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THE AMPLITUDE OF A PETRIE POLYGON 

by 

H.S.M. Coxeter, F.R.S.C. 

The Schlafli symbol (p.ql is used for a tessellation 

of regular p-gons, q at each vertex. The kind of plane 

thus tessellated is spherical, Euclidean or hyperbolic 

according as (p-2)(q-2) - 4 is negative, zero, or 

positive [1, p.200; 2, p.64). Any two adjacent edges belong 

not only to a face (or tile) but also to a Pétrie polygon 

ABCD ... such that ... ABC is one face, ... BCD is 

another, and so on [2, p.24]. Since the Pétrie polygon is a 

'regular' zigzag, the midpoints of its edges all lie on its 

axis (a line or, in the spherical case, a great circle) with 

the alternate vertices A, C, ... on one side, and B, D, ... 

on the other side. The distance of these vertices from the 

axis may reasonably be called the amplitude of the Pétrie 

polygon; let us denote it by 6. In the spherical case with 

the axis as equator, 5 is the latitude of the small circles 

AC ... and BD ... in the northern and southern hemispheres; 

in other words, these small circles have angular radius 

(ii/2) - 5 , straight radius cos6. For instance, 6 = 0 for 

a dihedron {p,2} (ps3), 6 = =-ii for a hosohedron {2,q) 

(q>3) , and 5 has some intermediate value for each of the 

tessellations corresponding to Platonic solids. In the 
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Euclidean case, AC ... and BD ... are parallel lines 

and, if hB = 2$ , 6 = if cos(ïï/q) = iji sindi/p). In the 

hyperbolic case, AC . .. and BD ... are the two branches 

of an equidistant-curve with 'altitude' 6. We seek an 

expression for 6 as a function of p and q in the 

spherical and hyperbolic cases. 

.•: ;•• 

B 

Let M (on the axis) be the midpoint of an edge BC; 

let N be the foot of the perpendicular from C to the 

axis. Then CMN is a right-angled triangle with CM = <ti , 

CN = 6 , and angle ir/q at C. In the spherical case, one 

of the classical formulae for spherical trigonometry yields 

tan 6 = tan * cos(ii/q). 

But we know that cos q = COS(TT/P) cosec(Ti/q) 12, p . 2 1 ] . 

Hence 

1 
2 2 2 

(1) tan & = { sec (ir/p) s i n (n/q) - 1} cos(TT/q). 

Similarly, in the hyperbolic case, «here 
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tanh S = tanh $ cos(TT/q) 

and cosh if = cos{Ti/p) cosec(TT/q) (1, p.201], 

1 
(2) tanh 6 = {1 - sec2(ii/p) sin2(Ti/q)) cos(ir/q) 

Let us apply these formulae to the 'Platonic' tessellations 

and to one of the infinitely many hyperbolic tessellations. In 

terms of the ubiquitous angles 

1 T -, -O , „, 

r = , arc sec 3 = 35 16' , 

A = j arc tan 2 = 31°  43' , 
V = j arc sin | = 20°  54' 

12, p. 293; 3, pp. 61, 158-159], (1) yields , for both 

{3,3} and {3,4}, & = arc tan 2 ^ = K; 

for {4,3}, S = arc tan 2~3 / 2 = | n - 2»; = 19°  28' ; 

for (3,51, « = arc tan i = * „ - 2A = 26°  34' ; 

1 —2 and for {5,3}, 5 = arc tan jT = X - u 

As a hyperbolic instance let us choose {8,3}. In this 

case (2) yields 

tanh <5 = ^{24 - 2 4 ) = 0.17417 , 

i = 0.17597. 
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The corresponding angle of parallelism n(6) is given by 

cos II (<S) = tanh 6, 

so that IldS) = arc cos 0.17417 = 79°  58' . 

This angle, being practically 80° , can be measured in 

Escher's Circle Limit III |4, p. 109]. His underlying 

tessellation {8,3} is cleverly disguised. Rows of 

coloured fishes swim after one another along white arcs 

which cut the peripheral 'absolute' circle at 80° . 
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A Class of Combinatorial Quasigroups 

by N.S. Mendelsohn, F.R.S.C. 

1. Introduction. In the modern theory of combinatorial designs, 

varieties of quasigroups which are idempotent and which are based on 

two-variable Identities play a very prominent role. Such varieties are 

useful in the construction of orthogonal arrays, block designs, codes, etc. 

The importance of such varieties is derived mainly from three 

properties viz ; 

(1) If there are algebras in such a variety of orders belonging to 

a set of integers K , and there is a pairwlse balanced block design of 

index 1 , order v with block sizes in K , then there is an algebra of 

order v belonging to the variety. 

(2) If an algebra A in such a variety has a 2-generated subalgebra 

B of order v and If B is a 2-generated algebra in the variety of 

order v then replacing B by B in A replaces A by an algebra A* 

which Is in the variety. This observation usually enables the construction 

of non-Isomorphic designs which can be built from algebras In the variety. 

(3) An Important theorem of R.H. Wilson when applied to such 

varieties enables one Lo obtain asymptotically the spectrum of the variety 

from the construction within the variety of a few algebras of small 

orders. 



Mendelsohn 

2. The basic theorem. Let q be a prime power p . There exists 

an idempotent variety of quasigroups based on a finite set of two-variable 

identities such that the free algebra in the variety on two generators 

is of order q . Furthermore, the free algebra on two generators has a 

sharply doubly transitive automorphism group. 

Proof. Consider the quasigroup defined on the elements of the field 

G.F.(q) using a binary operator * where x * y = Xx + (1 - X)y where X 

is a primitive element of GF(q) , It is obvious that the algebra so 

defined Is an idempotent quasigroup. Put F,(x, y) - x * y , 

î^*' ŷ  ?• (X * y) * y , and recursively F^x, y) = Fk _ ^(x, y) * y . 

It follows easily that F (x, y) = >. x + (1 - X )y . Hence 

PjCl, 0) - X j F2(l, 0) = X2 , ..• , Fq _ ^ 1 , 0) = Xq " 1 = 1 - Thus 

every remaining clement of the field can be expressed as a word in 

I and 0 . Furthermore, each of the mappings x -»• ryx + 0 where a 

ranges over the non-zero elements of GF(q) and g ranges over all 

elements of GF(q) defines an automorphism of the quasigroup and in 

fact the set of all such mappings constitute a doubly transitive group 

of automorphisms. If we put F (1, 0) = 0 , the elements of GF(q) 

are, F (1, 0), F (1, 0), •" F _ .(1, 0) and the multiplication table 
2 

can be represented by q equations F (I, 0) * F (I, 0) = F (1, 0) 

where i 0 j is some element of GF(q) , Since there is a doubly 

transitive group of automorphisms then 1 and 0 may be replaced by 
2 

variables x and y yielding n identities of the form 

P.t0C| y) * Fi(x, y) = Fi o ^XJ ^ • Th030 Identities are the basis 

of the required variety. It is clear that the free algebra on two 

generators is isomorphic to the quasigroup which we have constructed on CF 
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Corollary. Let q be any prime power. There exists an idempotent 

variety of quasigroups whose spectrum is an asymptotic subset of 

the set of v for which v = 1 mod q(q - 1) or v s q rood q(q - 1) , 

Proof. Take the variety to be the one defined in Theorem 2. If A 

is an algebra in this variety such that [A| = v , we define on A a 

balanced incomplete block design with block size q by taking for 

each pair of element;; x, y in A the set of elements tn the sub-

algebra generated by x and y to be the block containing x and y . 

