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Analytic Compactifications of C2

Part I—Curvettes at Infinity
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Abstract. We study normal analytic compactifications of C2 and

describe their singularities and configuration of curves at infinity, in par-
ticular improving and generalizing results of [5]. As a by product we give

new proofs of Jung’s theorem on polynomial automorphisms of C2 and

Remmert and Van de Ven’s result that P2 is the only smooth analytic com-
pactification of C2 for which the curve at infinity is irreducible. We also give

a complete answer to the question of existence of compactifications of C2

with prescribed divisorial valuations at infinity. In particular, we show that
a valuation on C(x, y) centered at infinity determines a compactification of

C2 iff it is positively skewed in the sense of [8].

Résumé. Nous étudions les compactifications analytiques normales de
C2 et décrivons leurs singularités et la configuration des courbes à l’infini,

en particulier ameliorant et généralisant les résultats de [5]. Comme un

sous-produit, nous donnons de nouvelles preuves du théorème de Jung sur
les automorphismes polynomiaux de C2 et le résultat de Remmert et Van

de Ven que P2 est la seule compactification analytique lisse de C2 pour la-

quelle la courbe à l’infini est irréductible. Nous donnons aussi une réponse
complète à la question de l’existence de compactifications de C2 avec des

valorisations divisorielles préscrites à l’infini. En particulier, nous montrons

qu’une évaluation sur C(x, y) centrée à l’infini détermine une compactifica-
tion de C2 ssi elle est positivement asymétrique dans le sens de [8].

1. Introduction The topic of this article is compact normal analytic sur-
faces containing C2, henceforth to be called simply compactifications (of C2).
Compactifications of C2, being one of the most natural and simplest classes of
compact surfaces, have been the subject of numerous articles, see e.g. [24], [21],
[5], [6], [2], [22], [11], [23], [14], [15], [10]. In particular, Kodaira (as part of
his classification of surfaces), and independently Morrow [21] showed that every
nonsingular compactification of C2 is rational (i.e. bimeromorphic to P2) and can
be obtained from P2 or some Hirzebruch surface via a sequence of blow-ups and
blow-downs. In this article we initiate a program to study these compactifica-
tions via studying the curvettes at infinity - these are germs of curves which are
transversal to a curve at infinity (i.e. a curve lying on the complement of C2). We
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analyze parametrizations of images of these curvettes under the bimeromorphic
correspondence to P2 and use them in two different ways:

• To study singularities of the compactifications and of the curves at infinity
(Sections 4, 5).

• To study existence of a compactification such that the orders of vanishing
along curves at infinity is a prescribed collection of discrete valuations on
C(x, y) (Section 6).

In Part II [20] of this article we use the tools developed here to completely classify
compactifications of C2 with one (irreducible) curve at infinity. In a subsequent
work we plan to emulate this technique to study more general Moishezon surfaces
(i.e. analytic surfaces which are bimeromorphic to algebraic surfaces).

Our first main result is a description of singularities of compactifications of C2

and configuration of the curves at infinity. We call a compactification minimal if
none of the irreducible components of the curve at infinity can be (analytically)
contracted1.

Theorem 1.1. Let X̄ be a normal analytic compactification of C2. Assume
that X̄ \ C2 has k irreducible components C1, . . . , Ck. Let Sing(X̄) be the set of
singular points of X̄.

(1) |Sing(X̄)| ≤ 2k.
(2) X̄ has at most one singular point which is not sandwiched2.
(3) (a) For each j, 1 ≤ j ≤ k, Cj has an open set isomorphic to C; in particular,

it has at most one singular point.
(b) There is at most one j such that Cj has a singular point which is not

in Ci ∩ Cj for some i 6= j. Moreover, if Q is such a point on Cj, then
X̄ is also singular at Q and

⋃
i 6=j Ci is contractible; in particular, if in

addition k ≥ 2, then X̄ is not minimal.
(4) Assume X̄ is a minimal compactification of C2. Then |Sing(X̄)| ≤ k + 1.

Moreover, there is a point P ∈ X̄ such that

(a) Ci ∩ Cj = {P} for all i, j, 1 ≤ i < j ≤ k.
(b) Ci \ {P} ∼= C for each i.
(c)

∣∣Sing(X̄) \ {P}
∣∣ ≤ k.

(d) every point in Sing(X̄) \ {P} is a cyclic quotient singularity.

Remark 1.2. (a) Both of the upper bounds for |Sing(X̄)| of Theorem 1.1 are
sharp (see Examples 5.3 and 6.1). Example 5.2 shows that the lower bound
for |Sing(X̄)| in both cases is zero.

1Note that a minimal compactification of C2 may not be a minimal surface, see Example
5.2

2An analytic surface Y has a sandwiched singularity at a point P if there are proper bimero-
morphic maps U ′′ → U → U ′ where U is a neighborhood of P in Y and U ′, U ′′ are (open
subsets of) non-singular surfaces [26, Remark 1.12]. Sandwiched singularities are rational
[16, Proposition 1.2].



Analytic Compactifications of C2 Part I—Curvettes at Infinity 43

P

Figure 1 : Configuration of curves at infinity on a minimal compactification

(b) Let Q be a singular point of some Cj . Assertion (3a) implies that Cj has a
totally extraordinary singularity at Q in the language of [5]. Consequently,
assertion (3) improves and generalizes the main result of [5].

