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ABSTRACT.  We study normal analytic compactifications of C? and
describe their singularities and configuration of curves at infinity, in par-
ticular improving and generalizing results of [5]. As a by product we give
new proofs of Jung’s theorem on polynomial automorphisms of C2 and
Remmert and Van de Ven’s result that P2 is the only smooth analytic com-
pactification of C2 for which the curve at infinity is irreducible. We also give
a complete answer to the question of existence of compactifications of C2
with prescribed divisorial valuations at infinity. In particular, we show that
a valuation on C(z,y) centered at infinity determines a compactification of
C? iff it is positively skewed in the sense of [8].

RESUME. Nous étudions les compactifications analytiques normales de
C2 et décrivons leurs singularités et la configuration des courbes & I'infini,
en particulier ameliorant et généralisant les résultats de [5]. Comme un
sous-produit, nous donnons de nouvelles preuves du théoréme de Jung sur
les automorphismes polynomiaux de C? et le résultat de Remmert et Van
de Ven que P? est la seule compactification analytique lisse de C2 pour la-
quelle la courbe & 'infini est irréductible. Nous donnons aussi une réponse
compléte & la question de lexistence de compactifications de C2 avec des
valorisations divisorielles préscrites a I'infini. En particulier, nous montrons
qu’une évaluation sur C(z,y) centrée a I'infini détermine une compactifica-
tion de C2 ssi elle est positivement asymétrique dans le sens de [8].

1. Imtroduction The topic of this article is compact normal analytic sur-
faces containing C2, henceforth to be called simply compactifications (of C?).
Compactifications of C2, being one of the most natural and simplest classes of
compact surfaces, have been the subject of numerous articles, see e.g. [24], [21],
[5], [6], [2], [22], [11], [23], [14], [15], [10]. In particular, Kodaira (as part of
his classification of surfaces), and independently Morrow [21] showed that every
nonsingular compactification of C? is rational (i.e. bimeromorphic to P2) and can
be obtained from P? or some Hirzebruch surface via a sequence of blow-ups and
blow-downs. In this article we initiate a program to study these compactifica-
tions via studying the curvettes at infinity - these are germs of curves which are
transversal to a curve at infinity (i.e. a curve lying on the complement of C?). We
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analyze parametrizations of images of these curvettes under the bimeromorphic
correspondence to P? and use them in two different ways:

¢ To study singularities of the compactifications and of the curves at infinity
(Sections 4, 5).

e To study existence of a compactification such that the orders of vanishing
along curves at infinity is a prescribed collection of discrete valuations on
C(x,y) (Section 6).

In Part I [20] of this article we use the tools developed here to completely classify
compactifications of C? with one (irreducible) curve at infinity. In a subsequent
work we plan to emulate this technique to study more general Moishezon surfaces
(i.e. analytic surfaces which are bimeromorphic to algebraic surfaces).

Our first main result is a description of singularities of compactifications of C2
and configuration of the curves at infinity. We call a compactification minimal if
none of the irreducible components of the curve at infinity can be (analytically)
contracted?.

THEOREM 1.1. Let X be a normal analytic compactification of C2?. Assume

that X \ C* has k irreducible components Cy, ..., Cy. Let Sing(X) be the set of
singular points of X .

(1) |Sing(%)] < 2.
(2) X has at most one singular point which is not sandwiched?.
(3) (a) Foreachj,1<j <k, Cj hasan open setisomorphic to C; in particular,
it has at most one singular point.
(b) There is at most one j such that C; has a singular point which is not
in C; NCy for some i # j. Moreover, if Q is such a point on Cj, then
X is also singular at Q and Ui;ﬁj C; is contractible; in particular, if in
addition k > 2, then X is not minimal.
(4) Assume X is a minimal compactification of C2. Then |Sing(X)| < k + 1.
Moreover, there is a point P € X such that

(a) C;NCj={P} foralli,j,1<i<j<k.
(b) Ci\{P}=C for each i.
(c) |Sing(X)\{P}| <k.

(d) every point in Sing(X) \ {P} is a cyclic quotient singularity.

REMARK 1.2. (a) Both of the upper bounds for | Sing(X)| of Theorem 1.1 are
sharp (see Examples 5.3 and 6.1). Example 5.2 shows that the lower bound
for | Sing(X)| in both cases is zero.

INote that a minimal compactification of C2 may not be a minimal surface, see Example
5.2

2 An analytic surface Y has a sandwiched singularity at a point P if there are proper bimero-
morphic maps U” — U — U’ where U is a neighborhood of P in Y and U’,U” are (open
subsets of) non-singular surfaces [26, Remark 1.12]. Sandwiched singularities are rational
[16, Proposition 1.2].
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P

Figure 1: Configuration of curves at infinity on a minimal compactification

(b) Let @ be a singular point of some C;. Assertion (3a) implies that C; has a
totally extraordinary singularity at @ in the language of [5]. Consequently,
assertion (3) improves and generalizes the main result of [5].

We prove Theorem 1.1 essentially via combinatorial arguments stemming from
a careful study of the dual graphs of resolution of singularities of compactifica-
tions of C2? 3. The resolution of singularities of a compactification of C? is on
the other hand intimately related to the resolution of singularities of generic
curvettes at infinity associated to each irreducible curve at infinity. A study of
this relation leads us to the second main result (Theorem 4.5) in which we give
an explicit description of the dual graph of minimal resolution of singularities of
compactifications of C? which are primitive, i.e. for which the curve at infinity
is irreducible. As a by product of this description we give new proofs of Jung’s
theorem on polynomial automorphisms of C? (Corollary 4.8), and Remmert and
Van de Ven’s result that P2 is the only smooth analytic compactification of C?
for which the curve at infinity is irreducible (Corollary 4.6).

A motivation for the work on this article was to understand divisorial val-
uations centered at infinity on Clz,y] - each of these is the order of vanishing
along some curve at infinity on some compactification of C2. However, these
valuations can be explicitly described without resorting to any compactification,
e.g. by a finite generating sequence [27] of polynomials, or a (finite) sequence
of key polynomials [17], or by a Puiseuz polynomial (i.e. a Puiseux series with
finitely many terms) in 2% or y~! [8, Chapter 4]. The most basic question in
this context is:

QUESTION 1.3. Assume that we have explicit algebraic description (e.g. in
one of the equivalent ways mentioned above) of divisorial valuations vy, ...,
on C[z,y]; in other words, assume that for all polynomials f € Clx,y], we
have explicit recipes to compute v;(f), 1 < j < k. Determine if there exists a
compactification X of C? such that the v;’s are precisely the order of vanishing
along the curves at infinity on X.

Question 1.3 is about the existence of a geometric ‘model’ underlying some
algebraic data. It follows that the answer should involve interpretation of relevant
geometric objects in terms of the input data. Indeed, if v is a divisorial valuation

3Except for assertion (3b), the proof of all assertions of Theorem 1.1 requires only the
background material presented in Section 2.4. The proof of assertion (3b) uses Corollary 4.9
which in turn uses Lemma 3.11.
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on C[z,y] associated to a curve C at infinity on some compactification X of C2,
then the key polynomials of v can be used to define ‘natural’ representatives
of generic curvettes at infinity associated to C' (see Remark 1.6). Combining
this observation with Grauert’s characterization of contractible curves ([12], see
Theorem 2.12) we give a complete and explicit answer to Question 1.3. Here we
give a formulation of this answer in terms of the sequence of key polynomials:

Given v;’s as in Question 1.3, we may (by a generic linear change of co-
ordinates) choose coordinates (z,y) such that v;(z) < 0 and vj(z) < v;(y)
for each j. Then set (u,v) := (1/x,y/x), so that each v; is non-negative on
Clu, v] (with v;(u) > 0), and therefore each can be described by a finite se-
quence of key polynomials. Let gjo0 = u, §j1 = v,7j,2,-..,9;1, € Clu,v] be the
sequence of key polynomials of v; (or a minimal generating sequence in the ter-
minology of [27]) with respect to (u,v)-coordinates. Pick the smallest positive
integer n;,;, such that n;;v;(gj:,;) is in the semigroup generated by v;(g;s),
1 < s <1l; —1. Then it follows from the property of key polynomials that
nj1,;v5(G50;) = Zi]‘;ol nj sv;(Gj,s) where n; s are non-negative integers such that
n;s < deg,(gj,s+1)/ deg,(g;s) for 1 < s <1; —1. Let M be the matrix with
entries

l;—1

mij = djnj7ljl/i( ) min n]l v; gjl Z nj sli gj s

where d; = deg, (7;.,)-
THEOREM 1.4. The answer to question 1.3 is affirmative iff det(—M) < 0.

In the special case that k = 1, Theorem 1.4 implies that a valuation v (centered
at infinity on C[x, y]) determines a compactification of C2 iff it is positively skewed
in the sense of [8]. As the first step to the proof of Theorem 1.4 we study a
special case of Question 1.3, where the answer is affirmative and the resulting
compactification dominates P?:

THEOREM 1.5. Assume v1 = —deg, where deg is the degree in (x,y) coordi-
nates. Also assume (w.l.o.g.) that v;’s are mutually non-proportional. Then

(1) There exists a projective (in particular, algebraic) compactification X of C?
which affirmatively answers Question 1.3.

(2) The singular points of X (if they ewist) are sandwiched.

(3) The matriz of intersection numbers of the curves at infinity on X is M~1.