Hence v satisfies v(v - 1) = 0 mod q(q - 1) and v - 1 - 0 raod(q - 1) . 

By Wilson's theorem the spectrum is an asymptotic subset of those v 

which satisfy these two congruences. The congruences v(v - 1) = 0 

mod q(q - 1) and tf — 1 • 0 mod (q - 1) are equivalent to v - 1 

mod q(q - 1) or v - q mod q(q - 1) . 

Remark. If \ is any generators of GF(q) , which is not necessarily 

a primitive element, the construction of the main theorem still yields a 

variety with the stated properties. The varieties so obtained for 

different X are in general, distinct. To prove these statements is not 

difficult. The proof that 0 and 1 generate the whole quasigroup Is 

à bit tricky and is not given here. 

3. AppIicat ion. For a given graph G a theorem of C.C. Lindner (not 

yet published) states that it is possible to associate with each vertex 

a latin square such that two latin squares are orthogona l if and only if 
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the corresponding vertices In the graph are Joined by an edge. The 

basic theorem of this paper Is used to obtain Information on the 

spectrum of such designs. The results will be published elsewhere. 
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THE NUCLEUS IN ALTERNATIVE RINGS rfITH IUEMPOTENT 

Irvin R. Hentzel, Erwin Kleinfeld and Harry F. Smith 

P/ie.ie.nte.d by J. AczH, F.R.S.C. 

It is difficult to construct examples of nonzero aiterna-

tive rings R whose nucleus N is zero, Zevlakov, Slinko, 

Sestakov and Sirsov^o) have given one such oxample. Since the 

nucleus plays such a centrvil role in the structure theory of 

alternative rinfrs, it seems reasonable to ask for some suffic-

ient conditions on R that will guarantee N / 0. Somehow charac-

teristic two seems to be different and it is necessary to impose 

characteristic not two on R, by which we understand that there 

should exist no elements whose additive order is two. Then any 

one uf the following three conditions turns out to be sufficienti 

(i) That R contain an idempotent e ^ 0, 

(ii) that R be an algebra over a field, whose nil radical is 

finitely generated, 

(iii) that R have descending chal.i conditions on two-sided 

ideals. 

No doubt there must be many other sufficient conditions, but 

these are enough to establish our statement that indeed N = 0 

happens only rarely for alternative rings. Perhaps the most 

striking of these conditions is the first, since it does not 

involve any structure theory, either in the statement or the 

proof. 

Departments of Mathematics, Iowa State University, Ames, Iowa 

r)O0U and University of Iowa, Iowa City, Iowa '^?AZ, U.S.A. 
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We now give some brief clues about the proof of condition 

(i). A detailed account of this and other assertions will 

appear elsewhere. We remind the reader that in every alterna-

tive ring with idempotent e one has the Peirce decomposition 

of R into a direct sum of submodules 

R = RnORioQRoiQRoo-

where e acts as a left identity or annihilator, depending on 

whether the left subscript of the submodule is 1 or 0, and as a 

right identity or annihilator, depending on whether the right 

subscript of the submodule is 1 or 0. Further details may be 

found in [l]. Basic to our proof is the identity that for all 

a,b,c,d,f in R^Q 

(1) (a,[cd]f+f[cd],b) = 0. 

Interestingly enough this identity fails for rings of charact-

eristic two, but holds in rings of characteristic not two. This 

also has an implication for free alternative rings with idem-

potent and free generators a,b,c,d,f in the designated sub-

module, for then identity (1) results in a torsion element of 

order two. Next we use (1) to establish 

(2) n = [axobiolOoiyoi] + l>0iyoi][>10blo] lies in *-
In general however n need not be in the center of R [jj. If 

N = 0, then all elements of the type given by (2) are zero. 

Then one can show in successive stages that all elements of the 

form x10(y10zio) + iyiOzlo)xio must be in "• henoe Zero until 

finally Ri0 and R01 are in N and hence zero, at which point e 
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must Ue in N, hence zero. We have reached a contradiction, so 

that (i) is established. Conditions (ii) and (iii) may be 

proved by appealing to [2], [4], [5], [6] and (i). Two further 

identities are worth singling outi 

(3) P = a1o([>10'=lo]dlo) " bioCOxodldaio) + c10([d10a10]b10) 

- *io(Cài6bio]cap5 l i e s i n N n " l O * 

(4) (a1o.bio>clo)td10'f10>glo) l i e s i n t h e commutative 

editor of R. 

By skillfully combining (3) and (4) it can be proved that in 

every free alternative ring with idempotent, assuming charact-

eristic ^ 2,3 and at least four generators, any four elements 

of Rin satisfy a dependence relation over the center. These 

results also lead to a new proof of Aloert's classification of 

simple alternative rings with idempotent [l], replacing 

simplicity with more general hypotheses. 
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Central Configurations of the n-Body Problem in E4 

21 

by Julian I . Palmore 

Pime.nte.d by P. Rifaenfaoim, F.R.S.C. 

We prove the existence of many classes of centra l configurations 

Euclidean space E using topological methods. 

in 

Recall the setting of the n-body problem. Let the masses (m )S K n 

be fixed.- The configuration space of the n-body problem is a subset of the 

linear space 

»• {(xĵ  xn) G C E V l E m ^ = 0). 

We remove from H the fat diagonal A = UA where A. = Cxehilx =x } and 
ij ij ' i j 

the union is over all 1 < j. Then M - A is the configuration space and the 

dynamics are given via a vectorfield on T(M - A). 

The Newtonian potential appropriate to E is the divergence free 

potential on M - A defined hy 

m.m. 
V (x) = -E 3-J-^ 

KJ II V X j ^ 

A configuration (Xj x ) S M-A is a central configuration [2] 

If there is a A S IR\ {0} such that for i = 1 n we have 

Am x • -grad.V Cx). 
i l l m 

Here g r a d ^ x ) is the gradient of V^ by Xj. As a consequence of this 

definition it follows that a configuration (x, ,... ,x ) e M - A, ÎTm II x l|2 = 1 
1 n 1 1 

i s a centra l configuration If and only if (xj xn) i s a c r i t i c a l point of 

V | ( S - A ) whore S - [x e MJZm || x Ip = 1} and S - A denotes S - ( S C I A ) . 
'• i l m m m 

Let x and y be two c r i t i c a l points of V in S - A. Then 
m m 

x - y i f there Is an ce e SO (4) such that x = ay. A class of central confi-

gurations ts an equivaiencc class under this equivalence relation. 

Research supported In part by NSF grant MCS 78-00395. 
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Identify E and H , the quaternions. The subgroup of unit 

quaternions, S , acts freely on 11 and leaves Invariant M, û^., A, S 
3 

and V . We denote by Q the quotient manifold of S - A by S . For 
m Ta m 

each (m ) e K? Q™ i s homeomorphic to P _2 (II) - Àn_2 where p
n_2CH) 

is quaternionic projective space of (quaternion) dimension n - 2 and 

À „ is the (nontrivial) union of n(n - l)/2 codimension 1 quaternionic 
n-i 

projective subspaces. 

