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A SURVEY OF THE PRESERVATION OF SYMMETRIES
BY THE DuaAL GROMOV-HAUSDORFF PROPINQUITY
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ABSTRACT.  We survey the symmetry preserving properties for the
dual propinquity, under natural non-degeneracy and equicontinuity condi-
tions. These properties are best formulated using the notion of the covari-
ant propinquity when the symmetries are encoded via the actions of proper
monoids and groups. We explore the issue of convergence of Cauchy se-
quences for the covariant propinquity, which captures, via a compactness
result, the fact that proper monoid actions can pass to the limit for the
dual propinquity.

RESUME. Nous étudions les propriétés de conservation des symmaétries
des espaces quantiques pour la proximité duale, sous des conditions na-
turelles d’équicontinuité et de non dégénérescence. Ces propriétés sont
exprimées naturellement dans le language de la proximité covariante, qui
permet de discuter la convergence d’actions de groupes et semigroupes sur
les espaces quantiques. Nous explorons le probléeme de la convergence des
suites de Cauchy pour la proximité covariante, qui capture, grace a un
théoreme de compacité, le fait que les actions de monoides propres passent
a la limite pour la proximité duale.

The dual propinquity, a noncommutative analogue of the Gromov-Hausdorff
distance, enjoys some intrinsic symmetry-preserving properties, which is particu-
larly valuable for the study of many types of noncommutative geometries arising
from group or semigroup actions, as well as the study of physical models where
symmetries play a central role. In order to capture these elusive properties, a
notion of covariant propinquity can be defined, which enables a discussion of
convergence of actions of proper monoids, under the mild assumption that the
actions are by Lipschitz maps for an underlying quantum metric. The covariant
propinquity is an interesting metric in its own right, and it contributes to our
overall research program, where we seek to encapsulate within certain hyper-
topologies on classes of quantum structures, various basic geometric components
of potential physical interest. This note surveys the covariance property of the
dual propinquity observed in [27] and the covariant propinquity as introduced in
[29,31].
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Metric considerations in noncommutative metric geometry can be traced back
to Connes’ introduction of spectral triples in [5], and its link with mathematical
physics has been a matter of interest for a long time. Parallel to these obser-
vations, the metric theory of groups [9], and applications of metric geometric
ideas to Riemannian manifolds centered around the Gromov-Hausdorff distance
[3] have proven to be very powerful tools. Moreover, the Gromov-Hausdorff dis-
tance for compact metric spaces was in fact first introduced by Edwards [7],
while considering the problem of defining a geometry for Wheeler’s superspace
as an approach to quantum gravity [41]. In other words, the use of metric ideas,
and specifically, of topologizing appropriate classes of metric spaces using some
version of the Gromov-Hausdorff distance, is a theme well worth exporting to
noncommutative geometry.

This endeavor was initiated by Rieffel [36}/37,/39], who first introduced the
appropriate notion of a quantum compact metric space, inspired by Connes’
original work, and best understood as generalizing to noncommutative geometry
the metric introduced by Kantorovich [12}/13] in his study of Monge’s transporta-
tion problem. Rieffel then defined the quantum Gromov-Hausdorff distance [39)
on his class of quantum compact metric spaces. Some very nontrivial conver-
gences of noncommutative spaces were established, including for instance finite
dimensional approximations of quantum tori [15].

However, defining a noncommutative analogue of the Gromov-Hausdorff dis-
tance is not a trivial matter. For instance, Rieffel’s distance could be null be-
tween non-isomorphic C*-algebras, as long as these are endowed with isometric
quantum metric in a natural sense. This issue grew into more than a curiosity
when the study of the behavior of structures associated to quantum compact
metric spaces, such as modules over such spaces, became a focus of the research
in noncommutative metric geometry. Indeed, it became apparent that Rieffel’s
distance does not capture the entire C*-algebraic structure: in fact, the distance
is defined on quantum compact metric spaces built on top of order-unit spaces
rather than algebras, and thus intermediate estimates of Rieffel’s distance will
often involve leaving the category of C*-algebras. It should however be noted
that Rieffel’s metric is very flexible and convenient to use, and therein lies its
power; it also has a clear intuitive meaning in term of distance between states,
a notion at the core of C*-algebra theory and its application to physics.

Several interesting alternative to Rieffel’s distance were introduced, often mo-
tivated by this coincidence property issue. A notable early example is due to Kerr
[14], who replaced states with unital, completely positive maps from operator
systems to matrix algebras. Kerr then proved that distance zero between two
quantum compact metric spaces defined over C*-algebras indeed implied that
the underlying C*-algebras are *-isomorphic, in addition to the quantum met-
rics being isometric in the sense of Rieffel. An interesting phenomenon emerged
from Kerr’s work, where completeness for his metric relied on a relaxed notion of
the Leibniz inequality which plays no role (nor can be made sense of) in Rieffel’s
notion of quantum compact metric spaces. Yet, introducing this quasi-Leibniz
condition breaks the proof of the triangle inequality as note in [14].
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This problem with the Leibniz, or even relaxed Leibniz, condition, again grew
from a curious observation to a recurrent issue when working, for instance, with
the convergence of modules [40]. Eventually, it became clear that one wished
for a noncommutative analogue of the Gromov-Hausdorff distance which would,
at the same time, be compatible with C*-algebras, be compatible with Leibniz
or quasi-Leibniz quantum metrics, and keep the underlying interpretation of
Rieffel’s pioneering metric in term of states. Taken altogether, these requirements
meant solving the issues that plagued the field for its decade of existence.

The resolution of this challenge came in the form of our dual Gromov-
Hausdorff propinquity [20,24[25//28]. The dual propinquity addresses all the
above needs by working exclusively with quantum compact metric spaces defined
over C*-algebras and endowed with quasi-Leibniz quantum metrics, while being
a complete metric up to full quantum isometry—meaning, in particular, that
distance zero does imply *-isomorphism of the underlying C*-algebras. Since its
introduction, the dual propinquity seems to have become the metric of choice for
this subject. A particular version of the construction of our metric, called the
quantum propinquity [24], which was in fact our first step toward this resolution,
has proven particularly valuable.

Equipped with this new metric, we address some of the problems we hoped to
study from a noncommutative metric geometric perspective, such as approxima-
tion of modules [23[[26]/30], or other structures of value when eyeing applications
to mathematical physics. Such structures include symmetries and dynamics, en-
coded by actions of groups or semigroups on quantum compact metric spaces. It
would appear very valuable to understand the interplay between convergence of
quantum compact metric spaces and convergence of some of their symmetries,
for instance. Note that in some sense, such a study requires a Gromov-Hausdorff
metric which does indeed discriminate between *-automorphisms.