We prove Theorem 1.1 essentially via combinatorial arguments stemming from
a careful study of the dual graphs of resolution of singularities of compactifica-
tions of C2 3. The resolution of singularities of a compactification of C2 is on
the other hand intimately related to the resolution of singularities of generic
curvettes at infinity associated to each irreducible curve at infinity. A study of
this relation leads us to the second main result (Theorem 4.5) in which we give
an explicit description of the dual graph of minimal resolution of singularities of
compactifications of C2 which are primitive, i.e. for which the curve at infinity
is irreducible. As a by product of this description we give new proofs of Jung’s
theorem on polynomial automorphisms of C2 (Corollary 4.8), and Remmert and
Van de Ven’s result that P2 is the only smooth analytic compactification of C2

for which the curve at infinity is irreducible (Corollary 4.6).
A motivation for the work on this article was to understand divisorial val-

uations centered at infinity on C[x, y] - each of these is the order of vanishing
along some curve at infinity on some compactification of C2. However, these
valuations can be explicitly described without resorting to any compactification,
e.g. by a finite generating sequence [27] of polynomials, or a (finite) sequence
of key polynomials [17], or by a Puiseux polynomial (i.e. a Puiseux series with
finitely many terms) in x−1 or y−1 [8, Chapter 4]. The most basic question in
this context is:

Question 1.3. Assume that we have explicit algebraic description (e.g. in
one of the equivalent ways mentioned above) of divisorial valuations ν1, . . . , νk
on C[x, y]; in other words, assume that for all polynomials f ∈ C[x, y], we
have explicit recipes to compute νj(f), 1 ≤ j ≤ k. Determine if there exists a
compactification X̄ of C2 such that the νj ’s are precisely the order of vanishing
along the curves at infinity on X̄.

Question 1.3 is about the existence of a geometric ‘model’ underlying some
algebraic data. It follows that the answer should involve interpretation of relevant
geometric objects in terms of the input data. Indeed, if ν is a divisorial valuation

3Except for assertion (3b), the proof of all assertions of Theorem 1.1 requires only the
background material presented in Section 2.4. The proof of assertion (3b) uses Corollary 4.9
which in turn uses Lemma 3.11.
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on C[x, y] associated to a curve C at infinity on some compactification X̄ of C2,
then the key polynomials of ν can be used to define ‘natural’ representatives
of generic curvettes at infinity associated to C (see Remark 1.6). Combining
this observation with Grauert’s characterization of contractible curves ([12], see
Theorem 2.12) we give a complete and explicit answer to Question 1.3. Here we
give a formulation of this answer in terms of the sequence of key polynomials:

Given νj ’s as in Question 1.3, we may (by a generic linear change of co-
ordinates) choose coordinates (x, y) such that νj(x) < 0 and νj(x) ≤ νj(y)
for each j. Then set (u, v) := (1/x, y/x), so that each νj is non-negative on
C[u, v] (with νj(u) > 0), and therefore each can be described by a finite se-
quence of key polynomials. Let g̃j,0 = u, g̃j,1 = v, g̃j,2, . . . , g̃j,lj ∈ C[u, v] be the
sequence of key polynomials of νj (or a minimal generating sequence in the ter-
minology of [27]) with respect to (u, v)-coordinates. Pick the smallest positive
integer nj,lj such that nj,ljνj(g̃j,lj ) is in the semigroup generated by νj(g̃j,s),
1 ≤ s ≤ lj − 1. Then it follows from the property of key polynomials that

nj,ljνj(g̃j,lj ) =
∑lj−1
s=0 nj,sνj(g̃j,s) where nj,s are non-negative integers such that

nj,s < degv(g̃j,s+1)/ degv(g̃j,s) for 1 ≤ s ≤ lj − 1. Let M be the matrix with
entries

mij = djnj,ljνi(u)−min

nj,ljνi(g̃j,lj ),
lj−1∑
s=0

nj,sνi(g̃j,s)


where dj = degv(g̃j,lj ).

Theorem 1.4. The answer to question 1.3 is affirmative iff det(−M) < 0.

In the special case that k = 1, Theorem 1.4 implies that a valuation ν (centered
at infinity on C[x, y]) determines a compactification of C2 iff it is positively skewed
in the sense of [8]. As the first step to the proof of Theorem 1.4 we study a
special case of Question 1.3, where the answer is affirmative and the resulting
compactification dominates P2:

Theorem 1.5. Assume ν1 = −deg, where deg is the degree in (x, y) coordi-
nates. Also assume (w.l.o.g.) that νi’s are mutually non-proportional. Then

(1) There exists a projective (in particular, algebraic) compactification X̄ of C2

which affirmatively answers Question 1.3.
(2) The singular points of X̄ (if they exist) are sandwiched.
(3) The matrix of intersection numbers of the curves at infinity on X̄ is M−1.

Remark 1.6 (Interpretation of the matrixM). Let ξ be an indeterminate and
define

g̃νj := g̃
nj,lj
j,lj
− ξ

lj−1∏
s=0

g̃
nj,s
j,s ∈ C[u, v, ξ],

gνj := xdegv(g̃νj )g̃νj (1/x, y/x, ξ) ∈ C[x, x−1, y, ξ]
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Then it is straightforward to see that mij = −νi(gνj (x, y, ξ̃)) for generic ξ̃ ∈ C.

Geometrically these gνj (x, y, ξ̃)’s define generic curvettes at infinity associated
to νj (see Definition 3.6 and Proposition 3.7).

Remark 1.7. Theorem 1.5 remains valid if −ν1 is any weighted degree cor-
responding to positive weights for x and y, or even more generally, if ν1 is the
divisorial valuation associated to the curve at infinity on any primitive com-
pactification of C2 with at worst sandwiched singularities. This follows from
essentially the same arguments as in the proof of Theorem 1.5.

1.1. Organization After presenting some background material in Section 2, we
introduce in Section 3 the notion of generic curvettes at infinity on C2 associ-
ated to (irreducible) curves at infinity on compactifications on C2. In Section
4 we describe the dual graph of minimal resolution of singularities of primitive
compactifications of C2 and as corollaries prove Jung’s theorem on polynomial
automorphisms of C2 (Corollary 4.8), and Remmert and Van de Ven’s result that
P2 is the only smooth primitive compactification of C2 (Corollary 4.6). Section 5
contains the proof of Theorem 1.1 and Section 6 contains the proof of Theorems
1.4 and 1.5.