REMARK 1.6 (Interpretation of the matrix M). Let £ be an indeterminate and
define

lj—1

ngj”CeCuv&]

7

gl/j = xdegv(gyj gllj(l/x?y/xﬂf) € (C[xa‘r_17y7§]
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Then it is straightforward to see that m;; = —v;(gy, (z,5,€)) for generic £ € C.

Geometrically these g, (ac,y,g)’s define generic curvettes at infinity associated
to v; (see Definition 3.6 and Proposition 3.7).

REMARK 1.7. Theorem 1.5 remains valid if —v; is any weighted degree cor-
responding to positive weights for x and y, or even more generally, if v; is the
divisorial valuation associated to the curve at infinity on any primitive com-
pactification of C? with at worst sandwiched singularities. This follows from
essentially the same arguments as in the proof of Theorem 1.5.

1.1.  Organization After presenting some background material in Section 2, we
introduce in Section 3 the notion of generic curvettes at infinity on C? associ-
ated to (irreducible) curves at infinity on compactifications on C2. In Section
4 we describe the dual graph of minimal resolution of singularities of primitive
compactifications of C? and as corollaries prove Jung’s theorem on polynomial
automorphisms of C? (Corollary 4.8), and Remmert and Van de Ven’s result that
P2 is the only smooth primitive compactification of C? (Corollary 4.6). Section 5
contains the proof of Theorem 1.1 and Section 6 contains the proof of Theorems
1.4 and 1.5.

1.2.  (Un)convention In this article we make the unconventional choice to
parametrize analytic curves as the parameter approaches infinity (as opposed
to zero). We do this because it is more convenient for studying the behaviour
of analytic curves on C? as they approach infinity, and studying how the ‘order
of the growth’ of these parametrizations is affected by change of coordinates on
C2%. E.g. if f € Clx,y] and L is the line y = ax, in order to measure the order of
growth of f|, near infinity, we could say

¢ either parametrize L as t — (t,at) as ¢ — oo and compute the degree in ¢ of
f(t,at),

e or parametrize L as t — (t71,at™!) as t — 0, compute the order in t of
f(t71 at™1), and take its negative.

In this article we chose to adopt the first approach. A consequence of this
choice is that instead of using the usual Puiseux series (Definition 2.1) in ¢
where terms appear with increasing order in ¢, we have to use series in ¢ in which
terms appear with decreasing order in t; we call these descending Puiseuz series
(Definition 2.3). As a justification of our choice, we invite the reader to formulate
Lemma 3.11 (which is a crucial tool in our proof of the results of Section 4) using
parametrization from a neighborhood of zero and usual Puiseux series, and to
compare the resulting formulation with ours.

1.8.  Acknowledgements 1 heartily thank Professor Pierre Milman. This work
was done while I was his post-doc at University of Toronto. It was essentially an
attempt to understand some of his questions in a simple case and the exposition
profited enormously from speaking in his weekly seminar and from his questions.
Very special thanks also go to Dmitry Kerner - his questions forced me to think
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and formulate the results in geometric and much more understandable terms.
Some of the results of this article were announced in [19].

2. Background

2.1. Puiseux series

DEFINITION 2.1 (Meromorphic Puiseux series). A meromorphic Puiseux series
in a variable u is a fractional power series of the form > ., a,,u™/? for some
m,M €Z,p>1and a,, € C for all m € Z. If all exponents of u appearing in a
meromorphic Puiseux series are positive, then it is simply called a Puiseux series
(in u). Given a meromorphic Puiseux series ¢(u) in u, write it in the following
form:

q]

gf)(u):~'+a1u;%+~~+a2u1’fii2+~~-+alu1717’2"'1’1 4+ .-

where ¢1/p; is the smallest non-integer exponent, and for each k, 1 < k < [,
we have that ax # 0, pr > 2, ged(pg,qr) = 1, and the exponents of all terms

with order between —%%— and —%& (or, if k = I, then all terms of order
1 1011 Pk P1Pk+1
>

p1-~~pz) belong to S L Then the pairs (q1,p1),---,(q,p1), are called the
Puiseux pairs of ¢ and the exponents pl?*_’pk, 1 <k <1, are called characteristic
exponents of ¢. The polydromy order [7, Chapter 1] of ¢ is p := p1---py, i.e.
the polydromy order of ¢ is the smallest p such that ¢ € C((u'/?)). Let ¢ be a

primitive p-th root of unity. Then the conjugates of ¢ are

) = ... Jq1p2---pL 1% . Jq2p3---P1 1,;175;2 ..
?;(u + a1 ¢ uUPL + -+ 4 as( U +
+alcj‘11up1pglmpl 4.

for 1 < j <p (i.e. ¢; is constructed by multiplying the coefficients of terms of ¢
with order n/p by (™).

We use the standard fact that the field of meromorphic Puiseux series in w is
the algebraic closure of C((u)):

THEOREM 2.2. Let f € C((u))[v] be an irreducible monic polynomial in v of
degree d. Then there exists a meromorphic Puiseux series ¢(u) in u of polydromy
order d such that

d

7 =TI - e,

i=1
where ¢;’s are conjugates of ¢.

DEFINITION 2.3 (descending Puiseux Series). A descending Puiseuz series in
x is a meromorphic Puiseux series in #7!. The notions regarding meromorphic
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Puiseux series defined in Definition 2.1 extend naturally to the setting of de-
scending Puiseux series. In particular, if ¢(z) is a descending Puiseux series and
the Puiseux pairs of ¢(1/x) are (q1,p1),---,(q,pi), then ¢ has Puiseux pairs
(=q1,p21)s---,(—qi,p1), polydromy order p := p; -- - p;, and characteristic expo-
nents —q/(p1---pg) for 1 < k <.

We use descending Puiseux series via the following result, which is an imme-
diate corollary of Theorem 2.2.

COROLLARY 2.4. Let (z,y) be a system of (polynomial) coordinates on X = C2.
Embed X < P? via the map (z,y) — [L: 2 :y]. Let P =1[0:a:b] be a point
at infinity and v be the germ of an analytic curve at P. Assume a # 0 and
v is not the germ of the line at infinity. Then in (x,y)-coordinates v has a
parametrization of the form t — (t,¢(t)), |t| > 0, where ¢(t) is a descending
Puiseux series in t.

2.2.  Divisorial discrete valuations Let o : Y’ --+ Y be a bimeromorphic corre-
spondence of normal complex algebraic surfaces and C' be an irreducible analytic
curve on Y. Then the local ring Oy ¢ of C on Y’ is a discrete valuation ring.
Let v be the associated valuation on the field K of meromorphic functions on
Y”’; in other words v is the order of vanishing along C. We say that v is a
divisorial discrete valuation on K; the center of v on Y is o(C'\ ), where S is
the set of points of indeterminacy of o (the normality of Y ensures that S is
a discrete set, so that C'\ S # @). Moreover, if U is an open subset of YV, we
say that v is centered at infinity with respect to U iff o(C'\ S) C Y \ U. The
following result, which connects Puiseux series and divisorial discrete valuations,
is a reformulation of [8, Proposition 4.1].

THEOREM 2.5. Let P € o(C'\S). AssumeY is non-singular at P. Let (u,v) be
an analytic system of coordinates on a neighborhood U of P such that v(u) > 0.
Then there is a Puiseux polynomial (i.e. a Puiseuz series with finitely many
terms) ¢,(u) (unique up to conjugacy) in u and a (unique) rational number
r, > deg, (@) such that for every f € Cl[u,v]],

(1) v(f(u,v)) = v(u) ordu(f(u, ¢u(u) + &u"™)),
where £ is an indeterminate.

REMARK 2.6 (Geometric interpretation of ¢, (u) + {u™). If @ is a generic
point of C N o~ (U) such that both Y’ and C are non-singular at @Q, and D is
an irreducible analytic curve on Y’ which intersects C' transversally at @, then
near o(Q) the (possibly singular) curve o(D) has a Puiseux parametrization of
the form v = ¢, (u) + &'u™ + h.o.t., where £’ € C is generic, and h.o.t. denotes
‘higher order terms’ (in u). See Proposition 2.10, assertion 3c for a more precise
statement.

Combining Theorem 2.5 with Corollary 2.4 yields:
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COROLLARY 2.7. Retain the notations and assumptions of Theorem 2.5. As-
sume moreover that there exists an open subset U of Y such that

(1) v is centered at infinity with respect to U.
(2) there are analytic coordinates (x,y) on U such that (u,v) = (1/z,y/x).

Then there is a descending Puiseux polynomial (i.e. a descending Puiseuz series
with finitely many terms) ¢, (x) (unique up to conjugacy) in x and a (unique)
rational number r, < ord;(¢,) such that for every f € Clx,y],

(2) v(f(z,y)) = v(z)deg,(f(z, ¢v(z) + £2™)),
where & is an indeterminate.

DEFINITION 2.8. In the situation of Corollary 2.7, we say that ¢, (z,§) =
o, (x) + €x™ is the generic descending Puiseux series of v. Moreover, if Y is
a surface bimeromorphic to Y and C C Y’ is a curve such that v is the order
of vanishing along C, then we also say that v, (x, ) is the generic descending
Puiseux series associated to C.