Let V denote the potential function induced on Q by V . 
m m m 

A class of central configurations is Identified with a submanlfold 

of 0 of critical points of V of dimension 3 which results by the residual 

action of SO(3) on a critical point of V . 

Clearly, every critical point of V in Q_ is degenerate. We call 

a central configuration class nondegenerate if the associated critical points 

in Q have maximal rank: that Is, the submanlfold of critical points Is a 

nondegenerate critical manifold. In this case critical point theory gives the 

existence of many classes of central configurations provided the homology of 

0 Is sufficiently rich [1]. 

Let H^ be integral singular homology. 

Theorem A. For any n > 3 and for any 1, 0 ̂  1 < 3n - 6 ILdP^ClH) - i ^ ) : 

Hi(I,n-3(Ii) " K ^ e (n " ̂  1,i-3(1!'n-3(1!0 " K-J' "i = 0 for i > 3u ' 6-
The homology H^ is torsion free. 

Let 8. « rank H,(Q ) and x(Q ) b e the Euler characteristic. 1 1 m m • 

Corollary A.l. ZBi " n!/2 for any n > 3. 

Corollary A. 2. x(Q ) " C - 1 ) " ^ " 2'! f o r any n ̂  3. 
"n-l 3 

Corollary A.3. The Polncare polynomial of Q Is II (1 + kt ) for any n ̂  3. 
k"2 
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The index of x ts the index of the Hessian of V at jt. We 
m 

denote the index of x by ind(x). 

Theorem B. Let x e Q be a critical point of V . Then lnd(x) > n-2. 
— m m — 

1 4 
By choosing a line E C E a subset Y C o is generated which 

is homeomorphic to T .(m) - À - C p (H) - À .. A critical point n-^ n-^ n-2 n-2 

x 6 y of V is called a collinear central configuration, m m 

Theorem C. Let x e Y C O be a critical point of V . Then lnd(x) = n - 2 

and x has maximal rank = An - 10. 

We call a central configuration regular in E if its convex hull 

has dimension 4, 

Theorem D. If n = 5 there are only two classes of regular central configura-

tions. A member of each class spans a 4-simplex and has maximal rank = 4n - 11. 
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CHARACTERIZING UNIVERSAL FIBRATIONS 

P e t e r I .Boo th , P h i l i p R.Heath and Renzo A . P i c c i n i n i 

Pltie.nte.d by P. R - i b e n b o t m , F . R . S . C . 

The no t ion of U n i v e r s a l F i b r a t i o n has been d e f i n e d i n d i f f e r e n t ways. 

A f i b r a t i o n p : E •B i s s a i d t o b e : f l ) Free U n i v e r s a l i f the f i b r e 
* CO OO {D * ' , 

homotopy classes of fibrations over a space X correspond bijoctively to 

the free homotopy classes of maps from X into B ; (2) Grounded Universal, 

essentially a based version of (1); (3) Aspherical Universal if the total 

space of the associated principal fibration (whose precise definition will 

be given later on) is weakly contractible, and finally, (4) Extension Uni-

versal if any partial map pair into p can be extended. Dold has proved 

the equivalence of (1) and a strengthened form of (3) for Principal G-

bundles, while Steenrod has shown that (4) implies (1) in the same context; 

Mlaud, using an analogue of Dold's argument and the theory of quasi-

fibrations, proved that under restrictive hypothesis, (2) and (3) are 

equivalent for (grounded) Murewicz fibrations. 

Using techniques developed in (|1], [2] and [3J) we obtain a unified ap-

proach to the presentation and comparison of Universal Fibrations. No proofs 

are given here; the reader will find them in the homonymous paper to appear 

in the Proceedings, Algebraic Topology Conference, Vancouver 1977, Springer 

Lecture Notes in Mathematics # 673. 

GENERAL DEFINITIONS AND MAIN THEOREM - We work in the context of the convenient 

category X of (̂ -spaces as in [3]. Borrowing the notation of J.P.Hay [5], let 

j* be a category with a distinguished object F together with a faithful 

underlying space functor £ » fc ; for technical reasons wo shall assume 

that for every object X of _^ , ^(F , X) )* 0 . An ? -space is a 

morphism p : X —»• A of j t such that A is a CW-complex and, for every 

a e A, p (a) e Obj J ; the latter condition will impose a corresponding 
constraint in the morphisms of £ . The notions of j^ -homotopy and ^ -

homotopy equivalence are easy to define; we then put the following crucial 

condition on ^ : every morphism of ,7 is an J^-homotopy equivalence over 

a point „ . 

Given an ./-space r : Z — • B and a map f : A — » B we denote the 

pull-back space by A r1fZ ; according to ([S],Lemma 1.2), the projection 
rf : *'"'f2 — > A Js a n ^-space. Given maps q : Y —*. A and r r 2 » B 

we define Y.Z to be Ihe set „ l-r' D ^ ( Y o , Z.) conveniently topolo-
OCA,OCD a D 

gized [3], where Ya = q" (a) , Zb • r'^b). Also, let q«r : Y.Z •—». Ax B 
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be the nap which takes'any f : Ya • Zb into (a , b) . An «^-fibration is 

an object of a non-empty, full subcategory c/? of the category of y-spaces 

and ^-maps defined by the following axioms: Al) F —». « is an </?- fibra-

tion; A2) If r : Z —». B is an t^-fibration, A is a CW-complcx and 

f : A yB is a map, then r f : A nfZ —*-A is an (^-fibration; A3) If 

r : 2 —». B is an ^?-f ibrat ion, s : K ^B is an ^-space and g : Z —»• 

W is an J^-map over B which is a homeomorphism, then s is an c^-f ibra-

tion; A4) If q : Y ». A and r : Z —»- B are t /?-fibrations, then q.r : 

Y.Z »• AXB has the Covering Homotopy Property with respect to all CW-

complexes. 

The notions of Free, Grounded and Extension Universality in t/f are 

clear. As for the Aspherical case, given an 6?-fibration p,, : E^ —> B^ , 

we take c : F f * and form c*poo : F.E^ >• .XB.jthen we say that 

P t o is Aspherical Universal if TT,/ F ' E œ ) = 0 for all n and all choices 

of base point for F.E^ . 

Main Theorem - Every Grounded Universal (^-fibration is Free Universal; every 

Aspherical Universal c^-fibration is Grounded Universal. An </?-fibration 

is Aspherical Universal if, and only if, i t is Extension Universal. 

PARTICULAR CASES - (1) llurewicz Fibrations - Let yj. be the category of 

spaces of the homotopy type of a fixed space F and whose morphisms are 

homotopy equivalences. We take t/f ¥ to be the category consisting of llurewicz 

fibrations over CW-complexes and fibres of the homotopy type of F. 

(II) Principal G-bundles - Let G be a topological group; !rG 

denotes the category whose objects are right G-spaccs Y such that , for 

every y c Y, 7 = G >-Y, y(g) • y g is a homeomorphism. Define Jl c 

to be the category of principal G-bundles over CW-complexes. 