This note surveys our progress regarding the problem of preservation of sym-
metries of dynamics under convergence for the dual propinquity. We approach
this problem by actually taking our construction of the dual propinquity further
to include entire proper monoid actions by Lipschitz maps, which requires just
a small amount of changes to the basic concepts—hiding the difficulties in the
proofs of the basic properties. This observation alone suggests that the dual
propinquity is close to remembering something of symmetries by itself. This is
indeed vindicated by a sort of Arzéla-Ascoli theorem where equicontinuity con-
ditions ensure that convergence for the dual propinquity can be strengthened
to convergence of entire monoid or group actions. The equicontinuity condi-
tion is expressed using natural concepts associated with quantum metrics and in
particular, Lipschitz maps.

In the first section of this survey, we introduce the category of quantum com-
pact metric spaces and their Lipschitz morphisms. When discussing monoid
actions, we certainly want to use the right notion of morphism, and it turns
out that a natural picture emerges from the notion of quantum compact metric
spaces. We introduce the very natural ingredient which will then be used to
express our equicontinuity conditions on actions. The second section describes



68 FREDERIC LATREMOLIERE

the dual propinquity, as the basic object of our research. We then turn to the co-
variant propinquity in the last section. We construct this metric and then show
a compactness-type result which formalizes the notion of preservation of symme-
tries by the dual propinquity. We conclude with a discussion of the completeness
of the covariant propinquity and an example of covariant metric convergence.

1. The category of quantum compact metric spaces A quantum met-
ric space is a noncommutative analogue of the algebra of Lipschitz functions over
a metric space. The definition of such an analogue for compact metric spaces has
evolved from an observation of Connes [5] to the corner stone of our approach to
noncommutative metric geometry in a few key steps. Most importantly, Rieffel
observed [36}37] that the metric on state spaces in [5] was in essence a special
case of a noncommutative generalization of the construction of Kantorovich of
a distance on Radon probabilities measures by duality from the Lipschitz semi-
norm [12/[13]. The core features of the Kantorovich metric include the fact that
it metrizes the weak* topology, and this is taken as a starting point for identify-
ing those seminorms on C*-algebras which are candidates for noncommutative
Lipschitz seminorms.

Another feature of Lipschitz seminorms is that they satisfy the Leibniz in-
equality. The importance of this property was not fully evident at the beginning
of the study of quantum compact metric spaces, though the difficulties it in-
troduces in the study of noncommutative analogues of the Gromov-Hausdorff
distance were [40]. In fact, Rieffel’s distance [39] does not require that noncom-
mutative Lipschitz seminorms, then named Lip-norms, possess any such Leibniz
properties. We only realized much later that some form of connection between
the Lip-norms and the underlying multiplicative structure is in fact a means to
define a noncommutative Gromov-Hausdorff distance which is zero only when
the underlying C*-algebras are *-isomorphic. More importantly, as seen in our
work, such a connection enables us to push forward our program by making it
possible to study group actions on quantum compact metric spaces and appro-
priately defined modules over quantum compact metric spaces.

To express the connection between multiplication and noncommutative Lips-
chitz seminorms, we introduce, inspired by [14]:

DEFINITION 1.1. A function F : [0,00)* — [0,00) is permissible when F is
weakly increasing for the product order on [0,00)* and for all x,y, I, ly 20, we
have F(x,y,lz,1ly) = xly + yls.

Our definition for quantum compact metric spaces is thus as follows.

Notation 1.2. Throughout this paper, for any unital C*-algebra 2, the norm of
2l is denoted by |[|-||y, the space of self-adjoint elements in 2 is denoted by sa (),
the unit of 2 is denoted by lg and the state space of 2 is denoted by .7 ().
We also adopt the convention that if a seminorm L is defined on some dense
subspace of sa (2) and a € sa () is not in the domain of L, then L(a) = oo.
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DEFINITION 1.3 ([5}/24}|25L/36,37,/40]). An F-quantum compact metric space
(2, L), for a permissible function F', is an ordered pair consisting of a unital
C*-algebra 24 and a seminorm L, called an L-seminorm, defined on a dense
Jordan-Lie subalgebra dom (L) of sa (2(), such that:

(1) {a€sa(A):L(a) =0} =Rly,
(2) the Monge-Kantorovich metric mky defined for any two states ¢, € ()
by:
mk (e, ¥) = sup{|p(a) —¢(a)| : a € dom (L), L(a) < 1}
metrizes the weak* topology restricted to .7 (21),
(3) L satisfies the F-quasi-Leibniz inequality, i.e. for all a,b € dom (L):

mac L (0) L (P52) < Fllalla [l L, LO)),

(4) L is lower semi-continuous with respect to [|-||y.

We say that (2,L) is Leibniz when F' can be chosen to be F : z,y,l,,l, —
xly + yl,.

Definition ([1.3) is modeled after the following classical picture.

ExaMPLE 1.4. Let (X,d) be a compact metric space. For any f € C(X),
where C'(X) is the C*-algebra of continuous C-valued functions over X, we set

|f(z) = f()l
d(z,y)

allowing for the value co. Of course, L is the usual Lipschitz seminorm on C'(X).
Now, by [12,[13], the Monge-Kantorovich metric mk; does metrize the weak*
topology on the state space .#(C(X)), which by Radon-Riesz theorem is the
space of all Radon probability measures. Moreover, L(fg) < [[fllcx)L(9) +
L) 19llc(xy for all f,g € C(X), so (C(X),L) is a Leibniz quantum compact
metric space.

L(f)=Sup{ :m,yeXﬂc#y},

A truly noncommutative example of a Leibniz quantum compact metric space
was obtained by Rieffel in [36].

ExaMPLE 1.5 (|36]). Let G be a compact group with identity element e and ¢
be a continuous length function over G. Let 2 be a unital C*-algebra such that
there exists a strongly continuous action « of G on 2. For all a € 2, we define:

[a?(a) —ally
L(a —sup{:gGG e} ¢,
(a) o \fe}
allowing for the value co. The condition that « is ergodic, i.e. {a € 2 : Vg €
G a9(a) = a} = Clg, which is clearly necessary for (,L) to be a quantum
compact metric space, is proven by Rieffel in [36] to be sufficient as well.

This family of examples include:
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 quantum tori, where A = C*(Z4, o) for some multiplier o of Z?¢ (with d > 2)
and with G = T the d-torus, using the dual action «, R

* fuzzy tori, where G is a finite subgroup of T%, and A = C*(G, o) for some
multiplier o of G, again using the dual action as «,

* noncommutative solenoids [33], where G = 82 with p € N\ {0,1}:

Sp:{(zn)nE]NET]N:anIN Z£+1:Zn}

is the solenoid group, and where A = C* (Z [%] x 7 [%] ,O’) for some multiplier
ocofZ [ﬂ X 7 B}, and « is again the dual action. In [32], we computed the
multipliers of Z [%] X 7. [% which is naturally homeomorphic to the solenoid
group 8, and we classified all noncommutative solenoids up to *-isomorphism
in terms of their multipliers, computing their K-theory.

In all our examples, any continuous length function would provide a quantum
compact metric space. We will see later on that noncommutative solenoids and
quantum tori can be seen as elements of the closure of the class of fuzzy tori,
for our Gromov-Hausdorff propinquity, if we choose appropriately compatible
continuous length functions.