DEFINITION 2.9 (Formal Puiseux pairs of generic descending Puiseux series).
Let v and ¥, (z,§) = ¢,(x) + £&2™ be as in Definition 2.8. Let the Puiseux
pairs of ¢, be (qi,p1),...,(q,p). Express r, as q1/(p1---pipi+1), where
pi+1 > 1 and ged(gi41,pi+1) = 1. Then the formal Puiseux pairs of v, are
(q1,01)5- -+, (@1, P141), With (g1, pi+1) being the generic formal Puiseux pair.
The formal polydromy order of ¢, is p :=p1 -+ pr41.

2.3.  Key polynomials (and generating sequences) In addition to Puiseux series,
divisorial discrete valuations centered at a non-singular point on a surface can
also be described in terms of a (finite) generating sequence (in the terminology
of [27]) or a (finite) sequence of key polynomials (in the terminology of [17]).
In this article we use key polynomials; regarding generating sequences, we only
point out that every sequence of key polynomials contains a generating sequence
[8, Remark 2.31].

Consider the setting of Theorem 2.5. The key polynomials of v with respect to
(u, v)-coordinates is a finite sequence of polynomials §o = u,§1 = v, Ja,..., 01 €
Clu,v]. We refer to [8, Section 2.1] or [17] for their defining properties. The
following proposition is the compilation of all properties of key polynomials that
we use.

PROPOSITION 2.10.  Let U be an open neighborhood of P such that (u,v) defines
a system of coordinates on U.

(1) For each j > 1, g; is of the form

gj(u,v) = (v — a)dj + uﬁj (u,v)
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where a € C and h; € Clu,v] with deg, (h;) < d; (where deg, denotes the
degree in v). In particular, §; is monic in v of degree d;. Moreover, dji+1/d;
is an integer for each j, 1 < j <1l —1.

(2) For each j > 1, §; is irreducible as an element in C[[u]][v].

(3) Let ny be the smallest positive integer such that nyv(g;) is in the semigroup
generated by v(go), ..., v(gi—1). Then

(a) There exist (unique) non-negative integers ng, ...,n—1 such that nj <

di1/d; for 1< j <1=1 and nw(G) = 35_4 nv(3;).
. . ~ ~n -1 ~nj

(b) Let £ be an indeterminate. Define §,(u,v,&) = gzll — §Hj:%) g e
Clu,v,&]. Then there exists a non-empty open disc A C C such that for
all £ € A, the strict transform of the curve {g,(u,v,&) = 0} C U on
oY (U) intersects C transversally at a single point. R

(c) Let g, (u)+&u™ beasin (1). Then forall§ € A, G, (u,v,§) is irreducible
in C[[u]][v] and has a root v = ¢p(u) where ¢(u) is a Puiseuz series in u
of the form

b)) = ¢y (u) + EY/Mu™ + ho.t.

EXAMPLE 2.11. Assume o : Y’ — Y is the minimal resolution of the singularity
of the germ of v3 —u? = 0 at the origin, and C' C Y is the last exceptional curve.
Then key polynomials are u,v. Moreover, v(u) = 3 and v(v) = 2. Proposition
2.10 in this case simply says that for generic £ € C, the strict transform of the
germ of v3 — &u? = 0 at the origin is transversal to C. Similarly, assume o is the
minimal resolution of the singularity at the origin of the curve (v? —u?)% —u?v? =
0, and C C Y is the last exceptional curve. Then key polynomials are u, v, v —
u?. Moreover, v(u) = 6, v(v) = 4, v(v3 — u?) = 13, and Proposition 2.10 says
that for generic £ € C, the strict transform of the germ of (v® —u?)? — udv? = 0
at the origin is transversal to C.

2.4. Theory of surfaces In this section we compile some facts from bimero-
morphic geometry of analytic surfaces. We start with Grauert’s criterion for
(analytic) contractibility of curves:

THEOREM 2.12 ([12]). Let Y be a smooth complex analytic surface. Let
Ci,...,Cy be irreducible curves on'Y and C := CyU---UC,. The following are
equivalent:

(1) The matric of intersection numbers (C;, C;) is negative definite.

(2) There exists a morphism [ :' Y — Z such that Z is a normal complex
analytic surface, f(C) is a finite set of points and fly\¢ : Y\C — Z\ f(C)
is an isomorphism.

It is a standard fact that singularities of complex analytic surfaces can be
resolved. The singular surfaces Y’ we encounter in this article are normal and
they come equipped with a bimeromorphic correspondence o : Y’ --» Y, where
Y is a non-singular projective surface. In this case the resolution of singularities
of Y is easy to describe:
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THEOREM 2.13. Let 0g := 0 and Yy := Y. Algorithm 2.14 stops after finitely
many steps with a bimeromorphic correspondence oy : Y' --+ Y. Moreover,
ng 1Y, — Y’ is a holomorphic map and is a resolution of singularities of Y.

ALGORITHM 2.14 (Resolution of singularities of Y”). Assume o; : Y/ --» Y;
has been defined for 7 > 0. If o; does not contract any curve of Y, then stop.
Otherwise pick an irreducible curve C’ on Y’ which gets contracted to a point
P €Y;. Let Y;rq be the blow up of Y; at P and o;41 : Y/ --» Y1 be the
induced bimeromorphic correspondence. Now repeat.

We also use the well known fact that every compactification of C2 is an alge-
braic space, i.e. an analytic surface for which the field of meromorphic functions
has transcendence degree 2:

THEOREM 2.15 ([21]).  Let X be a normal analytic compactification of C2. Then
X is an algebraic space. In particular, the identity map between C? and one of
the affine coordinate charts of P2 extends to a bimeromorphic correspondence of
analytic varieties.

2.5.  Dual graph of the resolution of curve singularities

DEFINITION 2.16. Let Ej,..., Ex be non-singular curves on a (non-singular)
surface such that for each i # j, either &; N E; = @, or F; and E; intersect
transversally at a single point. Then ' = E; U---U E} is called a simple normal
crossing curve. The (weighted) dual graph of E is a weighted graph with &
vertices V7, ...,V such that

* there is an edge between V; and Vj iff E; N E; # &,

¢ the weight of V; is the self intersection number of FE;.

Usually we will abuse the notation, and label V;’s also by E;.

We recall the description of the dual graph of the exceptional divisor of the
resolution of an irreducible plane curve singularity following [4, Section 8.4].
Assume that we are given an analytically irreducible curve singularity (at a
non-singular point of a surface) with Puiseux pairs (g1,91),- - -, (Gm,Pm). Then
the dual weighted graph for the minimal resolution of the singularity is as in
Figure 2, where we denoted the ‘last exceptional divisor’ by £* and the ‘left-most’
t1 vertices by Ei, ..., E, (and left all other vertices untitled). The weights u]
and vf satisfy: u?,0? > 1 and uf,vf > 2 for j > 0, and are uniquely determined
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Figure 2: Dual graph for the minimal resolution of singularities of an irreducible
plane curve-germ

from the continued fractions (see, e.g. [18, Section 2.2]):

W <SS S S S
q; 1 1 ﬁz ’ 1 1

’ Q1 ifi=1
where ¢; ;== ¢ . _ .
Gi — Gi—1P; otherwise.

Note that (¢},p1),..., (g, p1) are called the Newton pairs of the curve branch,
and the Puiseux series of the branch can be expressed in the following form:

ab

Y(u) = +urt (a4 +ubrz (ah + - - + urees (- 1)),

‘.a
=~

3. Generic Curvettes at Infinity

NOTATION 3.1. Throughout the rest of the article we use X to denote C? with
coordinate ring C[z, y] and X (4,4 to denote copy of P? such that X is embedded
into X(, 4 via the map (x,y) = [1 : x : y|. We also denote by L., the line at
infinity X,y \ X, and by @, the point of intersection of L., and (closure of)
the y-axis.

DEFINITION 3.2. An idrreducible analytic curve germ at infinity on X is the
image « of an analytic map 7 from a punctured neighborhood A’ of the origin in
C to X such that |n(s)| — oo as |s| — 0 (in other words, 7 is analytic on A’ and
has a pole at the origin). Let X be an analytic compactification of X. Theorem
2.15 implies that there is a unique point P € X \ X such that |n(s)| — P as
|s| = 0. We call P the center of v on X, and write P = limg . Let X(, ) be
as in Notation 3.1. Assume hm)’(@,y) v # Qy. Then Corollary 2.4 implies that
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for |t| > 0, v has a parametrization of the form 6 : t — (¢, ¢(t)), where ¢(t) is a
descending Puiseux series in t. We call § a descending Puiseux parametrization
of .

ExamMpLE 3.3. Note that if hm)’((mm v = Qy, then v might not have descend-
ing Puiseux parametrization. Indeed, let v be the curve-germ at infinity on X
corresponding to the germ of the (closure of the) y-axis at Q,. Then there is
no descending Puiseux series ¢(t) in ¢ such that v has a parametrization of the
form t — (¢, ¢(t)) for [¢t| > 0.

Now let X be a normal analytic compactification of X and C be an irreducible
component of the curve at X, := X \ X at infinity on X. Theorem 2.15
implies that the identity map of X induces a bimeromorphic correspondence
T(z,y) :_X = X(z,y). Let S be the set of points of indeterminacy of o, ).
Since X is normal, it follows that S is a finite set. After a linear change of
coordinates of Clxz,y|, we may ensure that X satisfies the property (Cla,y)) for
every irreducible curve C C X \ X:

Oz (C\S) # {Qy} (ie. either o(, ) does not contract

(Clay) C, or it contracts C to some point other than Q).