1.2. (Un)convention In this article we make the unconventional choice to
parametrize analytic curves as the parameter approaches infinity (as opposed
to zero). We do this because it is more convenient for studying the behaviour
of analytic curves on C2 as they approach infinity, and studying how the ‘order
of the growth’ of these parametrizations is affected by change of coordinates on
C2. E.g. if f ∈ C[x, y] and L is the line y = ax, in order to measure the order of
growth of f |L near infinity, we could say

• either parametrize L as t 7→ (t, at) as t → ∞ and compute the degree in t of
f(t, at),

• or parametrize L as t 7→ (t−1, at−1) as t → 0, compute the order in t of
f(t−1, at−1), and take its negative.

In this article we chose to adopt the first approach. A consequence of this
choice is that instead of using the usual Puiseux series (Definition 2.1) in t
where terms appear with increasing order in t, we have to use series in t in which
terms appear with decreasing order in t; we call these descending Puiseux series
(Definition 2.3). As a justification of our choice, we invite the reader to formulate
Lemma 3.11 (which is a crucial tool in our proof of the results of Section 4) using
parametrization from a neighborhood of zero and usual Puiseux series, and to
compare the resulting formulation with ours.

1.3. Acknowledgements I heartily thank Professor Pierre Milman. This work
was done while I was his post-doc at University of Toronto. It was essentially an
attempt to understand some of his questions in a simple case and the exposition
profited enormously from speaking in his weekly seminar and from his questions.
Very special thanks also go to Dmitry Kerner - his questions forced me to think



46 Pinaki Mondal

and formulate the results in geometric and much more understandable terms.
Some of the results of this article were announced in [19].

2. Background

2.1. Puiseux series

Definition 2.1 (Meromorphic Puiseux series). A meromorphic Puiseux series
in a variable u is a fractional power series of the form

∑
m≥M amu

m/p for some
m,M ∈ Z, p ≥ 1 and am ∈ C for all m ∈ Z. If all exponents of u appearing in a
meromorphic Puiseux series are positive, then it is simply called a Puiseux series
(in u). Given a meromorphic Puiseux series φ(u) in u, write it in the following
form:

φ(u) = · · ·+ a1u
q1
p1 + · · ·+ a2u

q2
p1p2 + · · ·+ alu

ql
p1p2···pl + · · ·

where q1/p1 is the smallest non-integer exponent, and for each k, 1 ≤ k ≤ l,
we have that ak 6= 0, pk ≥ 2, gcd(pk, qk) = 1, and the exponents of all terms
with order between qk

p1···pk and qk
p1···pk+1

(or, if k = l, then all terms of order

> 1
p1···pl ) belong to 1

p1···pkZ. Then the pairs (q1, p1), . . . , (ql, pl), are called the

Puiseux pairs of φ and the exponents qk
p1···pk , 1 ≤ k ≤ l, are called characteristic

exponents of φ. The polydromy order [7, Chapter 1] of φ is p := p1 · · · pl, i.e.
the polydromy order of φ is the smallest p such that φ ∈ C((u1/p)). Let ζ be a
primitive p-th root of unity. Then the conjugates of φ are

φj(u) := · · ·+ a1ζ
jq1p2···plu

q1
p1 + · · ·+ a2ζ

jq2p3···plu
q2
p1p2 + · · ·

+alζ
jqlu

ql
p1p2···pl + · · ·

for 1 ≤ j ≤ p (i.e. φj is constructed by multiplying the coefficients of terms of φ
with order n/p by ζjn).

We use the standard fact that the field of meromorphic Puiseux series in u is
the algebraic closure of C((u)):

Theorem 2.2. Let f ∈ C((u))[v] be an irreducible monic polynomial in v of
degree d. Then there exists a meromorphic Puiseux series φ(u) in u of polydromy
order d such that

f =

d∏
i=1

(v − φi(u)),

where φi’s are conjugates of φ.

Definition 2.3 (descending Puiseux Series). A descending Puiseux series in
x is a meromorphic Puiseux series in x−1. The notions regarding meromorphic
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Puiseux series defined in Definition 2.1 extend naturally to the setting of de-
scending Puiseux series. In particular, if φ(x) is a descending Puiseux series and
the Puiseux pairs of φ(1/x) are (q1, p1), . . . , (ql, pl), then φ has Puiseux pairs
(−q1, p1), . . . , (−ql, pl), polydromy order p := p1 · · · pl, and characteristic expo-
nents −qk/(p1 · · · pk) for 1 ≤ k ≤ l.

We use descending Puiseux series via the following result, which is an imme-
diate corollary of Theorem 2.2.

Corollary 2.4. Let (x, y) be a system of (polynomial) coordinates on X = C2.
Embed X ↪→ P2 via the map (x, y) 7→ [1 : x : y]. Let P = [0 : a : b] be a point
at infinity and γ be the germ of an analytic curve at P . Assume a 6= 0 and
γ is not the germ of the line at infinity. Then in (x, y)-coordinates γ has a
parametrization of the form t 7→ (t, φ(t)), |t| � 0, where φ(t) is a descending
Puiseux series in t.

2.2. Divisorial discrete valuations Let σ : Y ′ 99K Y be a bimeromorphic corre-
spondence of normal complex algebraic surfaces and C be an irreducible analytic
curve on Y ′. Then the local ring OY ′,C of C on Y ′ is a discrete valuation ring.
Let ν be the associated valuation on the field K of meromorphic functions on
Y ′; in other words ν is the order of vanishing along C. We say that ν is a
divisorial discrete valuation on K; the center of ν on Y is σ(C \ S), where S is
the set of points of indeterminacy of σ (the normality of Y ensures that S is
a discrete set, so that C \ S 6= ∅). Moreover, if U is an open subset of Y , we
say that ν is centered at infinity with respect to U iff σ(C \ S) ⊆ Y \ U . The
following result, which connects Puiseux series and divisorial discrete valuations,
is a reformulation of [8, Proposition 4.1].