A completely different set of examples is given by AF algebras.

ExaMPLE 1.6 ([2]). Let % = cl (U,cn %n) be a C*-algebra which is the clo-
sure of an increasing union of a sequence of finite dimensional C*-subalgebras
(A )nen, i.e. an AF algebra. We assume that 2 carries a faithful tracial state
w. For all n € IN, there exists a unique conditional expectation E,, : 2 — 2,
such that po E, = u. We then define, for all a € A:

Lo =sup { 1= 2l v}

allowing the value co, and with (8(n))peny = (m)nem, or any choice of a
sequence of positive numbers converging to 0.

We note that for all a,b € 2, we have L(ab) < 2(||al/g L(b) + L(a) ||b||ly). So
(2, L) is a quantum compact metric space.

There are many other important examples of quantum compact metric spaces,
such as hyperbolic group C*-algebras [35], nilpotent group C*-algebras [4], other
quantum metrics on quantum tori [19,38], Podles spheres [1], various deforma-
tions of quantum metrics [21], and more.

The notion of a quantum locally compact metric space is more delicate to
define, since the behavior of the Monge-Kantorovich metric is more subtle in
this case [6]. We introduced such a notion in [16}/17], where we also study the
noncommutative bounded-Lipschitz distance.
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The class of quantum compact metric spaces forms the class of objects of a
category, which is helpful, for instance, in the appropriate definition for actions
of groups and semigroups on quantum compact metric spaces. There are several
natural definitions of what a Lipschitz morphism ought to be. Maybe the one
which is at first sight the least demanding is the following.

DErFINITION 1.7 (|22]). Let (2, Ly) and (B,Ly) be two quantum compact
metric spaces. A Lipschitz morphism m : (A, Ly) — (B,Ly) is a unital *-
morphism 7 : 2 — B such that w(dom (Ly)) C dom (La).

We now observe that in fact, there are important consequences to being a
Lipschitz morphism, based on the following theorem:

THEOREM 1.8 ([22]). Let (A,L) be a quantum compact metric space, with L
lower semi-continuous with domain dom (L). Let S be a seminorm on dom (L)
such that:

(1) S is lower semi-continuous with respect to || - ||,

(2) S(ly) = 0.

Then there exists C > 0 such that for all a € dom (L):
S(a) < CL(a).

We thus conclude, using Theorem ([1.8) and [39], that at least three natural
notions of Lipschitz morphisms are indeed equivalent.

THEOREM 1.9 ([2237,39]). Let (A, Ly) and (B,Ly) be two quantum compact
metric spaces and let m: A — B be a unital *-morphism. The following asser-
tions are equivalent:

(1) m: (A Ly) — (B,Ly) is a Lipschitz morphism,

(2) there exists k > 0 such that Ly o < kLy,

(3) there exists k > 0 such that ¢ € L (B) — @ o is a k-Lipschitz map from
(L (B), mkiy ) to (L (A), mkry ).

Moreover, the real number k in Assertion (2) and Assertion (3) can be chosen
to be the same.

Furthermore, the composition of two Lipschitz morphisms is a Lipschitz mor-
phism.

We will find it useful also allow for the notion of a Lipschitz linear map,
defined as follows:

DEFINITION 1.10 ([31]). Let (2, Ly) and (B,Ly) be two quantum compact
metric spaces. A Lipschitz linear map p : (A, Ly) — (B,Ly) is a positive
unit-preserving linear map p : A — 9B for which there exists k£ > 0 such that
L‘B ou < k’LQ[
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By Theorem , and with the notations of Definition , weA— Bis
Lipschitz linear if it is linear, positive, unital, and p(dom (Ly)) C dom (L ).

In general, there is a natural notion of dilation (or Lipschitz constant) for
Lipschitz morphisms and more generally, Lipschitz linear maps. This notion will
be useful in formulating equicontinuity condition later on when working with
actions of groups and semigroups.

Notation 1.11 ([22]). Let (U, Lgy) and (B, Ly ) be two quantum compact metric
spaces. If m: 2l — B is a unital positive linear map, then

dil (7) =inf{k >0:Va € sa(A) Lomw(a) < kL(a)}.

By definition, dil (7) < oo if and only if 7 is a Lipschitz linear map.

In [22], we use the notion of dilation for Lipschitz morphisms to define the
noncommutative version of the Lipschitz distance. The Lipschitz distance domi-
nates the dual propinquity we will review in the next section, and in fact, closed
balls for the Lipschitz distance are compact for the dual propinquity. Of course,
as in the classical picture, the Lipschitz distance is only interesting between *-
isomorphic C*-algebras endowed with various metrics, so it is much too strong
for most of our purpose.

Another useful tool when working with actions via Lipschitz morphisms will
be a metric on the space of *-morphisms, or more generally unital positive maps,
induced by L-seminorms. The following result generalizes slightly the last state-
ment of [22].

THEOREM 1.12 ([22]). Let (AU, Ly) be a quantum compact metric space and let
B be a unital C*-algebra. If for any two unital linear maps o, 8 from 2 to B,
we set

mkDy, (o, 8) = sup {[|a(a) — B(a)|ly : a € dom (L), L(a) <1},

then mkDy , is a distance on the space B1(2,B) of unit preserving bounded linear
maps, which, on any norm-bounded subset, metrizes the initial topology induced
by the family of seminorms

{a e B = |lafa)]|g :acA}.

PROOF. Let (ay)nen be a sequence of unit preserving linear maps converging
to some unital linear map a for mkDy, (,), and for which there exists some
B > 0 such that for all n € INU {oco}, we have |||an|||% < B, where ||||||%
is the operator norm for linear maps from 2 to B. Let a € sa(2A) and ¢ >
0. Since dom (Ly) is dense in sa(2A), there exists ' € dom (Ly) such that
la —a’|ly < 5%5. By definition, there exists N € IN such that for all n > N, we
have mkDy, (o, @oo) < grgransgy- Thus
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oo (@) — an(a)HsB

< lan(a = d)llg + lan(@’) — ase(@) g + o (a — )| <e.

Thus for all a € sa (), the sequence (o, (a))nen converges to as(a). By linear-
ity, we then conclude (o, (a))nen converge to aus(a) for ||-||gy-

Conversely, assume that for all a € 2, the sequence (a;,(a))nen converges to
o (@) in B, and again assume that there exists B > 0 such that for all n € NU
{o0}, we have H|an|H% < B. Let € > 0 and fix o € (). As Ly is a L-seminorm,
L ={a€sa() : Ly(a) < 1,u(a) = 0} is totally bounded. Thus, there exists
a finite ;5-dense set F' C L of L. As F' is finite, by assumption, there exists
N € IN such that for all n > N and all a € F, we have [|a,(a) — as(a)|lg < §.
If n > N and a € sa () such that Ly (a) < 1 then there exists a’ € F such that
lla — p(a)ly —a'lly < 5%, and thus

lom (@) = aso (@)l < [lam(a = pla)la) — aoo(a — pla)la)lly
< llen(a = pla)la = a)g
+ [lan (@) = aco (@)l + lce (@ — p(a)la) — o[l

£ I £
<BS .+ S4B° .
3sg T3 tP3p<°¢

Thus for n > N, we have mkD|, (cp, 0oo) < €. O

There are of course at least four common notions of morphisms over the cate-
gory of metric spaces: continuous functions, uniformly continuous functions, Lip-
schitz functions, and isometries. Continuous functions correspond to *-morphism
of course. As we work with compact metric space, uniform continuity and conti-
nuity are equivalent. We just define the notion of Lipschitz morphism. For our
work, we also will need to understand what a quantum isometry should be.