REMARK-NOTATION 3.4. Note that if C is an irreducible curve in X \ X and
v is the order of vanishing along C', then

X satisfies (Clpy)) <= 02.y)(C\S) #{Qy}
<= y/x restricts to a regular function on a non-empty
open set of C
— y/a) >0

= v(z) <v(y).

Pick P € 0(;,,)(C'\ S) \{Qy} C Loo. Let v be an irreducible curve-germ at
infinity on X with limg v = P. Let P, :=limgy € X and 3% := yU {P;}
be the closure of v in X. We say that v is a curvette at infinity * associated
to C'iff P, € C and ’75( intersects C' transversally at P, (in particular, P, is a
non-singular point of both C and ﬁX). We say that « is a generic curvette at
infinity associated to C' if furthermore P, is a generic point of C.

PROPOSITION 3.5 (Parametrizations of generic curvettes at infinity). Let~y be a
generic curvette at infinity associated to C and let t — (t,$(t)) be a descending
Puiseux parametrization of .

4The use of the term ‘curvette’ to denote germs of transversal curves at smooth points of a
given curve is due to Deligne [25].
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(1) There is a unique rational number r and a finite set € C C such that if ¥ is a
curvette at infinity on X, then limg 4 € C\E iff ¥ has a descending Puiseux
parametrization of the form t — (t,$(t)) such that deg, (4(t) — H(t)) = r.

(2) Let ¥ be a curvette at infinity on X with a descending Puiseuz parametriza-

tion of the form t (t,éﬁ(t)) such that deg,(d(t) — o(t)) < r. Write
¢ — ¢ =¢&Ex" + lo.t. where & € C. Then

(a) limg 7 depends only on £~ In particular, for generic values of é, limg
is a generic element of C. B

(b) limg 7 is a non-singular point of ¥~ iff there are no characteristic ex-
ponents 0f¢z smaller than r.

(c) for all but finitely many values of £, 7 is a curvette at infinity associated
to C iff either (and therefore, both!) of the properties of assertion 2b is
satisfied.

(3) Let [¢]sr(x) be the descending Puiseuzx polynomial in x obtained by removing
from ¢(z) all terms with degree < r and define ¥ (z, &) = [P]s,(x) + €27,
where £ is an indeterminate. Then 1 (x, €) is precisely the generic descending
Puiseuz series of the order of vanishing along C.

PROOF. The relation between (generic) descending Puiseux series and key
polynomials of a valuation is given by assertion 3c of Proposition 2.10. Proposi-
tion 3.5 follows from interpreting the properties of key polynomials compiled in
Proposition 2.10 in terms of the associated descending Puiseux series. O

Set (u,v) := (1/z,y/x) and let U be the coordinate chart of X(,,) with
coordinates (u,v). Consider the situation of Corollary 2.7 with o = 0, ).

DEFINITION 3.6. Let go,..., 31 € Clu,v] be the sequence of key polynomials
of v with respect to (u,v)-coordinates. Set

|z ifi=0,
9= 29809 5,(1 /2, y/x) othewise.

For each i > 1, g; € C[z,z~!,y] and it is monic in y. We call g;’s the sequence
of key forms of v with respect to (z,y)-coordinates. Finally, let ng,...,n; be as
in Proposition 2.10. Then define

-1

gv(@,y,€) 1= 2950 g, (1/2,y/2,) = g" — &a™ [[ gj* € Clz, 2™y, €]
j=1

where n{, = n;deg,(g;) — no — Zé;ll n; deg,(g;). We call g, (x,y,§) the generic
key form of v in (x,y)-coordinates.

PROPOSITION 3.7 (Affine equations of generic curvettes at infinity). Pickn >0
such that z"g, € Clz,y,£]. For all £ € C, let Zg be the closure in X, of the

curve {z"g,(z,y,§) = 0} C X.
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(1) For each € € C, Zg intersects Loo \ {Qy} at a single point Q¢.

(2) For generic é € C, the germ of ZE_ in a punctured neighborhood of Qg s a
curvette at infinity associated to C.
(3) Zg intersects Loo at Qy with intersection multiplicity n.

PROOF.  Assertions (1) and (3) follow from assertion 1 of Proposition 2.10, and
assertion 2 follows from assertion (3b) of Proposition 2.10. O

EXAMPLE 3.8. Let X = X(,,) and C = L, (so that v is the negative of
degree in (z,y)-coordinates). Then the key forms are z,y, and the generic key
form is y — &x. Propostion 3.7 in this case simply states (the obvious fact) that
for y — faz intersects the line Lo, transversally for generic f .

3.1. Effect of automorphisms of C? on parametrizations of generic curvettes
at infinity Let v be a curve-germ at infinity on X with a descending Puiseux
parametrization ¢ — (¢, ¢(t)). In this section we study the effect on deg,(¢(t)) of
two ‘simple’ types of automorphisms of the plane described below; the (simple)
observations made in this section will be crucial in our proof of Jung’s theorem
that these automorphisms generate the full group of polynomial automorphisms
of C2.

DEFINITION 3.9. let F' : Clz,y] — C[z,y] be an automorphism. We call
F a Type I automorphism if it is of the form (z,y) — (y,z) and a Type II
automorphism if it is of the form (z,y) — (z,y + az™), where a € C and n > 0.

LEMMA 3.10. Lety be a curve-germ at infinity on X with a descending Puiseux
parametrization t — (t, ¢(t)) and w := deg,(¢(t)), i.e.

o(t) = at” + Lo.t.

for some a € C. Assume w > 0.

(1) (a) After the type I automorphism (z,y) + (y,z), v has a descending
Puiseux parametrization t — (t,¢(t)) where deg,(o(t)) = 1/w.

(b) Moreover, if w = 1/n for some integer n > 2, then the number of
Puiseuz pairs of ¢(t) is one less than the number of Puiseux pairs of
(t).

(2) If w is a non-negative integer, then after the type II automorphism (xz,y) —
(z,y — az®), v has a descending Puiseuzr parametrization of the form t —

(t, ¢(t) — at®).

PROOF. Assertions (1a) and (2) are easy to see. Assertion (1b) follows from a
straightforward induction on the number of Puiseux pairs of ¢. O

Let X be a compactification of X and C' be an irreducible component of the
curve at infinity on X. The following lemma shows that after a composition of
finitely many Type I and II automorphisms, we can ensure that generic curvettes
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associated to C have descending Puiseux parametrizations, and the initial term
of these parametrizations has a ‘normal form’.

LEMMA 3.11. Let X and C be as above, and~ be a generic curvette at infinity on
X associated to C. After a finite sequence of Type I and Type II automorphisms
of Clz,y], we can ensure that v has a descending Puiseuz parametrization t —
(t, 6(t)), where ¢(t) is of the following form:

(4)
b(t) = &, reQ, r<1, £ € C is generic, or
a1t + Lo.t., a1 € C\{0}, w1 € Q\ (Z>oU{l/n:neN}), w <1

PROOF. Since any linear change of coordinates of C[z,y] is a composition
of Type I and II automorphisms, it follows that after composition of finitely
many Type I and II automorphisms, we can ensure that X satisfies (Cla)
which implies in particular that ~ has a descending Puiseux parametrization
t— (t,¢(t)). Assertion (1a) of Lemma 3.10 then implies that it suffices to prove
the following statement: after a a finite sequence of automorphisms of C[z, y] of
types I and II, we can ensure that ¢(t) is not of the following form:

() a1t** +lo.t., where a; € C\ {0}, and wy € Z>oU{l/n:n € Z>1}.

Indeed, assume ¢(t) is of the form (!). Then either ¢(t) = at™ + l.o.t. for some
polynomial f(z) € Clz], or ¢(t) = at'/™ + l.o.t. for some a # 0 and a positive
integer n > 1. In the first case apply Type II automorphism (z,y) — (x,y—az™)
and in the second case apply the Type I automorphism (z,y) — (y,z). Note
that

(1) in the second case the number of Puiseux pairs of ¢(¢) decreases by one
(assertion (1b) of Lemma 3.10),

(2) in the first case the number of Puiseux pairs of ¢(t) does not change, but
deg,(4(t)) decreases (assertion (2) of Lemma 3.10).

The above observations imply that this process ends after finitely many steps,
as required to complete the proof of the lemma. O

REMARK-DEFINITION 3.12. We say that the initial exponent of ¢(t) is in the
normal form if ¢(t) is as in (4). Note that ¢(¢) is in the normal form iff either
O(2,y) Maps C generically on to Lo, C X(myy) (in which case r = 1), or contracts
C to the point of intersection of L., and z-axis.

REMARK 3.13. With a bit of more work than the proof of Lemma 3.11, it can
be shown that there is a ‘normal form’ for ¢(t) itself (i.e. not only the initial expo-
nent). In [20] we use this normal form to compute the moduli spaces and groups
of automorphisms of algebraic compactifications of C? with one irreducible curve
at infinity.
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4. Primitive Compactifications and Resolution of Their
Singularities

DEFINITION 4.1. Let 7: X > )_{ be a resolution of singularities of a compact-
ification X of X = C? such that X \ X is a simple normal crossing curve. The
augmented dual graph of 7 is the dual graph (Definition 2.16) of X \ X.