(III) H-Principal Fibrations - Let II be an ll-space in the sense 

of Wi & i s t h e <:atcgory o f spaces X with a right action of H such 

that, for every y c Y, "y : H —-* Y , ~(h) = y.h is a homotopy equi-

valence. Take lA^ to be the category of H-principal fibrations in the 

sense of [4]. 

_ i . „ . r .^ n he -m O? //? or C$,, - fibration. Then 
Theorem - Let p«, : E„—> B,, t>e an &T F , t 7 G or n ^ 
p,. is Universal in the four senses described earl ier if, and only if, i t is 

Universal in any one of these four senses. 
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(IV) Trivial Fi6rations - Let F and 5 % as in C1) • W e take (/? T 

to be the category of all trivial fibrations over CW-complexes with fibre in J p , 

that is to say, fibrations that are, to within a homeomorphism of their total 

spaces, projections of the product of their base space and a space in 5 p . 

The trivial fibration c : F — f • is both Grounded and Free Universal; 

it is not, however, neither Aspherical Universal nor Extension Universal. 

A further example shows that, if the base spacesarc restricted to 

being simply connected CW-complexes, then a Grounded Universal Fibration is 

not necessarily Universal in any other sense. 
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HOW GENERAL IS LOMONOSOV'S INVARIANT SUBSPACE THEOREM? 

by Heydar Radjavl and Peter Rosenthal 

Piaznted by P. Pittmoie., F . R . S . C . 

This report is a descr ip t ion of some recent work we have done in 

co l labora t ion wi th several other mathematicians { [ 3 ] , [ 4 ] ) . 

In 1973 V. Lomonosov proved a theorem about existence of Invar iant sub-

spaces that includes the fo l lowing r e s u l t : i f A Is a bounded l inear operator 

on a complex Banach space, and I f AB = BA fo r some operator B tha t i s not a 

mu l t i p l e of the Iden t i t y and that commutes wi th a non-zero compact operator , 

then A has a n o n - t r i v i a l Invar ian t subspace; (see [ 7 ] , [ 9 ] and [ 1 0 ] ) . I t i s 

hard to t e l l whether or not an operator A s a t i s f i e s t h i s hypothesis. In f a c t . 

I t appeared conceivable that a l l operators A might sa t i s f y i t , and thus that 

i t would fo l low from Lomonosov's theorem that a l l operators have invar ian t 

subspaces. 

In j o i n t work wi th Don Hadwin and Eric Nordgren [ 4 ] , we have shown tha t 

there are operators A tha t do not sa t i s f y the hypothesis of Lomonosov's theorem: 

the un i l a te ra l weighted s h i f t s which Shields [11] cal ls "quas i -ana ly t i c . " 

Fol lowing Shields [ 1 1 ] , we regard these operators as m u l t i p l i c a t i o n operators 

H on cer ta in spaces of funct ions ana ly t ic In the u n i t d isk . The commutant of 

M consists of m u l t i p l i c a t i o n operators M fo r su i tab le ana ly t i c functions », 

so our resu l t reduces to showing that the only compact operator K commuting 

w i th such an H is K = 0. This requires many of the resu l ts of [ 1 1 ] . We 

f i r s t prove that there i s an Integer N such that KN = 0 fo r a l l such K; t h i s 

i s accomplished by showing tha t K* has many f in i te -d imens iona l invar iant sub-

spaces on which i t s spectrum is { 0 ) . For any f i xed such K, say K0, we then use 

the f a c t that K = 0 fo r a l l compact operators commuting w i th M to show that 

the Hadamard product of the r e s t r i c t i o n s of K* and any other matr ix on those 
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f in i te-d imensional i nva r ian t subspaces i s also n l l po ten t of order at most N . 

theory lemma i s proven tha t implies that the matr ix of such a Kg has a zero 

column, from which I t fo l lows that K* vanishes on a dense set and therefore 

i s 0. 

The above example i s perhaps surpr is ing in view of Cowen's proof [ 1 ] 

tha t the (unweighted) un i l a te ra l s h i f t does s a t i s f y Lomonosov's hypothesis. 

We have also worked on fu r ther general iz ing Lomonosov's theorem. Af te r 

a prel iminary attempt we made wi th Nordgren and Radjaballpour [ 8 ] , the fo l low-

ing resu l t was obtained in co l laborat ion w i th O.K. Fong, E. Nordgren and 

M. Radjaballpour [ 3 ] : i f AB = BA fo r some B that i s not a mul t ip le of the 

Iden t i t y and tha t s a t i s f i e s an equation of the form BK = KF(B), where K i s a 

non-zero compact operator and F Is an ana ly t i c funct ion mapping a bounded 

open set containing o(B) i n to I t s e l f , then A has a non - t r i v i a l invar ian t 

subspace. (Lomonosov's theorem, of course, i s the case where F(z) = z ) . Our 

proof of t h i s resu l t r e l i e s heavily on Lomonosov's work. 

I t i s possible (though un l i ke ly ) tha t a genera l izat ion of Lomonosov's 

theorem covers a l l operators on H i l be r t space. I t seems probable that quasi-

analyt ic s h i f t s do not sa t i s fy the hypothesis of the above theorem e i t h e r , 

although th i s should be checked. They do, however, sa t i s fy the hypothesis 

of Daughtry's theorem [ 2 ] , (see also K in , Pearcy and Shields [ 5 ] ) : they 

have rank one commutators wi th some compact operators, since t he i r ad jo in ts 

have point spectrum, (see [ 6 ] ) . 
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Project ive Characters of Groups of Lie Type 

by 
1 

Leonard Chastkofsky 

and 
1 

Walter Felt 

Pnacnted by P. Kibcnbo-im, F . R . S . C . 
1. We introduce the following notation. F Is the field of cardlnn-

1 
lity q - p , p a prime, and K Is its algebraic closure. Let G , C^ 

denote a universal Chevalley group constructed over F and K respectively. 

We consider G c G c G . 
1 — n — " 

Let o denote the Frobenius automorphism of K or IF . The automor-
q 

l l i l s - of G or G i s a l so denoted by a. 
- q 

If a,p are complex valued class functions on a group H then 

(a.p) = (a.p) - -X- I a(x)p(x'1). 
1 1 x€H 

2. If H is a finite group, a P.I.M. is a projective Indecomposable 

Kill] module. There is a one to one correspondence between isomorphism classes 

of P.I.M.'s and Irreducible K[H] modules such that the Irreducible K(H] 

module M corresponds to the P.I.M. P if and only if M Is Isomorphic to 

the unique irreducible submodule of P. 

A well known result of Steinberg asserts that there is a set S of 

K[G ] modules, indexed by a certain subset of the weight lattice of G^, such 
n al 

that every Irreducible K(G ] modulu is isomorphic to exactly one of U H , 
1=1 * 

where each M. is the restriction to G of some module In 5. 1 n 

The first author was supported by the Canada Council and the second author 
was partially supported by NSF Contract GP33591. 
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It Is natural to ask whethnr there Is a similar procedure for construc-

ting the P.I.M.'s of K[G ]. The answer here Is not as nice and simple as it 

is for the Irreducible modules, but there is at least an algorithm for obtaining 

them. 

Let St denote the Steinberg module of K[G ) and let T denote n n n 

the Brauer character afforded by St . Then St is both irreducible and 
n n 

projective. Furthermore the degree T (1) is the order of a Sylow p-group of G. 