Rieffel observed that McShane’s theorem [34] on extension of real-valued Lip-
schitz functions can be used to characterize isometries. The emphasis on real-
valued Lipschitz functions, rather than complex valued, means for our purpose
that the isometric property will only involve self-adjoint elements. The definition
of a quantum isometry is thus given by:

DEFINITION  1.13 ([37,139]). Let (A, Lgy) and (B,Ly) be quantum compact
metric spaces.

e A quantum isometry 7 : (A, Ly) — (B, Lx) is a *-epimorphism from A onto
B such that for all b € dom (Lg)

Ly (b) = inf {Ly(a) : 7(a) = b} .

o A full quantum isometry m : (A, Ly) — (B,Ly) is a *-isomorphism from 2A
onto B such that Ly o m = Ly.
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We observe that in [39], Rieffel proved that quantum isometries can be chosen
as morphisms for a category over quantum compact metric spaces; this is a
subcategory of the category of quantum compact metric spaces with Lipschitz
morphisms (as quantum isometries are obviously 1-Lipschitz morphisms).

The notion of full quantum isometry is essential to our work: it is the notion
which we take as the basic equivalence between quantum compact metric spaces,
i.e. two quantum compact metric spaces are, for our purpose, the same when
they are fully quantum isometric.

2. The Gromov-Hausdorff Propinquity The Gromov-Hausdorff
distance [9,/10] is a complete metric up to full isometry on the class of proper
metric spaces, initially described by Edwards for compact metric spaces [7]. This
metric is an intrinsic version of the Hausdorff distance [11]. It is constructed by
taking the infimum of the Hausdorff distance between any two isometric copies
of given compact metric spaces. By duality, as we have a notion of quantum
isometry, we obtain a notion of something we shall call a tunnel between two
quantum compact metric spaces.

DEFINITION 2.1 ([20]). Let (24,L;) and (2, Ls) be two F-quantum compact
metric spaces for a permissible function F. An F-tunnel 7 = (D, L, 71, m2) from
(24, L) to (Az,L2) is a F—quasi-Leibniz quantum compact metric space (D, L)
and for each j € {1,2}, a quantum isometry m; : (D,L) — (;,L;). The space
(24,L;) is the domain dom (1) of 7, while the space (s, Ls) is the codomain
codom (1) of 7.

(X,dx) (Y,dy)

Figure 1: Isometric Embeddings

We need to associate a quantity to any given tunnel which estimates how
far apart its domain and codomain are. The following quantity is the choice
which gives us the best construction of our propinquity [28], though a certain
alternative method can be found in [20] where the dual propinquity was originally
developed.
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(@,L@)

et k’

(A, L) (B, L)

Figure 2: A tunnel

T TR

((D), mkiy)
(' (), mky ) (- (B), mkiy )

Figure 3: Isometric Embeddings of state spaces induced by tunnels

DEFINITION 2.2 ([28]). The extent x (1) of a tunnel 7 = (D, L, 71, 72) is given
as the real number

max_ Hausmi, (Z(D),{pom:p e L(A)}).
Jje{1,2}

Tunnels between two quantum compact metric spaces involve a third one, and
we have to choose what properties, if any, this third quantum compact metric
space should possess. The most important restriction we must impose for our
theory to work is a particular choice of permissible function, i.e. of a quasi-
Leibniz inequality satisfied by all three L-seminorms. The key is that the choice
must be uniform throughout our construction of the propinquity, so that the
propinquity is indeed a metric up to full quantum isometry. The quasi-Leibniz
inequality is used to obtain the multiplicative property.

There may be situations which require more properties for L-seminorms. An
example is the strong Leibniz property introduced by Rieffel in [40]. Thus, it is
helpful to keep some level of generality in our construction by allowing flexibility
in restricting the class of tunnels used, beyond the quasi-Leibniz restriction. In
order for our construction to lead to a metric, we ask that a chosen class of
tunnel meet the following definition.

DEFINITION 2.3 (|28]). Let F' be a permissible function. A class 7 of F-tunnels
is appropriate for a nonempty class € of F-quantum compact metric spaces when

(1) for every 7 € T, we have dom (7), codom (7) € C,
(2) for every A, B € C, there exists 7 € T with domain A and codomain B,
(3) if 7= (®D,L,m,p) €T then 71 = (D,L,p,m) €T,
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(4) if e > 0, and if 7,7 € T with codom (71) = dom (72), then there exists
7 € T with dom (7) = dom(71), codom (7) = codom (72), and x (1) <
X (11) + x (72) +¢,
if (A, Ly),(*B,Ly) are in € and if there exists a full quantum isometry
70 (ALy) — (B,Lay), then (A Ly, id) € T, with id the identity *
automorphism of 2.

We proved in [28] that the class of all F-tunnels is appropriate for the class
of all F-quantum compact metric spaces, and this is, for our own work, the sort
of class we work with (note that we must impose the restriction to work with
tunnels which all share the same quasi-Leibniz inequality, as parameterized by
Notation 2.4. Let T be a class of tunnels appropriate for a nonempty class of
F-quantum compact metric spaces C. The set of all F-tunnels in T from (2, Lg)
to (B, Lsy), both chosen in C, is denoted by

%4(9{ La) — (B, L%)} .

When 7 is simply the class of all F-tunnels, we then write the class of all F-
tunnels from (2, Ly ) to (B, Ly), for any two F-quantum compact metric spaces
A, B, by

74(&( La) -2 (B, L%)} .

The dual Gromov-Hausdorff propinquity is now constructed using the same
technique as Edwards’ and Gromov’s. It enjoys many good properties, among
which is being a metric up to full quantum isometry.

THEOREM-DEFINITION 2.5 ([20,/24,(25128]). Let T be a class of tunnels appro-
priate for a nonempty class of F-quantum compact metric spaces for some per-
missible function F'. We define the dual T-propinquity between any two quantum
compact metric spaces (A,L) and (B,L) in C as the real number

N5((, Lay), (B, L)) = inf{x(r) 7€ T |(W, L) L (‘B,L%)H .

The dual propinquity is a metric up to quantum full isometry on C, i.e. it is
a pseudo-metric on € such that any A, B € C are fully quantum isometry if and
only if NS(A,B) = 0.