Let X be a (normal analytic) compactification of C? which is primitive, i.e.
the curve C at infinity on X is irreducible. In this section we show that the
minimal resolution of singularities of X satisfies the properties of Definition 4.1,
and describe its augmented dual graph. As a consequence, we derive a new
proof of Remmert and Van de Ven’s characterization of P? as the only non-
singular primitive compactification of C? and Jung’s theorem on polynomial
automorphisms.

We continue to adopt Notation 3.1 and assume that X satisfies (C(,,)) , i.e.
there exists P € 0(;,)(C \ )\ {Qy}. Let the generic descending Puiseux series
for C be

P(z,§) = o) + &a”

a1 _92 R A R | A—
...+a1xp1 —+ ...+a21-p1p2 +...+alxplpz-“m +...+§xP1P2"‘Pl+1

where (q1,p1), .-, (@i+1,p141) are the formal Puiseuzr pairs (Definition 2.9) of
. Then (u,v) = (1/x,y/x) is a system of coordinate near P, and Proposi-
tion 3.5 implies that generic curvettes at infinity associated to C' have Puiseux
parametrizations of the form

(5)

a1 _dp _a -~ @
v=--- _|_ aijuri + cee J'_ a2up1pz _|_ e _|_ alupll’z"‘l’l _|_ e + é‘uP1P2"':DL+1 + hot

where (G;,pi) = (p1-- Pi — ¢ispi), 1 <4 <141, and € is a generic element of
C. Apply Algorithm 2.14 with o9 = o(,,) to construct a resolution of singu-
larities & : X — X. Let T’ be the corresponding augmented dual graph. The
following proposition gives a description of I' in terms of the dual graph of the
minimal resolution of the plane curve singularity of the curve germ with Puiseux
parametrization (5).

PROPOSITION 4.2. Let E be the strict transform of C. Assume the initial ex-
ponent of ¥ is in the normal form (Definition 3.12). Then

O(x
(1) If(x, &) = Ex, then X <§y) X@m =~ P2 (in particular, X is non-singular),
and I' consists of a single verter E.
(2) Otherwise if piy1 > 1, then T is as in Figure 3(a), where I is as in Figure
2 with m = 1+ 1. In particular, X has at most two singular points, one of
them is at worst a cyclic quotient singularity.
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(3) Otherwise (pi+1 =1 and) T is as in Figure 3(b), where I is the graph of
Figure 2 with m =1 and one change - namely the self-intersection number
of E* in T is —2. In particular, X has at most one singular point.

1 1
1
1—ud) —ul —ud—1 —2 1+ 9 2
e 0----0----0—_@----06—OF
Ey : Eq 1 W B , T
' ! ! @ —quer — 1
! ®—v] @—u! | vertices
L e e e e e e e - 1
1‘\//

(b) Case pr41 =1

Figure 8: Augmented dual graph for the resolution of Algorithm 2.14

REMARK 4.3. Note that the resolution of Proposition 4.2 is mot minimal if
(and only if) uf = 2.

PROOF OF PROPOSITION 4.2. The first assertion is straightforward. The
other assertions follow from the discussion in Section 2.5 and the following ob-
servations:

1. In the scenario of assertion 2, the Puiseux pairs of generic curvettes at infinity
associated to C' are (G1,D1), .- -, (Gi+1, P1+1) and Algorithm 2.14 corresponds
precisely to resolution of singularities of these curvettes at infinity.

2. In the scenario of assertion 3, the Puiseux pairs of generic curvettes at infinity
associated to C are (G1,P1), .-, (G, p1) and Algorithm 2.14 corresponds to at
first resolving the singularities of these curvettes at infinity, and then ¢; —q;11
additional blow-ups.

3. The vertex eg in Figures 3(a) and 3(b) corresponds to Ey, which is the strict
transform of Lo, € X(; ). The equation of Lo, near P is u = 0. On the
other hand, the normal form of ¢ implies that the order (in u) of the right
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hand side of (5) is G1/p1. It follows that strict transform of L., contains the
center of precisely the first u{-blow ups (where u{ is defined in (3)).

O

REMARK 4.4. More generally, if X is an arbitrary normal analytic compactifi-
cation of C? and C is an irreducible curve at infinity on X, then the arguments
from the proof of Proposition 4.2 imply that there is a non-singular compactifi-
cation X of C2 dominating X (z,y) = P? such that the dual graph of the curve
at infinity on X has the same shape as I' of Figure 3. In particular, contracting
all curves at infinity on X other than Ey and E results in a compactification X*
with precisely two irreducible curves Ef and E* at infinity,

e the bimeromorphic correspondence X, ,) --» X* maps Lo dominantly on to
E§. B B
e the bimeromorphic correspondence X --+ X* maps C dominantly on to E*.

This implies that

(1) X* is precisely the compactification guaranteed by assertion 1 of Theorem
1.5 in the case that k = 2 and vy is the divisorial valuatiqn associated to C.
(2) X is precisely the minimal resolution of singularities of X*.

Moreover, let P* be the point of intersection of Ej and E*. We claim that
E*\ {P*} = C. Indeed, this is clear if T is as in Figure 3(b). On the other
hand, if T is as in Figure 3(a), then it suffices to show that E* is non-singular at
the point @* to which the curves corresponding to the right-most vertical string
of T' contracts. But the singularity at Q* is a cyclic quotient (or Hirzebruch-
Jung) singularity, and E is transversal to the string of exceptional divisor of
its resolution. It then follows from the well known properties of cyclic-quotient
singularities (see e.g. [3, Section I11.5]) that E* does not acquire any singularity

at Q*.

As mentioned in Remark 4.3, the resolution of singularities of X constructed
in Proposition 4.5 may not be minimal. Understanding the minimal resolution
of X requires a more detailed analysis of the change of the initial exponent of a
Puiseux series under blow up. This is the content of the next theorem.

THEOREM 4.5. Let the assumptions and notations be as in Proposition 4.2; in
particular the initial exponent of v is in the normal form, and I is as in Figure
3(a) if pry1 > 1 and as in Figure 3(b) if pjy1 = 1.

(1) X is non-singular iff ¢¥(z, &) = &x.

(2) Otherwise if q1/p1 > 1/2, then u§ > 2 and T is the augmented dual graph
of the minimal resolution of X.

(3) Otherwise let ¢ := p1 — q1. Then we must have p1 = ¢1 +r1 and § =
mar1 +ro for some positive integers r1,my,ro with ro < r1 < ¢1. Moreover,
if t1 is as in T' (see the ‘leftmost’ string of Figure 2), then t; > my and
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u"t > 3 and ul =2 forall j, 1 < j < mq. The augmented dual graph of
the minimal resolution of X is gotten from T by deleting all the vertices to
the left of em, and changing the weight of e, to —ui™ + 1.

PROOF. The (<) implication of the first assertion follows from Proposition
4.2. Now we assume that (z,£) # £x and show that either 2nd or the 3rd
assertion of the theorem is true. Note that this will also prove the (=) implica-
tion of assertion (1) (since a surface is singular iff the dual graph of the minimal
resolution of singularity is non-empty) and complete the proof of the theorem.
Since the initial exponent of 1) is in the normal form, it follows that deg, () <
1. We now divide our proof based on different possibilities for deg, (¢). For each
case we construct the minimal resolution X™ of singularities of X and show
that the exceptional divisor of the morphism X™ — X is of the required form.

Case 1: deg,(¢) = 1/n, n > 2. In this case ¢ = &x'/™. Consequently (5)
implies that a generic curvette 7 associated to C' has Puiseux expansion near P
of the form

w=&v N L hot.

for a generic ¢ € C. Let Xy = X(m,y)lea ... be the sequence of surfaces con-
structed in the resolution Algorithm 2.14. Then it follows that the strict trans-
form of v on X; has a Puiseux expansion of the form

v; =&l +ho.t.

where (u;,v;) := (u/v,v'/u’~1). In particular, the bimeromorphic correspon-
dence X --» X; maps C to the point (u;,v;) = 0 for i < n, and dominantly on
to the line u,, = 0 (which is precisely the exceptional divisor of the last blow up)
for i = n. It follows that X = X,, is precisely the resolution of singularity of X
achieved via Algorithm 2.14 with the augmented dual graph as in Figure 4.

—1 —2 -2 =1 -—n
*—@------------- —eo o
E() E2 En71 En El

Figure 4: Augmented dual graph for resolution when deg,(v,) =1/n, n > 2

Since Ej, is precisely the pre-image of C, it follows that the exceptional divisor
of the resolution & : X — X is E = = FyU---U En 1. Note that F has two
connected components: F; and E1 = Fy U E2 -U Fp_1. By Castelnuovo’s
criterion X™ is formed from X by contractmg E1 to a non-singular point.
In particular, the exceptional divisor of the minimal resolution X™" — X is
precisely (the isomorphic image of) Ej. It is straightforward to check that this
is precisely the form of the exceptional divisor prescribed by assertion 3 of the
theorem.
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Case 2: 1> deg,(¢) > 1/2. 1In this case a generic curvette 7 associated to C
has Puiseux expansion near P of the form

u = av® + h.o.t.

where a # 0 € C and « > 2. It follows that Algorithm 2.14 requires at least 3
blow ups, and strict transforms of L., contain the centers of at least the first
three blow ups. In particular, the intersection number of the strict transform
of Lo, on X (which is precisely negative of the label of the vertex e in Figure
3) is < —2. This implies that all the irreducible curves with support in the
exceptional divisor of & : X — X has self intersection < —2. Consequently, &
is precisely the minimal resolution of singularities of X and assertion 2 of the
theorem holds.