Let B(S) be the set of Brauer characters afforded by the modules In 

S. It y, ( B(S) let if', be the element of B(S) of least degree such that 

P. is a constituent of ipjpl* It can be shown by looking at the highest 

weights of the corresponding modules that such a yj' always exists and is unique 

and that f, occurs with multiplicity 1 as a constituent of * ,* J. Suppose 
1 i 

that a> • Ho, is an irreducible Brauer character of G with * the character 
1 < n 

afforded by the corresponding P.I.M, Let tp ' • Rçl and set T " F (p ' , 

where ^ ' is the contragredient to ip'. Then F occurs as a constituent of 

tp'if with multiplicity 1. Hence (T,cp) • (F ,ip'((i) - 1. (These inner products 
make sense as F vanishes on p-slngular elements where the Brauer characters n 

are not defined.) Since T is projective It is the sum of characters afforded 

by P.I.M.'s. In this sum * occurs exactly once. Which other characters afforded 

by P.I.M.'s occur ? 

If 8 i1 » is an Irreducible Brauer character of C with 0 the corres-
T n 

ponding projective character then the multiplicity of 0 as a summand of T 

is (T,e) - (F ,<p'e), and this Is equal to the number of times rn Is a consti-

tuent of ip'e. There is a natural partial ordering of the irreducible Brauer 

characters (Induced by the partial ordering of the highest weights of the corres-

ponding modules) which will be denoted by ^ , such that If F is a constituent 

of ip'8 then 8 >• cp. Hence with respect to this ordering the matrix expressing 
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the T's in terns of the 4»'s Is unlpotcnt and upper triangular. Thus It 

is possible to solve for the Q's in terms of the T's. 

3. The above Ideas can be applied to the groups Sp,(2 ) and SL-(2 ). 

Modifications of the arguments yield similar results for the groups Suz(2 ) 

and SU,(2n). In these groups we are to compute 0" ,ip'6). The Idea is to 
i i " 

write ip' "PIipl , 8 "118 and to find the multiplication of ip and 6 HG 

Brauer characters of G . Then we use a graph to expand tp'8. in this way we 
n 

have obtained formulas for the degrees of all P.I.M.'s for the above mentioned 

groups. For example If * Is the P.I.M. corresponding to the trivial Brauer 

character then we prove 

Theorem 1. (1) ^ (1) - 2:in(6n- 5n) for Gn'SL3(2n) or S U ^ " ) . 

(11) If C - Sp,(2 ) for n even and Suz(2n) for n 

odd then 

* ()) . 22n(22n- Tn2n+ (-1)"), 
0 n 

where T - (•^•)n + ( i ^ ) n , the nth Lucts number. 
n 2 2 

We have also obtained some results about the Cat tan Invariant 

c = K , * . ) • The arguments here arc much more difficult. 

Thecrem 2. (i) If C = Sp, (2 ) for n even and Suz(2n) for n odd 
n M ^_ 

c - 2 3 n
+ 22n-t 2"+ (-])n2n+1+ 2"ll - 2n+1(2n+l)T , 44 n n 

where T Is as in Theorem 1, and U - a + p + y where 
n n. 

3 2 
(x-g)(x-P)(X-Y) " X - 3 X - X ^ 5 . 

(11) If n Is large enough, then for each of the groups Sp (2 ), 

Suz(2n), SI.,(2n) and SU1(2n), r Is larger than the order of a Sylow 2-Eroup. 
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The results in Theorems 1 and 2 were proved In [1] for Suz(8). Ir 

particular, it was observed there that statement (11) of Theorem 2 contradicts 

an old conjecture. Theorem 2 shows that this conjecture Is badly false for an 

infinite class of groups. 
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EXTREMUM PROBLKKS FOH THE MULTI-DIMENSIGNAL CABE 
OF KONIG ADD SZUCS OF BILLIARD BALL MOTIONS 

I . J . Schoenberg 
PA.Zitnte.d by H.S.M. Coxe-te/t, F .R .S .C . 

Let 
U ) Un : 0 rfxy 4 1 , ( \ ) = 1 n ) . 

be t h e u n i t cube in H . Let ( a ^ ) be a p o i n t i n t e r i o r t o U and 

(2) L^ : x = Avu + a , , ( V = 1 n ) , 

be a rectilinear and uniform motion, where u = t denotes the time, 

«e interpret (2) as the motion of a billiard ball (b.b.); as we 

wish to reflect the b.b. in the usual was on striking the 2n facets 

x^ = 0 or 1 of U , we use the zigzag function <x) of period 2, 

defined by <x> = x in [o,l], and ^i) = 2 - x in [l,2]. The path 

of the b.b. within 0 may now be described by the equations 

(3) fin : x„ = < \ u + a,> (^=1 n; - «,< u<«7 ). 
A classical theorem of Kronecker (See [21 ) and its freneral-

ization (Sep [l] ) show the following: If the n components (5,,) 

are arithmetically linearly independent, then the motion (3) is 

prgodlc, i.e. the oath (""̂ is dense in U . If 1 ^ k ̂  n - 1, 

while the ( A^) admit precisely n-k linearly independent linear-

homogeneous relations with integer coefficients, then the path I I 

is contained in and is dense in a finite k-dimensional skew poly-

tope pjg. This was shown by KOnig and Szflcs in [2J for k = 2 

and n = 3. This result shows that the b.b. motions generalize 

naturally as follows: Let ^i= ( X^ A ^ ) . (i = 1 k), be 

k linearly independent vectors, where we assume that 1 ^ Y - n-1. 

»e now replace (2) by 
k 

(4) Ln : x^ = ^ . ^^u + a (v = l n; -
\ 

oo < Uj < oo ), 
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which we interpret as a k-dimensional optical signal starting from 

the point (a ) inaide U at the time t = 0, and spreading uniformly 

within the k-flat L_. As we now think of the 2n facets of U as n n 
mirrors, the reflected path of the signal is a finite or infinite 

k-dlmensional skew polytope \\ described by the equations 

(5) Fin : X. = <Ç X S + av> (V= 1 «U - « < tti<«, ), 
In order to avoid lower-dimensional problems we shall assump 

that the original signal (4) is in a general position. 

DEFINITION 1. We say that the signal (4) _iB in general 

nosition (G.P.), provided that 

(6) the n bi k matrix I A I has no vanishing minor of order k. 

Let 0<Ç<i, x = (x^), and consider the cube 

W c
f
n •• II1 - *||.. < f . 

where c = (|,...,J), and ||x - c H,., = max ([x, - i\) . 

DEFINITION 2. J«e say that the path (5) JjJ ^ -admissible, 

n i. 

(f ), provided that the original signal (4) 
is in general position, and that the reflected path rl never 

penetrates into the cube (7), hence that 

m Un n c
f
n = *• 

As the opposite of the ergodic case, we study the following 

PROBLEM 1. To determine, or estimate, the quantity 

(9) fk n = supremum ft 
for all p having a p-admissible path | (f ̂• 

THEOREM 1. We have the inequality 

(10) ?,,„ ^ | - 1 ^ . d ^ k ^ n - l ) . 
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Theorem 1 is established by constructing a path Mnif ) ^or 

values of p which are as close to p - -a— as we wish. In [3j 

I have shown that the equality sign holds in (10) for the case when 

k = 1. «e can now do the same for the other extreme case when k =n-3. 