Theorem 2.5. Let P ∈ σ(C \S). Assume Y is non-singular at P . Let (u, v) be
an analytic system of coordinates on a neighborhood U of P such that ν(u) > 0.
Then there is a Puiseux polynomial (i.e. a Puiseux series with finitely many
terms) φν(u) (unique up to conjugacy) in u and a (unique) rational number
rν > degu(φν) such that for every f ∈ C[[u, v]],

ν(f(u, v)) = ν(u) ordu(f(u, φν(u) + ξurν )),(1)

where ξ is an indeterminate.

Remark 2.6 (Geometric interpretation of φν(u) + ξurν ). If Q is a generic
point of C ∩ σ−1(U) such that both Y ′ and C are non-singular at Q, and D is
an irreducible analytic curve on Y ′ which intersects C transversally at Q, then
near σ(Q) the (possibly singular) curve σ(D) has a Puiseux parametrization of
the form v = φν(u) + ξ′urν + h.o.t., where ξ′ ∈ C is generic, and h.o.t. denotes
‘higher order terms’ (in u). See Proposition 2.10, assertion 3c for a more precise
statement.

Combining Theorem 2.5 with Corollary 2.4 yields:
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Corollary 2.7. Retain the notations and assumptions of Theorem 2.5. As-
sume moreover that there exists an open subset U of Y such that

(1) ν is centered at infinity with respect to U .
(2) there are analytic coordinates (x, y) on U such that (u, v) = (1/x, y/x).

Then there is a descending Puiseux polynomial (i.e. a descending Puiseux series
with finitely many terms) φν(x) (unique up to conjugacy) in x and a (unique)
rational number rν < ordx(φν) such that for every f ∈ C[x, y],

ν(f(x, y)) = ν(x) degx(f(x, φν(x) + ξxrν )),(2)

where ξ is an indeterminate.

Definition 2.8. In the situation of Corollary 2.7, we say that ψν(x, ξ) :=
φν(x) + ξxrν is the generic descending Puiseux series of ν. Moreover, if Y ′ is
a surface bimeromorphic to Y and C ⊆ Y ′ is a curve such that ν is the order
of vanishing along C, then we also say that ψν(x, ξ) is the generic descending
Puiseux series associated to C.

Definition 2.9 (Formal Puiseux pairs of generic descending Puiseux series).
Let ν and ψν(x, ξ) = φν(x) + ξxrν be as in Definition 2.8. Let the Puiseux
pairs of φν be (q1, p1), . . . , (ql, pl). Express rν as ql+1/(p1 · · · plpl+1), where
pl+1 ≥ 1 and gcd(ql+1, pl+1) = 1. Then the formal Puiseux pairs of ψν are
(q1, p1), . . . , (ql+1, pl+1), with (ql+1, pl+1) being the generic formal Puiseux pair.
The formal polydromy order of ψν is p := p1 · · · pl+1.

2.3. Key polynomials (and generating sequences) In addition to Puiseux series,
divisorial discrete valuations centered at a non-singular point on a surface can
also be described in terms of a (finite) generating sequence (in the terminology
of [27]) or a (finite) sequence of key polynomials (in the terminology of [17]).
In this article we use key polynomials; regarding generating sequences, we only
point out that every sequence of key polynomials contains a generating sequence
[8, Remark 2.31].

Consider the setting of Theorem 2.5. The key polynomials of ν with respect to
(u, v)-coordinates is a finite sequence of polynomials g̃0 = u, g̃1 = v, g̃2, . . . , g̃l ∈
C[u, v]. We refer to [8, Section 2.1] or [17] for their defining properties. The
following proposition is the compilation of all properties of key polynomials that
we use.

Proposition 2.10. Let U be an open neighborhood of P such that (u, v) defines
a system of coordinates on U .

(1) For each j ≥ 1, g̃j is of the form

g̃j(u, v) = (v − a)dj + uh̃j(u, v)
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where a ∈ C and h̃j ∈ C[u, v] with degv(h̃j) < dj (where degv denotes the
degree in v). In particular, g̃j is monic in v of degree dj. Moreover, dj+1/dj
is an integer for each j, 1 ≤ j ≤ l − 1.

(2) For each j ≥ 1, g̃j is irreducible as an element in C[[u]][v].
(3) Let nl be the smallest positive integer such that nlν(g̃l) is in the semigroup

generated by ν(g̃0), . . . , ν(g̃l−1). Then

(a) There exist (unique) non-negative integers n0, . . . , nl−1 such that nj <

dj+1/dj for 1 ≤ j ≤ l − 1 and nlν(g̃l) =
∑l−1
j=0 njν(g̃j).

(b) Let ξ be an indeterminate. Define g̃ν(u, v, ξ) := g̃nll − ξ
∏l−1
j=0 g̃

nj
j ∈

C[u, v, ξ]. Then there exists a non-empty open disc ∆̃ ⊆ C such that for
all ξ̃ ∈ ∆̃, the strict transform of the curve {g̃ν(u, v, ξ̃) = 0} ⊆ U on
σ−1(U) intersects C transversally at a single point.

(c) Let φν(u)+ξurν be as in (1). Then for all ξ̃ ∈ ∆̃, g̃ν(u, v, ξ̃) is irreducible
in C[[u]][v] and has a root v = φ̃(u) where φ̃(u) is a Puiseux series in u
of the form

φ̃(u) = φν(u) + ξ̃1/nlurν + h.o.t.