Case 3: 0 < deg,(v) < 1/2, deg,(¢p) # 1/n for all n € Z. The hypothesis of
this case implies that a generic curvette  associated to C' has Puiseux expansion
near P of the form

u = av® + h.o.t.

where a #2 0 € C and 1 < a < 2 such that a # (n+ 1)/n for all n > 1. Note
that o = p1/¢1 where ¢ is as in (5). In particular py,§; are integers with no
common factors. Let us follow the steps of the computation of ged(p1,q1) =
1 via Euclidean algorithm. The assumptions on « translate to the following
observations:

pL=q + 71 for some ry € Z, 1 <r; < q1, and

qr = mqry + 1o for some my,ro € Z, 1 <mq, 1 <ry <ryq.
Let the next step of the computation of ged(p1,¢1) be

r1 = MaTe + 73 for some mo >0, and 0 < rg < ro.

Then straightforward arguments as in Case 1 shows that after m; +mao+1 blow-
ups the dual graph of the union of strict transforms of E;’s for 1 < i < my+mao+1
on X mi+ma+1 18 as in Figure 5, and the Puiseux expansion for the strict transform
Ymy+mat1 Of ¥ o1 Xpn, 4myt1 is given by:

Uy +mat1 = @ (U 4mas1)™®/™ 4+ hoot. for some o’ # 0 € C.
where (um1+7VL2+1a Un11+m2+1) = (U’1+m1m2 /,U1+m.2+m1m2 ) Um1+1/um1 ) More-
OVer, Um;+mot1 = 0 and vUm,ym,+1 = 0 are respectively the local equations
of the strict transform of E,,, 11 and Ep,, fmq+1 DEAT Vi, 4mot1- We divide the
rest of the proof for this case into the following two subcases:
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-1 =2 -2 —(mg2+1) o
*—@------ mi4ma+1
EO E2 Em1 Em1+1

-2 , Em1+m2

—QIEm1+2
—(m1 + 2) FE4

Figure 5: Dual graph of Eqg U ---U Ep,, 1m,+1 after my + mg + 1 blow-ups

Subcase 3.1: 73 = 0. Since a’ # 0, this implies that Y, +m,+1 does not belong
to the strict transform of E,,, 41 on Xm1+m2+1. It follows from Algorithm 2.14
all the remaining blow-ups for the construction of X keep (the strict transforms
of) Ey,..., Fm,+1 unchanged and the dual graph of the exceptional divisor of
the morphism X — X is of the form as in Figure 6(a). Moreover, r3 = 0 implies
that ro = ged(p1,q1) = 1, so that mg = 71 > 2. The same arguments as in
Case 1 then show that the dual graph of the exceptional divisor of the minimal
resolution X™ — X is of the form as in Figure 6(b). This is precisely the form
of the dual graph prescribed by assertion 3 of the theorem.

Subcase 3.2: r3 > 0. In this case vy, +m,+1 intersects the point P, 4my+1
of intersection of E,,, ym,+1 and the strict transform of E,,, 11 on X, +myi1-
It follows that the bimeromorphic correspondence X --+ X, tm,+1 maps C
t0 Py +my+1 and therefore Algorithm 2.14 requires at least one more blow up
to construct X. The dual graph of the union of strict transforms of E;’s for
1<i<my+mg+2on X, 1m,io is as in Figure 7(a). Also, since 73 < 7g, it
follows that the strict transform of v on X,,, {m,+2 does not intersect the strict
transform of F,,, 11, and the same reasoning as in Subcase 3.1 then implies that
the dual graph of the exceptional divisor of the minimal resolution Xmin _y X
is of the form as in Figure 7(b). It is straightforward to check that this agrees
with assertion 3, which completes the proof of the theorem. O

COROLLARY 4.6 ([24]). Up to an (analytic) isomorphism P? is the only smooth
primitive compactification of C2.

Proor. This follows from combining the first assertions of Theorem 4.5 and
Proposition 4.2. O

REMARK 4.7. In [24] Remmert and Van de Ven essentially proved that com-
pactifications of C? are algebraic spaces, i.e. Theorem 2.15 (which is essentially
the point of departure of this article), and then used it to prove the result of
Corollary 4.6 by arguments different from ours. Our proof of Corollary 4.6 there-
fore is in fact a new proof of the implication “Theorem 2.15 = Corollary 4.6.”
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B —) —2 —(m2+1) |pest of

*—o------ ——— o

Ey E, Epm, En 1 the graph
_2lEm1+m2

_2IEm1+2
7(m1 + 2) E1

(a) Non-minimal resolution

—ma rest of
the graph

Em1+1

2$E’m1+m2

2IEm1+2
—(m1 + 2) E1

(b) Minimal resolution

Figure 6: Dual graphs of the exceptional divisor of the resolution of singularities
of X for the case r3 =0
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—1 =2 -2 —(m2+2) -1 2
o —e0------ @ L 4 L 4 mi1+mo+1
EO E2 Em1 EmlJrl Em1+m2+2

-2 Em1+m2

—(m1 +2)0FE;

(a) EgU - UEm, +mo42 after mi + ma + 2 blow-ups

—(m2 +1) |rest of
the graph

Em1+1

_2$Em1+m2

_2IEml+2
7(777,1 + 2) E1

(b) Exceptional divisor of the mini-
mal resolution

Figure 7: Dual graphs for the case r3 > 0
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COROLLARY 4.8 ([13]). The group of C-algebra automorphisms of the ring of
complex polynomials in two variables is generated by linear automorphisms and
triangular automorphisms (i.e. Type II automorphisms of Lemma 3.11).

PrOOF. Let A be the group of C-algebra automorphisms of Clz’,y'] and X
be the subgroup of A generated by linear and triangular automorphisms. Pick
F = (F1,F) € A, Set (u,v) == (Fi(2,y'), Fa(2',y')). Let X = P? be the
compactification of X := Spec C[z’,y'] = C? via the embedding (2/,y’) + [1 :
Fi(2',y) : Fo(2',y")]. Lemma 3.11 implies that there exists G = (G1,G2) € A
such that initial exponent of the generic descending Puiseux series ¥ (z,&) of
C with respect to (z,y) := (G1(2',y’), Ga(2',y')) coordinates is in the normal
form. Since X is non-singular, first assertions of Theorem 4.5 and Proposition
4.2 imply that ¢(z,§) = &z and Go F~' : X — X(,,) is an isomorphism.
It follows that F' o G~! is a non-invertible linear map in (z,y)-coordinates; in
particular, F o G~! € ¥. Therefore F € ¥, as required. O

The following result is immediate from the arguments of the proof of Theorem
4.5. We will use it in the proof of Theorem 1.1.

COROLLARY 4.9. Let X be a primitive compactification of X. Choose coordi-
nates (x,y) on X such that the initial exponent of the generic descending Puiseux
series Y(x, &) of the curve C at infinity is in the normal form. Then one of the
following must hold:

(1) X =P?, C =P
(2) 0(_;?!) : X(o.y) - X contracts Lo to a point P € C. In this case

(a) either P is a singular point of X,
(b) or X is isomorphic to the weighted projective space P%(1,1,n) for some
n > 1, and P is a non-singular point of both X and C. O

5. Singularities and Curves at Infinity

DEFINITION 5.1. Let X be a compactification of C2. We say that X is a mini-
mal compactification (of C?) if none of the curves at infinity can be (analytically)
contracted.

EXAMPLE 5.2. Note that a minimal compactification of C?> may not be a
minimal surface. Indeed, let Xy = P2. Pick a line Ly on X, and a point Q € Lo.
Fix k > 1. Choose points P,..., P, € Xo \ Lo such that the lines L; joining
P, and Q, 1 < i < k, are pairwise distinct. Let Xj be the blow up of X,
at Pi,...,P;. Let C; C X be the strict transform of L;, 0 < i < k, and
Xp = Xi \ Uf:o C;. Note that Xy = C2. It then follows by induction that
Xj = C? (indeed, we need only the following observation: if Y is the blow up
of C? at a point P and L is a line through P on C?, then the complement in
Y of the strict transform of L is also isomorphic to C2). We claim that X is
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a minimal compactification of X;. Indeed, the matrix of intersection numbers
(Ci7 C]) is:

— =
—_ O
O =
— =
— =
==

—
— =
[
[
— O
o =

It then follows from Theorem 2.12 that no C; can be contracted, i.e. X is a
minimal compactification of Xj. Also note that the configuration of the curves
at infinity is as in Figure 1.

PRrROOF OF THEOREM 1.1. Let 0 : X --» Xy = P? be the bimeromorphic
correspondence induced by identification of X with C2. Algorithm 2.14 shows
that a resolution of singularities & : X — X can be constructed from X, via a
sequence of blow-ups X;;1 — X;, with X = X, for some s > 1. Let E, be the
line at infinity on Xy, and for each i > 1, let E; be the exceptional divisor of
the i-th blow-up. Finally, for each ¢ > 0, let I'; be the augmented dual graph at
the i-th step, i.e. I'; is the dual graph for the union of strict transforms on X;
of Ey,. .., E;. Then it is straightforward to see (see, e.g., [27, Remark 5.5]) that
for each i, there are only two possibilities for the transformation from I'; to I';41
which are described in Figure 8. In particular, it follows that for all ¢ > 1,

(i) Ty is a tree (i.e. every pair of vertices is connected by a unique minimal
path).