THEOREM 2. We have that 

f n-l,n = 2 " "2îr " 2n 
The simplest case when n = 3, and therefore 

(U) P_- „ = i.^i = ^ , (nà2). 

l]2> f2,3 = I ' 
leads to what i call Kepler's tetrahedron. J. Kepler was the first 

to notice that four appropriate vertices of the cube U-, are the 

vertices of a regular tetrahedron T. As any two facets of T inter-

sect in a facet of U, forming equal angles with that facet, it should 

be clear that the surface of T carries areflected signal (~|?. It 

carries, of course, many such, but let us single out one or them and 

denote it by ["[f. This signal || ? is readily found to be g - ad-

rtissible, and it is essentially the only (|, in G.P. which ia T -

aamissible. This is an apparently new characteristic extremum 

property of Kepler's tetrahejron: Any other signal ["]? in general 

position, must penetrate into the cube C;, , with p = .1/6. 

Theorem 2 generalizes this extremum property of T: There is 

jin essentially unique signal Tin" which is in general position ana 

if "2^" - admissible. l_t i_s explicitly given by the equations 

, , n n - l Xv = €«y> • ^ = 1 " " D . 
(13) I I : 

xn = < u l + u 2 + - - - + u n - l * n i i > ' (—<u i <oo ). 
IHEOKjiK 3. te. construct expl ic i t ly the signal {'^{l - -£—) for 

(14) ( k , n ) = ( 2 , 4 ) and ( k , n ) = ( 2 , 6 ) . 
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in view of Theoreias 1,2, and 3, i wish to state the following 

CONJECTURE 1. Jhe value of the quantity (9) is 

( 1 5 ) ? k ,n= ! - • £ • . ( l ^ k - n - l ) . 

The proofs of our results will appear elsewhere; they are 

based on a discussion of monochromes and n-chromos in Rk. This 

approach was already used in [3] to establish Conjecture 1 for 

the case when k = 1, 
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A PROOF OF A THEOREM OF COXETER 

Joachim Assion 

Fakultat fiir Mathematik, Universitat Bielefeld, FR Germany 

Pie-ie-nte-d by H.S.M. Coxcici, F.R.S.C. 

The braid group Z is defined by the generators xi for 

16ii.n-1 and the relations 

and 

x i x d X i = XdXiXd ' {±~5[ = 1 

xix0 = X0Xi ' ^'^ * 1 ' 
For every finite factor group Fn of Zn there exists a positive 

integer m such that Fn is a factor group of 

Zn(nO := Zn/<(x")V 
A theorem of Coxeter [2] states that Zn(m) is finite if and only 

if (m-2)(n-2) <4 holds. The purpose of this paper is to show how 

Burau's representation of the braid groups [l] may be used to 

prove Coxeter's theorem. 

Let K be a commutative field and let k be a non - zero 

element of K. Let 

• r : :) 

and 

x i < 

wJ 
where It is the unit txt matrix. Then the mapping 

x, ̂  X, 
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induces a homomorphism D of Z onto (x.| 1 « ié n-1) é GLCn.K) 

as Burau [î] has shown. 

Let f€HomK(K ,K) such that (x,y)f = x+y. Then Af = f. 

Therefore Xjfj. = fn for ail i where fn e HomK(Kn,K) such that 

(k„,...,k )f = Zlk.. Kence ker(f ) is n(Z„) - invariant. If i ^ ' n n i n n 

[e^,...,e 1 is the canonical basis of K and if y^ := e^ - e^+ 

then {y-i> ••• ..yn_-i} i s a basis of ker(fn). V/ith respect to this 

basis the following matrices are associated with the elements 

Ï. := X.ikerC^): 

/ " ' 
^ - 1 1 . ï n 

I V3 
for 2-i ié n-2 where 

-1 

B 

= 
fh 

t 
\ 

f 

-3 

k 

-k 

\ 
l 

1 k i . 
I 

- 'K / ' 

i ' 

Y i 
fh 

" \ 

-2 i 

B 

V i J 

I 1 V 
V/rite 13 for this (n-1) - dimensional K - representation of Zn. 

Let U = (Y1,...,Yn_?) and W = {v1, . -. ,yn_2>> ^ e n W is 

U - invariant and UJW = 'B(Zn_1). Therefore T K z ^ j is isomor-

phic to a section of T)(Zn). 

Now let K be the field C of complex numbers. Choose k = k(ra) 

as follows. Let pr(X) := ̂ ( - 1 )iXi e Z[xJ . Then (1 + X)pp(X) = 

-1 + (--\)rXr*^. Let P := |p ) re::]. IJow choose k € C such that 

D ^ is the polynomial of lowest degree inside of P such that 
• m—1 

p _1(k) = o. Then D yields a C - representation of Zn(ra) such 

that o(D(x1)) = m. 
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Lemma. If -̂t 2ni t (m,2)n, then T5(Zn(ra)) is infinite. 

Crccf. î)(Zn(m)) operates on a (n-1) - dimensional C -

vector space V. Let [e1,..., en_1| be the canonical basis of V. 
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By definition of k and by hypothesis S i k1 = o where (2,m)t = 

2ro. Moreover t=n by hypothesis. Kenco one may assume that t = n. 

Let z « ̂ ^ [ 2 1 k^je^^. Then B(Zn(ra)) leaves z unchanged. 

If 1)(Z (m)) were finite then, by Kaschke's theorem, there would 

exist a complement W of <:z> in V. Now, for each i, <e.> is the 

eigenspace of l)(x.) corresponding to the eigenvalue -k. Hence 

all the vectors e- would be elements of Iff. 

Th|or|m. Let m and n be positive integers such that 

(m-2)(n-2) S»*. Then Ti(Zn(m)) i^ infinite. 

Proof. Assume 'D(Z:;(ra)) = /ï^,'/-) is finite. If there exists 

an abelian subgroup of DCZ^CnO) of index at most 2 then [Yf,Y5J = 

= 1 . Hence k = 1, and m = 2 by definition of k. If such a sub-

group of '5(Z,(m)) does not exist then by ft-; th. 26.IJ the center 

G of D(Z,(m)) consists of scalar matrices and û(Z,(m))/C is iso-

morphic either to the alternating group of degree 4 or 5 or to 

the syir.metric group of degree 4. Hence m ̂  5» since no non - triv-

ial power of T5(x1) is a scalar matrix. Therefore: 

(1) If D(Z,(m)) is finite then m ^ 5 . 
5 Y Y 

Let 5(Z4(5) - <Y1,Yi,,Y5). Write W,, = Y j 2 1 and W2 = [Y2, 

Y~ "iJJ. If [e-^o.e,]' is the canonical basis of the C - vector 

space V where ^(Z^CS)) is operating on then 'Bp-? is left inva-

riant by vJV..,Wp) . Write TT,. resp. V?- for the elements induced by 

W1 resp. \l2 on V/<e2>. Then o C ^ ) = 5 = oCV^, [^ ,y2l / 1 and 
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" l ^ l / Vlpiji* for 1 = a * 4 . Hence (W^.W^is i n f i n i t e by [4; 

t h . 2 6 . 1 ] . Therefore: 

(2) 15(2^(5)) i s i n f i n i t e . 