Moreover, if (X,dx) and (Y,dy) are two compact metric spaces and if Lx
and Ly are the Lipschitz seminorms induced respectively on C(X) by dx and
C(Y) by dy, and if GH is the usual Gromov-Hausdorff distance, then

GH((X, dx), (Y, dy)) < A7 ((C(X), Lx), (C(Y), Ly)),

as long as (C(X),Lx),(C(Y),Ly) € C, and the topology induced on the class of
classical metric spaces in C via N}, is the same as the topology induced by the
Gromov-Hausdorff distance.
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Last, let us denote by Ny the dual propinquity induced on all F-quantum
compact metric spaces using all possible F-tunnels. Then N is complete if F' is
continuous.

Thus in particular, A} is a complete metric up to full quantum isometry
which induces the same topology as the Gromov-Hausdorff distance on classical
compact metric spaces. This is the main tool for our research.

We note that completeness is a desirable property for obvious reasons, includ-
ing the study of compactness. We derive an analogue of Gromov’s compactness
theorem in [25].

Now, in order to actually prove convergence results for the dual propinquity,
it is of course desirable to have a prolific source of tunnels for any two quan-
tum compact metric spaces. We actually first discovered this source in [24]
before we introduced tunnels [20]. The idea behind a bridge could be said to
be a far-reaching generalization of the idea of an intertwiner between two *-
representations of a C*-algebra, though we now work with representations of
two different C*-algebras, restricting ourselves to faithful unital representations
on the same space, and we will learn to measure how good of an “approximate
intertwiner” a particular bridge is. This informal idea begins with the following
definition.

DEFINITION 2.6 (]|24]). Let 203 and 23 be two unital C*-algebras. A bridge
v =(D,z,71,72) is a given by

(1) a unital C*-algebra D,

(2) for each j € {1,2}, a unital *-monomorphism 7; : A; — D,

(3) an element x € D, called the pivot of 7, for which there exists a state
v € (D) such that o((1 —z)*(1 —2)) = ¢((1 —2)(1 —x)*) = 0.

The domain dom (vy) of v is ; while the codomain codom (y) of 7 is 2As.

To measure how far apart the domain and codomain of a bridge are, the
following two objects which arise immediately from our definition will be helpful.

Notation 2.7 ([24]). Let v = (D, x, my, ) be a bridge from A to B, where A
and 9B are unital C*-algebras. The 1-level set of x in D is the set of states

L1(B|z) ={p e Z@)lp((1 —2)"(1 —z)) = p((1 = z)(1 —2)*) = 0}.
Moreover, we define a seminorm on 2 & B by setting for all a € 2, b € B:
bn, (a,b) = ||me(a)r — zmes (D) 5 -

We now associate a number to our bridge. In the following definition, it
may be helpful to think of the height as measuring how far the pivot is from

the identity in a manner employing the quantum metrics. On the other hand,
the reach measures how far apart the domain and the codomain are using our
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almost intertwiner, the pivot, and the seminorm it defines. Importantly, all the
quantities used to quantify a bridge involve the quantum metrics, which are not
used in defining the bridge itself.

DEFINITION 2.8 ([24]). Let (2,L1) and (U2, L3) be two quantum compact
metric space. If v = (D, z, 71, m2) is a bridge from 24 to Ay then:

(1) the height < (y|La, Las) of «y is the real number

max_Hausmi, (L (), {pom:pe A(D|x)}),
Jje{1,2} ’

(2) the reach o(7|L1,Ls) of v is the real number
Hauspn, ({(a,0) :a € sa(A1),Li(a)}, {(0,0) : b € sa(™Aa),La(b) < 1}),

(3) the length A (v|L1,L2) of v is max {¢ (y|L1, L2), 0 (v|L1,L2)}.

We now see that bridges provide a mean to build tunnels. This is how most
non-trivial tunnels are constructed in our work so far. Maybe a main reason for
this fact is that constructing L-seminorms is usually delicate, but bridges provide
such L-seminorms in a systematic manner and moreover, their length gives an
estimate on the extent of the resulting tunnel.

THEOREM 2.9 ([20,124]). Let (U, Ly) and (B,Ly) be two F-quantum compact
metric spaces for some permissible function F. If v = (D, x,my, ms) s a bridge
from A to B, if € > 0 is chosen so that A = A (y|Ly, L) + € > 0, and if, for all
(a,b) € sa(A) ®sa(B), we set

L(a,b) = max {Lm(a), Ly (b), %bn7 (mb)} ,

then (A & B, L, pa, ps ), where py : (a,b) € ABB — a and ps : (a,b) € ABDB —
b, is an F-tunnel from (A, Ly) to (B, L), of extent at most A.
In particular
Ap((2, L), (B, Le)) < A(7[La, Las).

We used the construction of appropriate bridges to prove the following exam-
ples of convergence for the dual propinquity.

ExaMPLE 2.10 (|20]). Let ¢ be a continuous length function on T¢. For any

GCT?a closed subgroup and o a multiplier of the Pontryagin dual G of G , for
any a € C*(G,0), we set as in Example 1)

la?(a) —a

£(g)

Lao(a) = sup{ 0*(Gro) :g €GN\ {1}}
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where a is the dual action of G on C*(G, 0).

If (Gp)nen is a sequence of closed subgroups of T? converging to T? for
the Hausdorff distance Hausy, and if (¢, )nen is a sequence of multipliers of Z¢
converging pointwise to some o, with 0,(g) = 1 if g is the coset of 0 for é; ,
then: e

nh—>néo /\*((C*(Gna an)a Lé:l70'n)7 (C*(Zd7 U)v LZd,U)) = 0.

In particular, the function which maps a multiplier to a quantum torus is

continuous for the dual propinquity, and quantum tori are limits of fuzzy tori.

ExamMpLE 2.11 ([33]). Noncommutative solenoids are limits of quantum tori,
and consequently, limits of fuzzy tori, for the dual propinquity, for the appropri-
ate choice of a metric on the solenoid groups.

ExaMPLE 2.12 (]|2]). We use the same notation as in Example (1.6). We then
have:

o (L) =A*" —lim, 00 (™An, L),
¢ the natural map from the Baire space to UHF algebras is Lipschitz.

Another example is given by the Effros-Shen algebras [8]. For 6 € (0,1) \ Q,

1

2] 7]
let 0 = lim,,— o0 % with % = . for ai,... € IN.

a1+
a + ———

1
a

Set ATy = li_n>1n_>O<> (Sﬁqn &) E)J?qn_l,d)n,g) where 1y, ¢ is defined by:

a

(a,b) e My, &M, , — ,a

Let Ly the L-seminorm for this data as in Example ([1.6). For all § € (0,1)\Q,
we have:

lim A*((leﬂa Lﬂ)) (91%97 L@)) =0.

V—6

9ZQ
A final remark in this section concerns the following question: could we
choose, in the construction of the dual propinquity, only those tunnels which
emerge from bridges as in Theorem (2.9)? We do not know, nor believe, that
tunnels obtained from bridges form an appropriate class with the class of all
F-quantum compact metric spaces for any particular permissible function F.
The problem can be summed up by saying that given two bridges v, and 5 with
codom (1) = dom (72), we do not know how to build a single bridge whose length
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is approximately the sum of the lengths of v; and 72, going from dom (v;) to
codom (7). This, in turn, means that our construction of the propinquity would
fail to satisfy the triangle inequality. This issue was nontrivial and is the tip
of the iceberg regarding the difficulties of working with Leibniz or quasi-Leibniz
seminorms.

