l) for a given {(1k,iL)} shows

that there are p + 1 sets of indices compatible with the sequence

P



T —— e —— T

e

Lemire and Patera 51

{1,1,-+-,1,-1,...,-1} . These yield precisely the p+l series of unitary

p terms

representations of u(p,q) given in [1], where the various rows of the arrays
correspond to the chain of subalgebras u(p,q)ou(p,q-1)>...2u(p,0)>...2u(1,0) .
This same analysis also shows that every sequence € admits at least one
compatible set of indices (and hence series of unitary representations of
u(p,q)) where the rows correspond to the chain of subalgebras

u(p,q)Du(pn_l,qn_l)D...au(pv,qv):...Du(l,O) with p, (resp qv) denoting
the number of +1's in the truncated sequence {61""'ev) .
In addition to the above series of unitary representation we have

observed that some other sets of indices yield unitary representations of

u(p,q) when we place restrictions on the defining parameters (mln,...,mnn) .

In Table I we illustrate this as well as the material above for the case

n=3.
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TABLE I GEL'FAND REPRESENTATIONS OF gl1(3,C)

Lemire and Patera

and THEIR RESTRICTIONS

(1,1]) (0,2) (0,1) (1,2)
' -

(121 Ly < T Myl 2y By Bygth

(0,3) = Unitary Not a Not a
m 4 > m, > ™3 su(3) D su(2) Representation Representation
Mg 2wy 2 Mgy

(0,2) = Unitary If Unitary Unitary
m, 5 2w, > myq m3 = Mg su(2,1) 2 su(l,l) su(2,1) Dsu(l,l)

rn33—1 > my, su(2,1) D su(2)

0,3) = Unitary Not a Not a
m)q 1> mo B _33—1 su(2,1) D su(2) Representation Representation
Mg s 2 Wy

(a3 = Unitavy If Unitary Unitary
m ) > m13+1 m g & Mg su(2,1) Dsu(l,1) su(2,1) D su(l,l)
™3 > My, 2 Myg su(2,1) D su(2)

(1,2) = Unitary Never Never
)y * m13+1 su(2,1) > su(2) Unitary Unitary
e

(2:.3) = Unitary Not a Not a
™y > ml3+1 su(2,1) D su(2) Representation Representation
m13+1 > Pyp > m23+1

Received September 4,

1978



	111979000
	111979009
	111979014
	111979017
	111979021
	111979025
	111979029
	111979033
	111979037
	111979041
	111979045
	111979049