(ii) [; is connected to at most two distinct F;’s in I';; denote them as E;, and
By (t; =t} in the case of Figure 8(a)). (Here we used i > 0.)

(iit) Let T'; (resp. T';) be the connected component of T'y \ {£;} which contains
Ey; (resp. Ey). Then the vertex corresponding to Ep is in I; UT) (from
now we will abuse the notation and simply write Ey € T'; U f‘;) W.lo.g. we
assume that Ey € f‘l

(iv) Let T be a connected component of I'y \ {F;} which does not contain E;, or
By, and let E :=J{E; : E; € T}. Then there is a point Q € E; such that
F is precisely the union of exceptional curves arising from blow-up of @) and
points infinitely close to Q. In particular, E can be (analytically) contracted
to a non-singular point and the image of F; under this contraction is also
non-singular.

Proof of assertion (1): X is constructed from X by contracting some of the
E;’s. Let E;,,...,E; be the non-contracted curves; w.l.o.g. we may assume
C; =06(E;;), 1 <j < k. Observation (iv) can be reformulated as:

J
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T; Fit1
(b) Possibility 2

Figure 8: Change of the augmented dual graph in (i 4+ 1)-th step

(v) Fix j, 1 < j <k. Let P € Sing(X) N C;. Then one of the following folds:

(a) P e C;jnCy for some j' # j,
(b) i; > 1, 6 contracts I';;, 3 Ey, and P = 6(Ep) = &(I';).
(c) i; =1, ¢, #1;,, & contracts f‘;j, and P = &(f‘;j).

Define
(6) ¥ :={i; : & contracts T;, U f;y}
(7) S= J ¢ncy

1<j<j’ <k

Observation (i) implies that |S| < k — 1. If ¥ = &, then observation (v) implies
that for all j, 1 < j <k, |Sing(X) NC; \ S| < 1. It follows that | Sing(X)| <
kE+1S] 4+ 1 < 2k. On the other hand, if ¥ # @&, then observations (iii) and
(i) imply that & contracts Fy to some point Py € X and Py is the unique
point of intersection of all C; such that i; € X. Observation (v) then implies

that for all j, 1 < j < k, [Sing(X) N C; \ (SU{F})| < 1. It follows that
| Sing(X)| < k+ |SU{FPo}| <2k. This completes the proof of assertion (1).

Proof of assertion (4): Since X is minimal, it follows from Theorem 2.12
that either & contracts Ey or X = X,. W.l.o.g. we may assume the former.
Consider the surface X’ obtained from X by contracting all curves at infinity
other than the strict transforms of C1,. .., Cy and the line Ey at infinity on Xg
(which is possible e.g. by Theorem 2.12). The bimeromorphic correspondences
7 X' ——» X and 7wy : X' --» X extend to holomorphic maps. In particular,
for each j, 1 < j < k, the strict transform C’ of C; on X' is contractible, so
that (C7,C7) < 0. On the other hand, the minimality assumption on X and
Theorem 2.12 imply that (Cj,C;) > 0 for all j, 1 < j < k. Since 7'z gy (Where
E} is the strict transform of Ep on X') is an isomorphism, it follows that E}
intersects each C}, 1 < j <k, so that P := 7'(E) € ﬂ;c:l C;. This, together
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with observation (i) above, implies that ©'~'(P) N Cj consists of a single point
Pj. In particular this proves assertion (4a) and implies that S U & (Ep) = {P},
where S is as in (7). Observation (v) then implies that |Sing(X)\ {]3}| <k,
which is precisely assertion (4c). Now fix j, 1 < j <k, and let 7} : X' — X7
be the contraction of all CY, ¢ # j. Then X 7 1s precisely the compactification
X* of Remark 4.4 for C' = C;. Since 7’ is an isomorphism on a neighborhood
of C} \ {P;}, assertions (4b) and (4d) follows from Remark 4.4.

Proof of assertion (2): At first note that if & does not contract Ep, then X
dominates X, and therefore all singularities of X are sandwiched. So assume &
contracts Ey to a point P € X. Let X’ be as in the preceding paragraph. Then
X’ dominates X, and therefore all the singularities of X’ are sandwiched. Since
X\ {P} = X'\ E}, this implies assertion (2).

Proof of assertion (3): At first note that if C; is the image of Ep, then
C; = P! (since then the birational mag)_( — X, maps C; on to Lo,). So assume
that Ep does not map on to Cj. Let X7 be as in the proof of assertion (4) and
m; + X — X7 be the corresponding map. Recall that E;; is the strict transform
of Cj on X. Let @; be the point of intersection of £;; and I';; (where I';’s are as
in observation (iii)). Then 7} (Q;) is precisely the point of intersection of the two
curves at infinity on X7. Since the bimeromorphic correspondence X --» X

restricts to a holomorphic map on a neighborhood of C; \ &(Q;), assertion (3a)
follows from Remark 4.4.

It remains to prove assertion (3b). Let @ be a singular point of C; such that
Q € Cj\U,; Ci- Recall that our proof of Theorem 1.1 started with the choice of
an arbitrary compactification Xy of X which is isomorphic to P2. Now we choose
coordinates (z,y) on X such that the initial exponent of the generic descending
Puiseux series associated to Cj is in the normal form, and set Xo = X, ) and
00 = O(z,y)- The arguments in the preceding paragraph imply that @ = &(Qj)
and ¢ contracts Ey to Q. Since @ € X \ U, +; Ci, this in turn implies that the
bimeromorphic correspondence X --s X* restricts to a holomorphic map on a
neighborhood of Ef := 77 (Ep). In particular, this implies that E{ is analytically
contractible. Let p7 : X;‘ — Z be the contraction of Ej. Then Z is a primitive
compactification of X, and u} induces a holomorphic map y; : X — Z such that
Z\ X = p;(C;) and p; is an isomorphism near Q. Assertion (3b) now follows
from Corollary 4.9. U

ExAMPLE 5.3 (Compactifications with maximal number of singular points).
Pick relatively prime integers p,q > 1 and let X, be the weighted projective
surface P?(1,p,q), so that X, is a compactification of C? with two singular
points at infinity. Pick P € C := X, \ X such that Xj is non-singular at P.
Then perform a sequence of 3 blow-ups as follows: at first blow up X, at P, then
blow up the resulting surface at a point on the exceptional divisor E; which is
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not on the strict transform of C, and then blow up the point of intersection of
the new exceptional divisor F5 and the strict transform of Ey. This produces a
compactification of C? with the dual graph of the union of the curves at infinity
as in Figure 9.

-3 -1 -2
[ L 4 @ L J
C B, Es B

Figure 9: Construction of X such that | Sing(X)| is maximal

It follows that blowing down E; and E» produces a compactification of C2 with
2 irreducible curves and 4 singular points at infinity. For each k > 1, applying
this procedure to k distinct points on C'\ (Sing X) produces a compactification
of C? with k + 1 irreducible curves and 2(k + 1) singular points at infinity.

6. Intersection Numbers of Curves at Infinity

Proor oF THEOREM 1.5.  Since each v; is centered at infinity, it follows that
there exists a compactification X j of X such that v; is the order of vanishing
along a curve C’]‘ at infinity on X;. By assumption we can assume X; = P2
Let X be the simultaneous resolution of singularities of X;,1<j <k Let
C’j be the strict transform of C' on X. Let E; be the union of the exceptional
curves of the map &1 XX 1 and let E be the union of all curves in E1 which
are different from Cz, .. C’k Since E1 is contractible, it follows that E is also
contractible. Let & : X — X be the contraction of E. Then X is precisely the
compactification Question 1.3 asks for. Since &7 factors through &, it follows
that every singularity of X is sandwiched, and therefore rational [26, Remark
1.15]. A criterion of Artin [1, Theorem 2.3] then shows that X is projective.
This completes the proof of assertions (1) and (2) of Theorem 1.5.

We now prove assertion (3). Remark 1.6 shows that m;; = —v;(g,, (z,9,£))
for generic é € C, where g,, is the generic key form of v;. For all £~ € C, let

D, ¢ be the closure in X of the curve g, (x,y,€) = 0. Recall (from Example
3.8) that D, flsa line with ‘slope’ €. Therefore for generic &, D 1, intersects Co
transversally at one point and does not intersect any C; for j > 1. Since the
Weil divisor on X of g,, (m,y,{) is Dy ¢+ Zl:l v (gu, (:my,f))Cl, it follows that

k
(8) > mn(C,Cy) =6y, forall j, 1<j <k,

where d;; is the usual Kronecker delta. Now fix 4, 2 < 4 < k and pick n > 0
such that z"g,, € Clz,y,€]. For all £ € C, let D, ¢ be the closure in X of the
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curve {z"g,, (x,y,£) =0} C X. Let Z, ¢ be the image of D, ¢ under the natural
birational morphism o7 : X — X;. Note that

(1) X1 = X(4,) and 01 = 0(;,) in the notation of Section 3.
(2) Z,¢ls precisely the curve Zg from Proposition 3.7 when applied to v = v;.

K3

(3) o71(Qy) € Ci\ (U= i )-

Proposition 3.7 then implies that for generic 5 eC,

k
(9) (D& Cy) = —ny u(@)(Ci,C) + > mu(Cr, Cy)
=1

=1

if j=1
= " ?] . = ndi; + 0i;
51’]’ 1f1<]§]€.