Suppose there were positive integers ra and n with (ra-2)(n-2) 

^ such that U(Z (m)) is finite. Then m,n^ 3, and mi5 by (1) 

and (2). By the lemma the groups IJCZ^C'O) and TJCZ^J)) are in-

finite. 

Clearly, Z^Cm) «a C . Hoore has shown in 1897 that Z (2) is J ' tf m n 

isomorphic to the symmetric group of degree n. It is well - known 

[5; 6.6] that ZjO) -' SL(2,3), Z^) ^ SLÇ2,5)x05 and that ZjCl) 

is isomorphic to the centralize!' of an involution of SU(3,5). Put 

N = ((x^x,) 2,x^1x,> in the Z^CS) case. Then H is a non - abel-

ian normal subgroup of order 27 which is complemented by <i:3É«j,Xg>. 

Therefore Z^(3) ^ Gu(5,2). An enumeration of the cosets of 

<:x1,x2,x3> in Z5(3) yields ^(3)1 * 5!Sp(4,5)l . Since 2^(5) has 

Sp(*,5) and GU(4,2) as epiraorphic images Z^CS) ̂  Sp(4,3)xCj. 
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PERTURBATIONS OF C*-ALGEBRAS, I I 

by 
* ** 

John Ph i l l i ps and Ia in Raeburn 

INTRODUCTION **"***** *>* P - KU*»**. F -R.S.C. 

Let A and B be subalgebras of a Banach algebra C and def ine 

MA-B| | = 5 u p { | | a - B 1 | | , H b - A ^ l : aEA1 .bÈB,) where A, , B1 denote the unit 

ba l l s of A , B respec t i ve ly . The main question raised by Kadison and Kastler 

in [9 ] was the f o l l o w i n g : i f A and B are von Neumann subalgebras of B(H) 

f o r some H i l b e r t space H and i f | |A -B | | i s smal l , are A and B isomorphic 

(or u n i t a r i l y equ iva len t ) . For general Banach algebras, th is question has been 

reduced to a problem in algebra cohomology, at least i n the presence of a l inear 

homeomorphism close to the Iden t i t y [ 8 . 1 4 ] . However, except when A is an 

i n j ec t i ve von Neumann algebra, these hypotheses are very d i f f i c u l t to v e r i f y . 

For t h i s reason, other methods have been introduced to study these 

questions, especia l ly i n the context of C*-algebras [3 ,4 ,5 ,11 ,12 ] . So f a r , the 

problem has been solved fo r abel lan C*-algebras [ 3 , 1 1 ] ; ideal C*-algebras [ 3 ] ; 

and A.F.-algebras [5 ,12 ] . 

Using techniques adapted from [11] together wi th a l i t t l e sheaf cohomology 

we employ the Dixmier-Douady c l a s s i f i c a t i o n theory to solve the problem fo r 

cer ta in type I C*-algebras. Complete proofs w i l l appear elsewhere. 

THE MAIN RESULTS 

1. De f i n i t i ons : Let E denote the real l i n e and S denote the un i t c i r c l e . 

I f T i s a topological space, l e t R be the sheaf of germs of K-valued 

functions on T and W the sheaf of germs of S -valued functions on T . 

See [15] f o r notat ion on sheaf theory. We denote by Hn(T,Z) , the n* ïech 

î ** 
Dalhousie University; University of New South Wales 
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cohomology group of the space T w i th coe f f i c ien ts in the in tegers , 2 . 

Moreover, as noted in [ 6 , 10.7.13] we have Hn(T,'U) î Hn + 1(T,Z) fo r a l l n > 0 . 

As In [ 6 , 10 .9 .1 ] , i f A is a separable continuous trace C*-algebra w i th spec-
A v3 ^ 

trum A , then A defines a unique element S(A) in H (A,Z) . 

2. Theorem: Let K be a H i lber t space and suppose A , B are C*-algebras on 

K w i th | |A -B | | < TT • I f A is separable w i th continuous t race , then so i s 

B and there is a homeomorphism A -*• B such that the Induced isomorphism 

H3{Â,Z) - S 3 ( l ,2 ) takes 6(A) to B(B) . 

To prove th is theorem, we f i r s t i den t i f y A and B wi th a s ingle space 

T v ia a homeomorphism A -» B constructed in [ 1 1 ] . We then ca re fu l l y construct 

an open cover (T.} of T and 2-cocycles { u . . . } , { V ^ - J E C ({T.),*^) which are 

representatives fo r 6(A) , 6(B) , respect ive ly under the i d e n t i f i c a t i o n 

H2(T,1I) s H3(T,2) . By construct ion we see tha t lUMi . -V. ib l < /? so tha t 

f i j k = u i j k v i j k i s a 2 _ c o c > ' c l e w i t h a r 9 f i j k - ' " § • ? ' ' T h u s ' w e c a n a p p 1 y 

9 

Log to obtain (9--1,) > an element of C ( {T . ) ,R) . Since R is a f i ne 

sheaf, f9--|,) is t r i v i a l . By exponentiating we get tha t t U | | t J and 

{ v . . . } are equivalent, i . e . 6(A) = 6(B) . 

The relevance of t h i s resu l t to the isomorphism problem w i l l be seen below. 

3. De f in i t i ons : Let K(H) denote the C*-algebra of compact operators on the 

separable H i lber t space H . A C*-algebra A is ca l led stable [1 ] i f 

A = AeK(H) (where S denotes the completion of the algebraic tensor product i n 

the minimal C*-cross-norm.) Two C*-algebras A and B are said to be stably 

isomorphic [1 ] i f AeK(l/) = B«K(H) . 

Using resul ts of [ 6 , ch. 10] and [7 ] i t i s not hard to show that i f A 

and B are separable continuous trace C*-algebras then A i s stably isomorphic 

to B i f and only i f there is a homeomorphism A * B car ry ing 6(A) to 6(B) . 

Thus, we get: 
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4. Coro l la ry : Let A and B sa t i s f y the hypotheses of theorem 2, then A 

Is s tab ly Isomorphic to B . 

Now, In order to e l iminate the "stable" conclusion we proceed by more 

d i r ec t but non t r i v i a l computations to prove the fo l lowing theorem. 

5. Theorem: Let A and B be C*-algebras on a H i l b e r t space < w i th 

| | A - B | | < i . Let X be a compact Hausdorff space such that A ï C(X)eK(H). 

Then A is u n i t a r i l y equivalent to B via a un i ta ry in (AuB)". 

Combining th i s wi th the previous co ro l l a ry , using techniques of [11] and 

resu l ts of [ 6 ] enables us to prove: 

6. Theorem: Let A and B be C*-subalgebras of 8(K) wi th | |A -B | | < 426 . 

I f A i s a separable, s tab le , continuous trace C*-algebra, then B = A . 

In ce r ta in special cases we have been able to obtain stronger resu l t s : 

7. Theorem: Let A and B be C*-algebras on K wi th 1|A-B|| < k ( H O ) . 

I f A i s a un l ta l continuous trace C*-algebra and 6(A) • 0 then there Is a 

un i ta ry u in (AuB)" w i th uBu* = A and | | l - u | | < 2400k + 4458/k . 