Example 2.11. Assume σ : Y ′ → Y is the minimal resolution of the singularity
of the germ of v3−u2 = 0 at the origin, and C ⊂ Y ′ is the last exceptional curve.
Then key polynomials are u, v. Moreover, ν(u) = 3 and ν(v) = 2. Proposition
2.10 in this case simply says that for generic ξ̃ ∈ C, the strict transform of the
germ of v3− ξ̃u2 = 0 at the origin is transversal to C. Similarly, assume σ is the
minimal resolution of the singularity at the origin of the curve (v3−u2)2−u3v2 =
0, and C ⊂ Y ′ is the last exceptional curve. Then key polynomials are u, v, v3−
u2. Moreover, ν(u) = 6, ν(v) = 4, ν(v3 − u2) = 13, and Proposition 2.10 says
that for generic ξ̃ ∈ C, the strict transform of the germ of (v3−u2)2− ξ̃u3v2 = 0
at the origin is transversal to C.

2.4. Theory of surfaces In this section we compile some facts from bimero-
morphic geometry of analytic surfaces. We start with Grauert’s criterion for
(analytic) contractibility of curves:

Theorem 2.12 ([12]). Let Y be a smooth complex analytic surface. Let
C1, . . . , Cn be irreducible curves on Y and C := C1 ∪ · · · ∪Cn. The following are
equivalent:

(1) The matrix of intersection numbers (Ci, Cj) is negative definite.
(2) There exists a morphism f : Y → Z such that Z is a normal complex

analytic surface, f(C) is a finite set of points and f |Y \C : Y \C → Z \f(C)
is an isomorphism.

It is a standard fact that singularities of complex analytic surfaces can be
resolved. The singular surfaces Y ′ we encounter in this article are normal and
they come equipped with a bimeromorphic correspondence σ : Y ′ 99K Y , where
Y is a non-singular projective surface. In this case the resolution of singularities
of Y is easy to describe:
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Theorem 2.13. Let σ0 := σ and Y0 := Y . Algorithm 2.14 stops after finitely
many steps with a bimeromorphic correspondence σk : Y ′ 99K Yk. Moreover,
σ−1
k : Yk → Y ′ is a holomorphic map and is a resolution of singularities of Y ′.

Algorithm 2.14 (Resolution of singularities of Y ′). Assume σi : Y ′ 99K Yi
has been defined for i ≥ 0. If σi does not contract any curve of Y ′, then stop.
Otherwise pick an irreducible curve C ′ on Y ′ which gets contracted to a point
P ∈ Yi. Let Yi+1 be the blow up of Yi at P and σi+1 : Y ′ 99K Yi+1 be the
induced bimeromorphic correspondence. Now repeat.

We also use the well known fact that every compactification of C2 is an alge-
braic space, i.e. an analytic surface for which the field of meromorphic functions
has transcendence degree 2:

Theorem 2.15 ([21]). Let X̄ be a normal analytic compactification of C2. Then
X̄ is an algebraic space. In particular, the identity map between C2 and one of
the affine coordinate charts of P2 extends to a bimeromorphic correspondence of
analytic varieties.

2.5. Dual graph of the resolution of curve singularities

Definition 2.16. Let E1, . . . , Ek be non-singular curves on a (non-singular)
surface such that for each i 6= j, either Ei ∩ Ej = ∅, or Ei and Ej intersect
transversally at a single point. Then E = E1∪ · · · ∪Ek is called a simple normal
crossing curve. The (weighted) dual graph of E is a weighted graph with k
vertices V1, . . . , Vk such that

• there is an edge between Vi and Vj iff Ei ∩ Ej 6= ∅,

• the weight of Vi is the self intersection number of Ei.

Usually we will abuse the notation, and label Vi’s also by Ei.

We recall the description of the dual graph of the exceptional divisor of the
resolution of an irreducible plane curve singularity following [4, Section 8.4].
Assume that we are given an analytically irreducible curve singularity (at a
non-singular point of a surface) with Puiseux pairs (q̃1, p̃1), . . . , (q̃m, p̃m). Then
the dual weighted graph for the minimal resolution of the singularity is as in
Figure 2, where we denoted the ‘last exceptional divisor’ by E∗ and the ‘left-most’
t1 vertices by E1, . . . , Et1 (and left all other vertices untitled). The weights uji
and vji satisfy: u0

i , v
0
i ≥ 1 and uji , v

j
i ≥ 2 for j > 0, and are uniquely determined
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−u1
1

E1

−ut11 −u0
2 − 1 −u1

2

−vr11

−v2
1

−v1
1

Et1

−utm−1

m−1 −u0
m − 1 −u1

m

−vrm−1

m−1

−v2
m−1

−v1
m−1

−utmm −1
E∗

−vrmm

−v2
m

−v1
m

Figure 2: Dual graph for the minimal resolution of singularities of an irreducible
plane curve-germ

from the continued fractions (see, e.g. [18, Section 2.2]):

p̃i
q′i

= u0
i −

1

u1
i −

1

. . . − 1

u
ti
i

,
q′i
p̃i

= v0
i −

1

v1
i −

1

. . . − 1
v
ri
i

,(3)

where q′i :=

{
q̃1 if i = 1

q̃i − q̃i−1p̃i otherwise.

Note that (q′1, p̃1), . . . , (q′l, p̃l) are called the Newton pairs of the curve branch,
and the Puiseux series of the branch can be expressed in the following form:

ψ(u) = · · ·+ u
q′1
p̃1 (a′1 + · · ·+ u

q′2
p̃1p̃2 (a′2 + · · ·+ u

q′3
p̃1p̃2p̃3 (· · · ))).

3. Generic Curvettes at Infinity

Notation 3.1. Throughout the rest of the article we use X to denote C2 with
coordinate ring C[x, y] and X̄(x,y) to denote copy of P2 such that X is embedded
into X̄(x,y) via the map (x, y) 7→ [1 : x : y]. We also denote by L∞ the line at
infinity X̄(x,y) \X, and by Qy the point of intersection of L∞ and (closure of)
the y-axis.