However, [28, Theorem 3.1] does essentially show us how to take the “clo-
sure” of the class of all tunnels-from-bridges to obtain an appropriate class for
all quantum compact metric spaces. It turns out that in the case of tunnels
constructed from bridges, |28, Theorem 3.1] can be seen as introducing between
~v1 and 7, as above, a very short bridge from codom (y;) to dom (v2). Thus,
[28, Theorem 3.1] dictates that we really want to work, not just with bridges,
but with tunnels built by a finite collection of bridges, each ending where the
next starts. The very short in-between bridges can in fact be taken so short as
to have length zero in this case, and disappear—Ileaving us with the idea of treks
which we used, in our first work on the propinquity [24], to define a first form of
the propinquity called the quantum propinquity.

We note that the length of a bridge dominates the extent of its canonically
associated tunnel by Theorem , so even reconciling the idea of treks with
the idea of almost composition of tunnels as in [28, Theorem 3.1] does not mean
the quantum propinquity, which uses the length of bridges directly rather than
the extent of the associated tunnels, is equal to the dual propinquity—the former
still dominates the latter as far as we can tell. But the two pictures are now
closer together.

As is seen for instance with quantum tori, group actions can be used as a
means of transport of structure to define a noncommutative geometry. Semi-
groups, or rather semigroups of completely positive unital maps, can be inter-
preted as a form of noncommutative heat semigroups, and give rise to a dif-
ferential calculus where the generator of the semigroup is a noncommutative
Laplacian. Both are very interesting and important models for noncommuta-
tive geometry. More generally, symmetries have been a central concept in the
development of mathematical physics models in particle physics, so, with our
motivation for this research program in mind, we want to understand: what is
the interplay between symmetries as encoded in group actions, and dynamics
encoded as group or semigroup actions, and the dual propinquity, and our ap-
proach to noncommutative metric geometry? There are actually some rather
pleasant facts regarding these matters, and we begin by describing how to cap-
ture group and semigroup actions in our metric framework—only to see later a
nice compactness-type result which shows that the dual propinquity is keen to
remember some symmetries of spaces, under natural non-degeneracy conditions.

3. The Covariant Propinquity = We begin by defining the objects on which
we are going to define an extension of the dual propinquity. The idea is to bring
together a metrized group or semigroup, a quantum compact metric space, and
an action of the former on the latter by Lipschitz morphisms, or at least Lipschitz
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linear maps.
We thus begin with:

DEFINITION 3.1. A proper monoid (G,6) is a monoid (i.e. a set G endowed
with an associative binary operation and with an identity element) and a left-
invariant distance 0 on G whose closed balls are all compact.

For any two proper monoids (G, d¢) and (H,d0x), a proper monoid morphism
7m:(G,0q) = (H,dy) is a map from G to H such that:

e 7 maps the identity element of G to the identity element of H,
* Vg.he G m(gh)=m(g)m(h),

e 7 is continuous.

DEFINITION 3.2 (|31]). Let F' be a permissible function. A Lipschitz dynamical
F-system (A, L,G,d, ) is given by:

(1) an F-quantum compact metric space(2, L),
(2) a proper monoid (G, §),
(3) a strongly continuous action « of G on : for all a € 2 and g € G, we have:
. h g _
lim [ (@) - a?(a) |, = 0.

(4) g € G — dil(a9) is locally bounded: for all € > 0 and g € G there exist
D > 0 and a neighborhood U of g in G such that if h € U then dil (ah) < D.

A Lipschitz C*-dynamical F-system (,L,G,J,«) is a Lipschitz dynamical
system where G is a proper group and af is a Lipschitz unital *-automorphism
for all g € G.

We now wish to endow classes of Lipschitz dynamical systems with a sort of
dual propinquity. To this end, we first must understand how to define a Gromov-
Hausdorff distance for proper monoids. We propose the following construction,
which encompasses natural ideas, but in a manner which defines a nice metric.

Notation 3.3. For a metric space (X,0), if x € X and r > 0, then the closed
ball in (X, ) centered at x, of radius r, is denoted X[z, r], or simply X[z, r]. If
(G, 0) is a metric monoid with identity element e € G, and if r > 0, then Gle, 7]
is denoted by G[r].

We define our distance between two proper metric monoids (Gi,d1) and
(Ga2,02) by measuring how far a given pair of maps ¢; : G; — G5 and ¢ :
G2 — G are from being an isometric isomorphism and its inverse.

DEFINITION 3.4 ([31]). Let (G1,61) and (G2, d2) be two metric monoids with
identity elements e; and es. An r-local e-almost isometric isomorphism (s1,c2),
for e > 0 and r > 0, is an ordered pair of maps ¢1 : G1[r] = G2 and <3 : Ga[r] —
G such that for all {j,k} = {1,2}:

Vg,g' € Gjlr] Vhe Grlr]  10k(si(9)si(g'), h) — d;(99",sk(h))| <,
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and
si(ej) = ex.

The set of all r-local e-almost isometric isomorphism is denoted by:
Ulso. ((Gh (51) — (Gg,ég)‘r).

Our covariant Gromov-Hausdorff distance over the class of proper metric
monoids is then defined along the lines of Gromov’s distance. The bound § is
just here to ensure that our metric satisfies the triangle inequality. Our construc-
tion follows Gromov’s insight on how to define an intrinsic Hausdorff distance
between pointed, proper spaces—rather than the Edwards definition we used
for quantum compact metric spaces—where we chose as base point the identity
elements.

DEFINITION 3.5 ([31]). The Gromov-Hausdorff monoid distance
YT((G1,01), (G2,d2)) between two proper metric monoids (G1,4d1) and (Ga, d2)
is given by:

T((G1,81), (G2,8)) =

min{\f,inf {6 > 0’U|SOE ((G1,51) — (G2,52)

i)#z}}_

THEOREM 3.6 (|31]). For any proper metric monoids (G1,01), (Ga,d2) and
(G37(53).‘

) T((G1751)7(G2752)) < 2 s

) Y((G1,01), (G2,02)) = T((G2,62), (G1,61)),
) <Y

)

We then record:

2

(
Y((G1,61),(G3,03)) ((G1,61), (G2,02)) + T ((G2,62), (G3,83)),
If Y((G1,61), (G2,02)) = 0 if and only if there exists a monoid isometric
isomorphism from (G1,61) to (G, d2).

In particular, T is a metric up to metric group isometric isomorphism on the
class of proper metric groups.

Moreover, if (G,dqc) and (H,dg) are two proper metric monoids with units
eq and ey then:

GH((Gv 5G7 6g), (Hv 5H7 eH)) < T((Ga 5G)a (Ha 5H))’

where GH is the Gromov-Hausdorff distance for pointed, proper metric spaces
19].