POSSIBLE DIRECTIONS 

Since any post l iminal C*-algebra has a composition series where each of the 

quot ients has continuous t race [ 6 , 4 .5 .5 ] our resu l ts might shed some l i g h t on 

t h i s case. For example, i f 0 £ I £ A / I where I and A / I have continuous 

t race , then |1A-B|| small Implies tha t we can form C ç J ^ B wi th | | I - J | | 

small and | | A / I - B / J | | small [ 1 1 , lerma 2 .6 ] . Now, vf we could prove a 

version of theorem 6 which would y i e l d a uni tary u close to 1 so that 

uJu* = I , then we would l e t B = uBu* so that 0 £ I c B and | |A/I - B / I | | 

is smal l . Let C = C*(A,B) and represent C/I on a H i l be r t space K . We 

now apply our (hypothet ica l ) improved version of theorem 6 to A / I and B/I 
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to get an isomorphism $; A / I - B/I c lose to the i d e n t i t y . Then 

$. s i d : A / I - C/I and ij;- = i j r i d : A / I ->• C/I are two close extensions o f the 

same C*-algebra A / I by the ideal I [ c f . , 13]. I f these two extensions are 

equivalent (v ia a un i ta ry in C) then A = B . This problem may be more 

t rac tab le [ c f . , 13] . 
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An Expl ic i t Construction of Some Discrete 

Unitary Series of Representations of u(p,q) 
* * * 

F. Lemire and J. Patera 
Plcizntzd by H. laacnhaui, F .R.S .C. 

Gel'fand and Graev [1] have constructed ce r ta in discrete unitary ser ies 

of I r reducible representa t ions of the algebra u (p ,q ) . In th is note we show 

that using similar methods further such series can be constructed. 

Following [1] we fix a posi t ive Integer n and tor k - l , 2 , . . . , n - l 

choose pa i r s (i^.^l «*«* ^ e {0 k} , 1^ e {l k+l} and 

i < i-l . Let H{(1. , 1 / ) } be the Hilbert space having an orthonormal basis 

label led by the set of a l l arrays of Integers («ij>!<!<»<„ w i t h f l x e d t 0 P row 

(m m ) and the other components sat isfying: 
K In ' nn 

(1) • " j k l " j + 1 . k ' l l j < k < n , 

(2> V i . k + i + 1 ^ m j . k i m
j , k + i + 1 • ^ ^ h • 

(3) m J > k + 1 > m j k > m . + l i k + 1 . V J < i ' . 

^ " j + i . k + r ^ - i k i ^ + a . k + r 1 , ^ ^ 

(by convention we set m0 k+1 " + " and ,,1U+2,k+l " " "̂ " I£ ^^ is Chc 

basis vector in HCCi.,!/)} associated with the array m we define linear 

operators 

E^ v Ç(in) = (r̂  - riJ_1)CCm) , V • 1,2 n . 

where r k = m ^ + . . . + m,^ for k - l , 2 , . . . , n and r 0 - 0 . 

EP.P-I ^ - v i « ( v i > + • • • + C i « - f t - v ' 2 n • 
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where a 

llTR U-l 

U-l 

Lemire and P a t e r a 

k-2 

J ^.k-i^j.k-i"1*3*1' ^i.k-r^.k-r1^5 

1/2 

(m ,) denotes the array obtained from m replacing m , by m. .-1 

and N-' is the number of negative factors in the expression «J . (N.B. |r_j 

depends only on the indices tCi^.f^)} and not on the array m ). 

E , • E , y =• 2, .. .,n . y-1, P.p-l 

For certain values of the Indices {(iv'^k^ 'cf- ^ these operators 

generate an algebra isomorphic to gKn.C). In particular,when i^ = 0 and 

L" = k + 1 for k • 1 n-1 , we have the finite dimensional representations 

of gKn.C) as described by Gel'fand and Tsetlln [2]. 

Let € = {*:,,£, € ] , where E. = + l , E ^ ± l for 1^.2 and 
1 Z n i i 

exactly p terms equal to + 1 . A set of Indices {(t»l^)J is r.ald to be 

compatible with E iff in H{(lk,i]|;)} we have Ë* ̂  - e ^ j C ^ . j ^ for 

\i - 2,...,n . Observe now that if ((i,.!/)} Is compatible with E then In 

H{(ik,ik)) the operators i E y j P
 for P ' 1 n ' ^ 1 ( E

Vj,u-l ± S-l.u' 

for E .E = i 1 are all skew-Hemitlan. Since these operators generate a 

real subalgebra u(p,q) of gl(n,C), we have for each such sot of indices a 

series of unitary representations of u(p,q) . 

A straight forward analysis of arg(a^_1) for a given f ^ ' 1 ^ shows 

that there are p + 1 sets of Indices compatible with the sequence 
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(^ ^ 1,-1 - l ) • These yield precisely the p+1 scries of unitary 
>— '—s- '-J' 
p terms 

representations of u(p,q) given in [1], where the various rows of the arrays 

correspond to the chain of subalgebras u(p,q)3u(p,q-l)3.. .ou(p,0)3.. .auCl.O) . 

This same analysis also shows that every sequence e admits at least one 

compatible set of indices (and hence series of unitary representations of 

u(p,q)) where the rows correspond to the chain of subalgebras 

uCp,q)=u(pn_1,qn_1)o...ou(pv,qv)3. ..=u(l,0) with pv (resp qv) denoting 

the number of +lls in the truncated sequence {E^ Ey) . 

In addition to the above series of unitary representation we have 

observed that some other sets of indices yield unitary representations of 

u(p,q) when we place restrictions on the defining parameters (mln mnn) . 

In Table I we Illustrate this as well as the material above for the case 

n a 3 . 
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TABLE I GEL'FAND REPRESENTATIONS OF g l ( 3 . C ) and THEIR RESTRICTIONS 

( i 2 . ^ ) - - \ ^ 

(0.3) H 

•̂ 3 1 "•12 t m23 

"23 - "22 - "33 

(0.2) ï 

"13 - "12 - m23 

m33-l > m22 

(0.1) H 

"zs-1 - "12 i 1;33"1 

"33-1 > n22 

(1.3) H 

"12 - "13+1 

"23 * "22 - "33 

(1.2) S 

"12 - an+l 

"33"1 - "22 

(2,3) = 

"12 - " l 3 n 

m13+l > m22 > m23+l 

(0.2) 

ra12 - "11 - "22 

Unitary 

su(3)D Su(2) 

Unitary If 

"13 • "23 

su(2.1)3 su(2) 

Unitary 

r,u(2.1) Z> r.u(2) 

rnitaiy If 

"23 = B33 

su(2,l)3) su(2) 

Unitary 

su(2,l) 3su(2) 

Unitary 

^u(2,l) D su(2) 

(0,1) 

m22-l > m1 1 

Not a 

Representation 

Unitary 

su(2.1) P su(l.l) 

Not a 

Représentation 

Unitary 

su(2,l) D s u d . l ) 

Kever 

Unitary 

Not a 

Représentât I on 

(1,2) 

" U - ml2+1 

Not a 

Representation 

Unitary 

su(2,l) Z3 sud.l) 

Not a 

Representation 

Unitary 

su(2.1) p sud.l) 

Neve r 

Unitary 

Not a 

Rcpinsrulatlon 
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