Definition 3.2. An irreducible analytic curve germ at infinity on X is the
image γ of an analytic map η from a punctured neighborhood ∆′ of the origin in
C to X such that |η(s)| → ∞ as |s| → 0 (in other words, η is analytic on ∆′ and
has a pole at the origin). Let X̄ be an analytic compactification of X. Theorem
2.15 implies that there is a unique point P ∈ X̄ \ X such that |η(s)| → P as
|s| → 0. We call P the center of γ on X̄, and write P = limX̄ γ. Let X̄(x,y) be
as in Notation 3.1. Assume limX̄(x,y)

γ 6= Qy. Then Corollary 2.4 implies that
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for |t| � 0, γ has a parametrization of the form θ : t 7→ (t, φ(t)), where φ(t) is a
descending Puiseux series in t. We call θ a descending Puiseux parametrization
of γ.

Example 3.3. Note that if limX̄(x,y)
γ = Qy, then γ might not have descend-

ing Puiseux parametrization. Indeed, let γ be the curve-germ at infinity on X
corresponding to the germ of the (closure of the) y-axis at Qy. Then there is
no descending Puiseux series φ(t) in t such that γ has a parametrization of the
form t 7→ (t, φ(t)) for |t| � 0.

Now let X̄ be a normal analytic compactification of X and C be an irreducible
component of the curve at X̄∞ := X̄ \ X at infinity on X̄. Theorem 2.15
implies that the identity map of X induces a bimeromorphic correspondence
σ(x,y) : X̄ 99K X̄(x,y). Let S be the set of points of indeterminacy of σ(x,y).
Since X̄ is normal, it follows that S is a finite set. After a linear change of
coordinates of C[x, y], we may ensure that X̄ satisfies the property (C(x,y)) for
every irreducible curve C ⊆ X̄ \X:

σ(x,y)(C \S) 6= {Qy} (i.e. either σ(x,y) does not contract
C, or it contracts C to some point other than Qy).

(C(x,y))

Remark-Notation 3.4. Note that if C is an irreducible curve in X̄ \X and
ν is the order of vanishing along C, then

X̄ satisfies (C(x,y)) ⇐⇒ σ(x,y)(C \ S) 6= {Qy}

⇐⇒ y/x restricts to a regular function on a non-empty

open set of C

⇐⇒ ν(y/x) ≥ 0

⇐⇒ ν(x) ≤ ν(y).

Pick P ∈ σ(x,y)(C \ S) \ {Qy} ⊆ L∞. Let γ be an irreducible curve-germ at

infinity on X with limX̄(x,y)
γ = P . Let Pγ := limX̄ γ ∈ X̄ and γ̄X̄ := γ ∪ {Pγ}

be the closure of γ in X̄. We say that γ is a curvette at infinity 4 associated
to C iff Pγ ∈ C and γ̄X̄ intersects C transversally at Pγ (in particular, Pγ is a

non-singular point of both C and γ̄X̄). We say that γ is a generic curvette at
infinity associated to C if furthermore Pγ is a generic point of C.

Proposition 3.5 (Parametrizations of generic curvettes at infinity). Let γ be a
generic curvette at infinity associated to C and let t 7→ (t, φ(t)) be a descending
Puiseux parametrization of γ.

4The use of the term ‘curvette’ to denote germs of transversal curves at smooth points of a
given curve is due to Deligne [25].
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(1) There is a unique rational number r and a finite set E ⊆ C such that if γ̃ is a
curvette at infinity on X, then limX̄ γ̃ ∈ C \E iff γ̃ has a descending Puiseux
parametrization of the form t 7→ (t, φ̃(t)) such that degt(φ̃(t)− φ(t)) = r.

(2) Let γ̃ be a curvette at infinity on X with a descending Puiseux parametriza-
tion of the form t 7→ (t, φ̃(t)) such that degt(φ̃(t) − φ(t)) ≤ r. Write
φ− φ̃ = ξ̃xr + l.o.t. where ξ̃ ∈ C. Then

(a) limX̄ γ̃ depends only on ξ̃. In particular, for generic values of ξ̃, limX̄ γ̃
is a generic element of C.

(b) limX̄ γ̃ is a non-singular point of ¯̃γX̄ iff there are no characteristic ex-
ponents of φ̃ smaller than r.

(c) for all but finitely many values of ξ̃, γ̃ is a curvette at infinity associated
to C iff either (and therefore, both!) of the properties of assertion 2b is
satisfied.

(3) Let [φ]>r(x) be the descending Puiseux polynomial in x obtained by removing
from φ(x) all terms with degree ≤ r and define ψ(x, ξ) := [φ]>r(x) + ξxr,
where ξ is an indeterminate. Then ψ(x, ξ) is precisely the generic descending
Puiseux series of the order of vanishing along C.

Proof. The relation between (generic) descending Puiseux series and key
polynomials of a valuation is given by assertion 3c of Proposition 2.10. Proposi-
tion 3.5 follows from interpreting the properties of key polynomials compiled in
Proposition 2.10 in terms of the associated descending Puiseux series. �

Set (u, v) := (1/x, y/x) and let U be the coordinate chart of X̄(x,y) with
coordinates (u, v). Consider the situation of Corollary 2.7 with σ = σ(x,y).

Definition 3.6. Let g̃0, . . . , g̃l ∈ C[u, v] be the sequence of key polynomials
of ν with respect to (u, v)-coordinates. Set

gi :=

{
x if i = 0,

xdegv(g̃i)g̃i(1/x, y/x) othewise.

For each i ≥ 1, gi ∈ C[x, x−1, y] and it is monic in y. We call gi’s the sequence
of key forms of ν with respect to (x, y)-coordinates. Finally, let n0, . . . , nl be as
in Proposition 2.10. Then define

gν(x, y, ξ) := xdegv(g̃ν)g̃ν(1/x, y/x, ξ) = gnll − ξx
n′0

l−1∏
j=1

g
nj
j ∈ C[x, x−1, y, ξ]

where n′0 = nl degv(gl)− n0 −
∑l−1
j=1 nj degv(gj). We call gν(x, y, ξ) the generic

key form of ν in (x, y)-coordinates.