We now have a metric on the class of proper monoids and a metric on the
class of quantum compact metric spaces—the dual propinquity discussed in the

previous section. We want to bring them together. We propose to merge the
notion of tunnel and the notion of almost isometry as follows.
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DEFINITION 3.7 (|31]). Let ¢ > 0 and F be a permissible function. Let
(A1, L1, G, 01,a1) and (Ag, Lo, Ga, 02, ) be two Lipschitz dynamical F-systems.
A e-covariant F-tunnel

7 = (0,61, %)

from (A, Ly,G1,01,01) to (™Ag, Lo, Ga, 62, a2) is given by an F-tunnel v from
(9[1, |_1) to (2[2, LQ) and a pair

1

- )

We make two remarks. First, a covariant tunnel does not involve any action
on the underlying tunnel: the actions of the domain and codomain are not
involved in the definition of the covariant tunnels themselves. We will include
these actions in our quantification of a covariant tunnel later on. Second, we do
work with a quantified almost isometry, rather than just a pair of unit-preserving
maps. This construct is the path we use to define the covariant propinquity, as
it seems to make it easiest to prove such properties as the triangle inequality.

We now quantify covariant tunnels. Of course, covariant tunnels come with
a number which is related to the metric T by definition, and we also have the
extent of the underlying tunnel available to us. What is left is to involve the
actual actions in some measurement. The following concept is a generalization
of the reach of a tunnel as defined in [20].

(§1,§2) S U|SOE <(G1,51) — (G2,52)

DEeFINITION 3.8 ([31]). Let e > 0. Let Ay = (%,L1,G1,61,1) and Ay =
(g, Lo, G2, 02, an) be two Lipschitz dynamical systems. The e-reach p (7]e) of a
e-covariant tunnel 7 = (D, Lo, 71, 72,61, 52) from A; to As is given as:

Zj (9) ° 7Tlc)

inf k 9o,
sup{qbegl(mk)m LD((poaJ omj, o

. 1
(i) = (12hp € 7@€ G |1 |,
We now bring all the data we have so far on covariant tunnels into one quan-

tity.

DEFINITION 3.9 (|31]). The e-magnitude p(7|e) of a e-covariant tunnel 7 is
the maximum of its e-reach and its extent:

p(7le) = max{p (rle), x (1)} .

As with the dual propinquity, we have a natural notion of an appropriate class
of covariant tunnels.

DEFINITION 3.10. Let F' be a permissible function. Let € be a nonempty class
of Lipschitz dynamical F-systems. A class T of covariant F-tunnels is appropriate
for € when:
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(1) for all A,B € C, there exists a e-covariant tunnel from A to B for some
e >0,

(2) if 7 € T, then there exist A, B € € such that 7 is a covariant tunnel from A
to B,

(3) if A = (A, Ly, G, dg,a), B = (B,Ly,H,dn, ) are elements of €, and if
there exists an equivariant full quantum isometry (7,<) from A to B, then:

(ma Lﬂvidﬂvﬂ-vgagil) ) (%7 L’Baﬂ—ilvid%vgilvg) € ‘Ta

where idg(, idg are the identity *-automorphisms of 2 and 9B,

(4) if 7 = (D,L,7m,p,6, %) €T then 7= = (D,L, p,m, 5,6) € T,

(5) if e > 0 and if 7,70 € T are g—tunnels, then there exists § € (0,¢] such
that 7 o5 79 € 7.

Notation 3.11. Let T be a class of covariant tunnels appropriate for a nonempty
class of Lipschitz F-dynamical systems C. The set of all e-covariant F-tunnels
in 7, for any € > 0, from A to B, both chosen in €, will be denoted by:

%ﬂgé’[ﬁ = IBH.

When T is simply the class of all Lipschitz F-dynamical systems, we shall then
write the class of all F-tunnels from A to B as:

(5)5&7272% |:A L B‘E:| .
We now can define the covariant propinquity between Lipschitz dynamical
systems.

DEFINITION 3.12 (|31]). Let € be a nonempty class of Lipschitz F-dynamical
systems for a permissible function F and let T be a class of covariant tunnels
appropriate for €. For A,B € C, the covariant T-propinquity AY(A,B) is
defined as:

2 &, z
min {\g,inf {E > 0’37’ € Ternnels [A 7, ]BM wu(rle) < 5}} .
Definition (3.12)) indeed defines a metric up to the equivariant full quantum
isometries:
THEOREM 3.13 (|31]). Let € be a nonempty class of Lipschitz F-dynamical
systems for a permissible function F and let T be a class of covariant tunnels

appropriate for C. If (A, Ly, G,0G,a) and (B, Ly, H,0m, ) in C then:

A‘CJ'OV((Q’lv Lm, G7 5Ga Oé), (%7 L‘Ba H, 6H»6>) =0
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if and only if there exists a full quantum isometry m: (A, Ly) — (B,Ly) and an
isometric isomorphism of monoids ¢ : G — H such that:

VgeG goa?=p9 oy,

i.e. (A, Ly, G,0g,a) and (B,Lw, H,dp, ) are isomorphic as Lipschitz dynami-
cal systems.

We now wish to explore the issue of completeness of the covariant propinquity.
The important observation in the following theorem is if we start from a con-
vergent sequence of F-quantum compact metric spaces for the dual propinquity,
and some converging sequence of proper monoids for YT, and if the monoids act
on the quantum compact metric spaces entry-wise, then a simple equicontinuity
condition, expressed using the notion of dilation for Lipschitz morphisms, is all
that is required to get a subsequence of the sequence of Lipschitz dynamical
systems thus constructed to converge for the covariant propinquity. In other
words, the dual propinquity wants to remember symmetries, as long as they do
not degenerate. This idea is captured in its full power in our work in [27], which
establishes a very general result regarding semigroupoid actions. The following
theorem is a consequence of [27] and captures this idea formally.

THEOREM 3.14 (|29]). Let (2, L) be an F-quantum compact metric space and let
(G, 9) be a proper monoid. Let (U, Ly, G, dn, @y )nen be a sequence of Lipschitz
dynamical systems and let D : [0,00) — [0,00) be a locally bounded function such
that:

) foralln € N and g € G, we have dil (a2) < D(6n(en,9)),
2) limy 00 Y((Gr,dn), (G,6)) =0,

) limy,—y 00 AV (A, L), (2A,L)) =0,

) for all e > 0, there exists w > 0 and N € N such that if n > N and if
g, h € Gy, with 6,(g, h) <w, then mkDy, (ad,al) <e.

Then there exists a strictly increasing function j : N — IN and a Lipschitz
dynamical system (2, L, G, 0, a) such that:

A (A nys Limys Gmys Sy @i(my)s (A, L, G, 8, 2)) 2= 0.