Now recall that by our assumption v;(z) < y(y) for all I, 1 <1 < k. It follows
that

my = —v(y — &x) (where £ € C is generic) = —u(z),

which, together with identities (8) and (9) imply that

k
(10) Zmli(cl,cj‘) = 51‘3‘ forall j, 1 <j<k.
=1
The theorem now follows from identities (8) and (10). O

EXAMPLE 6.1 (Minimal compactifications with maximal number of singular
points). We apply Theorem 1.5 to construct, for each k£ > 1, minimal compact-
ifications X of X with k irreducible curves at infinity and | Sing(Xy)| = k + 1.
Choose relatively prime positive integers p,q. For k = 1, the weighted projec-
tive space P2(1,p, q) satisfies the requirement, provided both p and ¢ are > 2.
So assume k > 2. Pick distinct complex numbers as, ..., ary1 and for each j,
2 < j < k+1, let v; be the divisorial valuation on C(z,y) corresponding to
generic descending Puiseux series ﬁj(a:,f) = 04T + £€x~9/P; in other words, vj
is the negative of the weighted degree on C(z,y) with respect to coordinates
(x,y — a;x) such that the weight of « is p and the weight of y — oz is —¢. The
key forms of v; are x,y,y — ojx, and the generic key form of v; is

g, =y —az)P =&, 2<j<k+1
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Let v; = —deg and X be the surface obtained by applying Theorem 1.5 to
Vi,...,Vgt1. Oince g,, =y — Ex, it follows that
L p p - p p
p —pg p* - PP
M=|p P -pg - P P
p P P g
_ kp 1 . 1
p+q p+q p+q p+q p+q
1 __r 0
T— M= ptaq p(p+q)
: : e : :1
ptaq 0 0 0 —55re

Now assume (k — 1)p > g. Then (C,C1) < 0 and therefore C is analytically
contractible (Theorem 2.12); let X, be the surface formed from X via con-

tracting C;. We claim that for a suitable choice of parameters p and ¢, X, 4 is

a minimal compactification of X and |Sing(Xp )| = k+ 1. Let C’; be the image
of C; on X, , via the morphism 7’ : X — X,,,. For the minimality of X, , it
suffices to show that (C7,C7) > 0 for each j, 2 < j < k+ 1. But (C},C}) =
(ﬂ’*(C’j’.),ﬂ’*(C’})) = (C] + CjOl,Cj + chl), where Cj = 7(01,6’]')/(01,01).
Consequently,

(C1,C1)(Cy,Cy) = (C1,Cy)?
(C1,Ch)

1 gq—(k-2)p
p(p+q) (k—1)p—q

(C}, C5) = (Cj +¢;C1,Cy) =

Since (k—1)p > g, it follows that (C7,C}) > 0 iff (k—2)p < g, i.e. X, is indeed
a minimal compactification of X if ¥ > 2 and (k —2)p < ¢ < (kK — 1)p.

Now we compute | Sing(X,, 4)|. First note that for 2 <i < j <k+1,

(C{, OJ/) = (CI + ciCl,Cj + ch'l) = (CI =+ ciCl,Cj) = ci(C’l,Cj)
1 .
P+a)((k—1)p—q)

in particular, (C},C}) is not an integer, which implies that the (unique) point
P’ of intersection of C and C’; (which is also the point of intersection of all CJ,
2 <1 < k+1, due to assertion (4a) of Theorem 1.1) is singular. To see other
singular points of an, note that for each j, 1 < j < k, there is a morphism
m;: X — X, 4.5, where X, ; is the surface obtained from X by contracting all
curves at infinity other than C; and C;. Since —v; and —v; are weighted degrees
in (z,y—ajz)-coordinates, it follows that X, , ; is the toric surface corresponding
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to the polygon of Figure 10. It follows from basic toric geometry that if p > 2,
then X,,,; has a singular point @Q; on ;(C;) \ m;(C4). Since 7; is invertible
near Pj, it then follows that P; := 7rj_1(Qj) is a singular point on C; \ C; and
consequently the image P; of P; on X, is a singular point on Ci\ Uiy, Ci-

slope -1

slope p/q

Figure 10: Polygon corresponding to Xpyq,j

PrOOF OF THEOREM 1.4. W.lo.g. we may (and will) assume that no two v;’s
are mutually proportional. We divide the proof in two cases:

Case 1: there exists j, 1 < j < k, such that v; = —deg. In this case
w.l.o.g. we may assume j = 1 and Theorem 1.5 shows that the answer is af-
firmative. So we only have to show that det(—M) < 0. Indeed, let Z be the
intersection matrix of the curves at infinity on X and Z be the (k—1) x (k — 1)
submatrix of Z with (4, j)-th entry being (C;,C;), 2 < j < k. Since CoU---UCY
is contractible, Grauert’s theorem (Theorem 2.12) implies that 7 is negative
definite. Similarly, since C; U --- U C} is not contractible, it follows that Z is
not negative definite. Since det(Z) # 0, it then follows from the standard test
of negative-definiteness via the sign of principal minors that (—1)*detZ < 0.
Consequently, (—1)¥ det M = det(—M) < 0, as required.

Case 2: there is no j, 1 < j < k, such that v; = —deg. In this case, let
vy = —deg and apply Theorem 1.5 to the collection vy, ..., . Let X’ be the
resulting compactification of C? and Z’ be the matrix of intersection numbers
of curves (C}, (), where Cj is the curve at infinity on X' corresponding to v;,
0 < ¢ < k. Theorem 1.5 implies that det M is precisely the (1,1)-minor of
M’ := T'71. Cramer’s rule then implies that (C}),C}) = det M/det M’'. On
the other hand, applying Case 1 to vy, ..., yields that sign(det M) = (—1)*.
Consequently, sign((C}, C})) = sign((—1)* det M) = sign(det(—M)). Now the
result follows from Grauert’s theorem. O

As an application of Theorem 1.4, we give an interpretation of skewness of

valuations - an invariant of valuations defined by Favre and Jonsson in order to
study the valuative tree (see [8] for details).
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DEFINITION 6.2 (see [9, Appendix A]). Let v be a divisorial discrete valuation
on C[z,y] centered at infinity such that v(z) < 0 and v(z) < v(y). Assume that
v # — deg, where deg is the degree in (z, y)-coordinates. Let P be the center of v
on X(x,y) =~ P2, For every f € OX(z,y)7P7 let m(f) be the intersection multiplicity
at P of the curve {f = 0} with the line at infinity. Note that u := 1/x is a regular
function at P and u = 0 is precisely the equation of the line at infinity near P.
Let 7 := v/v(u) be the normalized version of v (in the sense that v(u) = 1).

Then the relative skewness of v is &(v) := sup{w(f)/m(f) : f € Ox_ , p} and
. :

the skewness of v is a(v) := 1 — &(v).
COROLLARY 6.3. Let v be a divisorial discrete valuation on C(x,y) centered at
infinity such that v(xz) < 0 and v(x) < v(y). Let g, be the generic key form of v
with respect to (z,y)-coordinates. Then the following are equivalent:

1. v determines a compactification of X (i.e. there is a (unique) compactification
X of X such that the curve C at infinity on X is irreducible and v is the order
of vanishing along C). )

2. v(gu(x,y,£)) <0 for some (and hence every!) & € C.

3. a(v) > 0.

PROOF. Let p := deg,(g,). Recall (from Definition 3.6) that g, = g, /u? =

L(g—¢ Hg;t Q;Lj ), where g;’s are key polynomials of v with respect to (u,v) :=
(1/x,y/xz)-coordinates. The defining properties of key polynomials then imply
that

(11) p =nydeg,(§1) = v(u), and for all € € C,

(12)
v(gu(x,y,€)) = m(@) — v(uP) = mu (@) — pr(u) = n(v(G) — v(u) deg, (§i))-

In particular, v(g,(z, y, 5)) does not depend on 5 . The equivalence of assertions
1 and 2 then immediately follows from the k£ = 1 case of Theorem 1.4. On the
other hand, [8, Lemma 3.32] implies that
o) = 20 _ @)
m(g)  v(u)deg,(gi)

It follows that

v(u)deg, (91) —v(G1) _ v(gu(@,9,9)) _ vlgu(@,y,9)
v(u) deg,(q1) pv(u) p?

alv)=1-a(v) =

which shows the equivalence of assertions 2 and 3, and completes the proof of
the corollary. O

5Tn [9, Appendix A] skewness was defined only for normalized valuations centered at infinity.
We simply defined the skewness of a valuation centered at infinity to be the skewness of its
normalized version.
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REMARK 6.4. The term v(g,(z,y,€)) from assertion (2) of Corollary 6.3, or
equivalently the skewness a(v) can be calculated in a straightforward way in
terms of formal Puiseux pairs of the generic descending Puiseux series ¥, (x, £) of
v. We present the formula for the sake of completion: let (q1,p1), ..., (¢i+1,Pi+1)
be the formal Puiseux pairs of 1,. Set p :=py---p;+1. Then for every £eC,

q1 q2
l/(gl/(xa y,f)) =D <(p1 P41 — P2 'pl+1)p*1 + (pz Pl — P3c 'pl+1)

P1p2

qi qi+1
+ A+ (P11 — Pryr) ———— +pl+1+>
P1---Di P11 Di+1
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