Proposition 3.7 (Affine equations of generic curvettes at infinity). Pick n ≥ 0
such that xngν ∈ C[x, y, ξ]. For all ξ̃ ∈ C, let Zξ̃ be the closure in X̄(x,y) of the

curve {xngν(x, y, ξ̃) = 0} ⊆ X.
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(1) For each ξ̃ ∈ C, Zξ̃ intersects L∞ \ {Qy} at a single point Qξ̃.

(2) For generic ξ̃ ∈ C, the germ of Zξ̃ in a punctured neighborhood of Qξ̃ is a
curvette at infinity associated to C.

(3) Zξ̃ intersects L∞ at Qy with intersection multiplicity n.

Proof. Assertions (1) and (3) follow from assertion 1 of Proposition 2.10, and
assertion 2 follows from assertion (3b) of Proposition 2.10. �

Example 3.8. Let X̄ = X̄(x,y) and C = L∞ (so that ν is the negative of
degree in (x, y)-coordinates). Then the key forms are x, y, and the generic key
form is y − ξx. Propostion 3.7 in this case simply states (the obvious fact) that
for y − ξ̃x intersects the line L∞ transversally for generic ξ̃.

3.1. Effect of automorphisms of C2 on parametrizations of generic curvettes
at infinity Let γ be a curve-germ at infinity on X with a descending Puiseux
parametrization t 7→ (t, φ(t)). In this section we study the effect on degt(φ(t)) of
two ‘simple’ types of automorphisms of the plane described below; the (simple)
observations made in this section will be crucial in our proof of Jung’s theorem
that these automorphisms generate the full group of polynomial automorphisms
of C2.

Definition 3.9. let F : C[x, y] → C[x, y] be an automorphism. We call
F a Type I automorphism if it is of the form (x, y) 7→ (y, x) and a Type II
automorphism if it is of the form (x, y) 7→ (x, y + axn), where a ∈ C and n ≥ 0.

Lemma 3.10. Let γ be a curve-germ at infinity on X with a descending Puiseux
parametrization t 7→ (t, φ(t)) and ω := degt(φ(t)), i.e.

φ(t) = atω + l.o.t.

for some a ∈ C. Assume ω > 0.

(1) (a) After the type I automorphism (x, y) 7→ (y, x), γ has a descending
Puiseux parametrization t 7→ (t, φ̃(t)) where degt(φ̃(t)) = 1/ω.

(b) Moreover, if ω = 1/n for some integer n ≥ 2, then the number of
Puiseux pairs of φ̃(t) is one less than the number of Puiseux pairs of
φ(t).

(2) If ω is a non-negative integer, then after the type II automorphism (x, y) 7→
(x, y − axω), γ has a descending Puiseux parametrization of the form t 7→
(t, φ(t)− atω).

Proof. Assertions (1a) and (2) are easy to see. Assertion (1b) follows from a
straightforward induction on the number of Puiseux pairs of φ. �

Let X̄ be a compactification of X and C be an irreducible component of the
curve at infinity on X̄. The following lemma shows that after a composition of
finitely many Type I and II automorphisms, we can ensure that generic curvettes
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associated to C have descending Puiseux parametrizations, and the initial term
of these parametrizations has a ‘normal form’.

Lemma 3.11. Let X̄ and C be as above, and γ be a generic curvette at infinity on
X associated to C. After a finite sequence of Type I and Type II automorphisms
of C[x, y], we can ensure that γ has a descending Puiseux parametrization t 7→
(t, φ(t)), where φ(t) is of the following form:

φ(t) =

{
ξ̃tr, r ∈ Q, r ≤ 1, ξ̃ ∈ C is generic, or

a1t
ω1 + l.o.t., a1 ∈ C \ {0}, ω1 ∈ Q \ (Z≥0 ∪ {1/n : n ∈ N}) , ω1 < 1.

(4)

Proof. Since any linear change of coordinates of C[x, y] is a composition
of Type I and II automorphisms, it follows that after composition of finitely
many Type I and II automorphisms, we can ensure that X̄ satisfies (C(x,y)) ,
which implies in particular that γ has a descending Puiseux parametrization
t 7→ (t, φ(t)). Assertion (1a) of Lemma 3.10 then implies that it suffices to prove
the following statement: after a a finite sequence of automorphisms of C[x, y] of
types I and II, we can ensure that φ(t) is not of the following form:

a1t
ω1 + l.o.t., where a1 ∈ C \ {0}, and ω1 ∈ Z≥0 ∪ {1/n : n ∈ Z≥1}.(!)

Indeed, assume φ(t) is of the form (!). Then either φ(t) = atn + l.o.t. for some
polynomial f(x) ∈ C[x], or φ(t) = at1/n + l.o.t. for some a 6= 0 and a positive
integer n > 1. In the first case apply Type II automorphism (x, y) 7→ (x, y−axn)
and in the second case apply the Type I automorphism (x, y) 7→ (y, x). Note
that

(1) in the second case the number of Puiseux pairs of φ(t) decreases by one
(assertion (1b) of Lemma 3.10),

(2) in the first case the number of Puiseux pairs of φ(t) does not change, but
degt(φ(t)) decreases (assertion (2) of Lemma 3.10).

The above observations imply that this process ends after finitely many steps,
as required to complete the proof of the lemma. �

Remark-Definition 3.12. We say that the initial exponent of φ(t) is in the
normal form if φ(t) is as in (4). Note that φ(t) is in the normal form iff either
σ(x,y) maps C generically on to L∞ ⊆ X̄(x,y) (in which case r = 1), or contracts
C to the point of intersection of L∞ and x-axis.