Moreover:

e if for all n € WN, the map «, is a *-endomorphism, then a is also a *-

endomorphism,

e if for all n € N, the monoid G, is a proper group, the map o, is a full
quantum isometry, then a is also a full quantum isometry,

e if for all n € IN, the monoid G,, is a compact group, and if the action «a, is
ergodic, then « is ergodic as well.
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Before we apply Theorem to finding sufficient conditions on Cauchy
sequences of Lipschitz dynamical systems, we observe some of its more immediate
important consequences.

It is usually very difficult to determine the closure, for the dual propinquity, of
a given set of quantum compact metric spaces. For instance, note that quantum
tori are all members of the closure of all Leibniz quantum compact metric spaces
over finite dimensional C*-algebras by [18]. In that same closure, one also finds
all classical compact metric spaces, and noncommutative solenoids. Relaxing
the Leibniz inequality to work within some also quasi-Leibniz class of quantum
compact metric spaces (specifically, the so-called (2,1)-quasi-Leibniz quantum
compact metric spaces of [25]), we then find that the closure of finite dimensional
(2, 1)—quasi-Leibniz quantum compact metric spaces for the dual propinquity
contains all AF algebras [2], and all Leibniz quantum compact metric spaces
whose underlying C*-algebras are nuclear quasi-diagonal by [25]. One technique
to compute closures is to invoke a compactness result. For instance, various
classes of AF algebras are shown to be compact for the dual propinquity in [2].
Theorem offers another technique.

As an example [27], let M be the class of all finite dimensional Leibniz quan-
tum compact metric spaces carrying an ergodic action of SU(2) by quantum
isometries. Then by Theorem , any limit of any convergent sequence in M
must also carry an ergodic action of SU(2), so it must be of type I—in fact, it
must be a bundle of matrix algebras over a homogeneous space for SU(2). This
is a very nontrivial observation showing the power of Theorem .

To study the completeness of the covariant propinquity, it is helpful to first
have a general idea of what conditions on Cauchy sequences for T make them
convergent. The condition we exhibit is a form of equicontinuity for right trans-
lations. To formulate this condition, we write:

[ Gn={(gn)nen :3IM >0 ¥neN g, G,[M]}.
nelN

Our equicontinuity condition will be expressed using the following notion of
regularity.

DEFINITION  3.15 (]29]). Let (Gpn,dn)nen be a sequence of proper monoids.
The set of regular sequences R((Gr, dn)nen) is:

Ve>0 JdJw>0 INeN
(gn)nEIN € H Gn vn > N Vh’ ke Gn
nelN 5n(h7 k) <w — 5n(hgn7 kgn) <e.

We can now phrase a sufficient condition for a Cauchy sequence of proper
monoids to converge for T.

THEOREM 3.16 ([29]). Let (Gpn,0n)nen be a sequence such that for all n € N,
there exist €, > 0 and

S

En

(Sny 32n) € Ulsog, ((Gn,dn) — (Gn+1,0n+1)
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such that:

(1) Ynzoen <00,
1 .
(2) for all Ne N and g € Gy {m}

gn = €n an < N,
wn(g) = gn=9g ifn=N, € R((Gp,0n)nen)-
In = Sn-1(gn-1) if n > N e

Then there exists a proper monoid (G, 6) such that lim,,_, o Y((Gn,0n), (G,0)) =
0.

We note that if we work with proper monoids endowed with bi-invariant met-
rics, then our regularity condition is automatic since all sequences are regular in
the sense of Definition (3.15]). More generally, any reasonable form of uniform
control of the Lipschitz constant of right translations can be used to prove that
sequences are regular. In [29], we show how to exploit this idea to construct a
complete version of T on a class of proper monoids including proper monoids
with bi-invariant metrics as a proper subclass.

Putting together our compactness theorem and our sufficient condition for
convergence of T-Cauchy sequences of proper monoids, we get the following
sufficient condition for convergence of Cauchy sequences in the covariant propin-

quity.
COROLLARY 3.17. Let F be permissible and continuous and let D : [0,00) —

[0,00) be a locally bounded function. Let (U, Ly, Gp, 0n, @ )nen be a sequence of
Lipschitz dynamical F-systems and (e, )nen a sequence of positive real numbers

such that for alln € N, there exists €, >0 and (s, ¢,) € Ulso,, (Gn — Gt i)
and:

(1) Yoo pen < 0o,
(2) foralln e N and g € G-

gn =en if n <N,
gn=gifn=N, € :R((Gm 5n)n61N)7

gn = §n(gn71) an >N neN

(3) Vne N A*((Un,Ln), (Ans1,Lat1)) <en,

(4) Lnoad < D(dn(en,g))Ln,

(5) for all e > 0, there exists w > 0 and N € N such that if n > N and if
g,h € Gy, with 6,(g,h) < w, then mkDy (a%, ozﬁ) <e.

Then there exists a Lipschitz dynamical F-system (2, Ly, G, 6, ) such that:

lim AV ((,, Ln, Gn,0n, o), (A, La, G, 6, 0)) = 0.

n— oo
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Moreover, if for all n € W, the action «, is by *-endomorphisms (resp. full
quantum isometries, when G, is a group for all n € W), then so also is the
action «.

We conclude this section with an example of an explicit covariant conver-
gence. We note that Theorem provides many examples of convergent
subsequences for the covariant propinquity, arising from convergent sequences
for the dual propinquity; however these convergent subsequences arise from an
implicit construction.

As may be expected, it is helpful to return to the notion of a bridge when
working with the covariant propinquity. Let there be given two Lipschitz C*-
dynamical systems (2, Ly, G,dq, @) and (B, Ly, H,dy, ), and let us start with
a bridge v = (D, x, my, 7 ) from A to B. Let there also be given some pair

1
(s, 5) € Ulso, <(G, da) — (H, 5H)'€>.
Now, there is a natural means to define a new seminorm from this data, which

incorporates the actions into the bridge seminorm, by setting, for all (a,b) €
A D B:

bn, ¢ . (a,b) = max {bnnY (oz-"(a),ﬁ“(g)(b»,bn7 (a”(h’)(a), Bh(b)) :

1 1
geGH,heHH }
€ €
We can then adjust the notion of the reach of a bridge using our modified

bridge seminorm to prove an analogue [31, Proposition 4.5] of Theorem (2.9).
Using such a technique, we can prove:

THEOREM 3.18 ([31]). Let ¢ be a continuous length function on Te. Let
(Gp)nen be a sequence of closed subgroups of T¢ converging to T for the Haus-
dorff distance induced by ¢ on the closed subsets of T%.

Let (0)nen be a sequence of multipliers of Z* converging pointwise to o and
such that o, is the lift of a multiplier of the Pontryagin dual (/}'\n/gf G-

For all n € N, denote by oy, the dual action of G, on C*(G,,0n) and by
a the dual action of T on the quantum torus C*(Z%,0), and consider the L-
seminorms L, and L induced by Example .

Denote by A the covariant propinquity for the class of all Leibniz Lips-
chitz C*-dynamical systems, and identify, for the sake of simplicity, the distance
induced by ¢ and £ itself. Then

lim A ((0*(@7%)7 LG, L, an) ’ ((J*(Zd,a% L, T, ¢, a)) =0.

n—roo
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