Remark 3.13. With a bit of more work than the proof of Lemma 3.11, it can
be shown that there is a ‘normal form’ for φ(t) itself (i.e. not only the initial expo-
nent). In [20] we use this normal form to compute the moduli spaces and groups
of automorphisms of algebraic compactifications of C2 with one irreducible curve
at infinity.



56 Pinaki Mondal

4. Primitive Compactifications and Resolution of Their
Singularities

Definition 4.1. Let π : X̃ → X̄ be a resolution of singularities of a compact-
ification X̄ of X ∼= C2 such that X̃ \X is a simple normal crossing curve. The
augmented dual graph of π is the dual graph (Definition 2.16) of X̃ \X.

Let X̄ be a (normal analytic) compactification of C2 which is primitive, i.e.
the curve C at infinity on X̄ is irreducible. In this section we show that the
minimal resolution of singularities of X̄ satisfies the properties of Definition 4.1,
and describe its augmented dual graph. As a consequence, we derive a new
proof of Remmert and Van de Ven’s characterization of P2 as the only non-
singular primitive compactification of C2 and Jung’s theorem on polynomial
automorphisms.

We continue to adopt Notation 3.1 and assume that X̄ satisfies (C(x,y)) , i.e.
there exists P ∈ σ(x,y)(C \ S) \ {Qy}. Let the generic descending Puiseux series
for C be

ψ(x, ξ) = φ(x) + ξxr

= · · ·+ a1x
q1
p1 + · · ·+ a2x

q2
p1p2 + · · ·+ alx

ql
p1p2···pl + · · ·+ ξx

ql
p1p2···pl+1

where (q1, p1), . . . , (ql+1, pl+1) are the formal Puiseux pairs (Definition 2.9) of
ψ. Then (u, v) = (1/x, y/x) is a system of coordinate near P , and Proposi-
tion 3.5 implies that generic curvettes at infinity associated to C have Puiseux
parametrizations of the form

v = · · ·+ a1u
q̃1
p̃1 + · · ·+ a2u

q̃2
p̃1p̃2 + · · ·+ alu

q̃l
p̃1p̃2···p̃l + · · ·+ ξ̃u

q̃l
p̃1p̃2···p̃l+1 + h.o.t.

(5)

where (q̃i, p̃i) = (p1 · · · pi − qi, pi), 1 ≤ i ≤ l + 1, and ξ̃ is a generic element of
C. Apply Algorithm 2.14 with σ0 = σ(x,y) to construct a resolution of singu-

larities σ̃ : X̃ → X̄. Let Γ be the corresponding augmented dual graph. The
following proposition gives a description of Γ in terms of the dual graph of the
minimal resolution of the plane curve singularity of the curve germ with Puiseux
parametrization (5).

Proposition 4.2. Let E be the strict transform of C. Assume the initial ex-
ponent of ψ is in the normal form (Definition 3.12). Then

(1) If ψ(x, ξ) = ξx, then X̄
σ(x,y)∼= X̄(x,y)

∼= P2 (in particular, X̄ is non-singular),
and Γ consists of a single vertex E.

(2) Otherwise if pl+1 > 1, then Γ is as in Figure 3(a), where Γ′ is as in Figure
2 with m = l + 1. In particular, X̄ has at most two singular points, one of
them is at worst a cyclic quotient singularity.
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(3) Otherwise (pl+1 = 1 and) Γ is as in Figure 3(b), where Γ′′ is the graph of
Figure 2 with m = l and one change - namely the self-intersection number
of E∗ in Γ′′ is −2. In particular, X̄ has at most one singular point.

1 − u0
1

E0

−u1
1

E1

−u0
2 − 1

−v11

−1

E∗ = E

−v1l+1

Γ′

(a) Case pl+1 > 1

1 − u0
1

E0

−u1
1

E1

−u0
2 − 1

−v11

−2

E∗

−v1l

Γ′′

−2 −2 −1
E

ql − ql+1 − 1
vertices

(b) Case pl+1 = 1

Figure 3 : Augmented dual graph for the resolution of Algorithm 2.14

Remark 4.3. Note that the resolution of Proposition 4.2 is not minimal if
(and only if) u0

1 = 2.

Proof of Proposition 4.2. The first assertion is straightforward. The
other assertions follow from the discussion in Section 2.5 and the following ob-
servations:

1. In the scenario of assertion 2, the Puiseux pairs of generic curvettes at infinity
associated to C are (q̃1, p̃1), . . . , (q̃l+1, p̃l+1) and Algorithm 2.14 corresponds
precisely to resolution of singularities of these curvettes at infinity.

2. In the scenario of assertion 3, the Puiseux pairs of generic curvettes at infinity
associated to C are (q̃1, p̃1), . . . , (q̃l, p̃l) and Algorithm 2.14 corresponds to at
first resolving the singularities of these curvettes at infinity, and then ql−ql+1

additional blow-ups.

3. The vertex e0 in Figures 3(a) and 3(b) corresponds to E0, which is the strict
transform of L∞ ⊆ X̄(x,y). The equation of L∞ near P is u = 0. On the
other hand, the normal form of ψ implies that the order (in u) of the right
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hand side of (5) is q̃1/p̃1. It follows that strict transform of L∞ contains the
center of precisely the first u0

1-blow ups (where u0
1 is defined in (3)).

�

Remark 4.4. More generally, if X̄ is an arbitrary normal analytic compactifi-
cation of C2 and C is an irreducible curve at infinity on X̄, then the arguments
from the proof of Proposition 4.2 imply that there is a non-singular compactifi-
cation X̃ of C2 dominating X̄(x,y)

∼= P2 such that the dual graph of the curve

at infinity on X̃ has the same shape as Γ of Figure 3. In particular, contracting
all curves at infinity on X̄ other than E0 and E results in a compactification X̄∗

with precisely two irreducible curves E∗0 and E∗ at infinity,

• the bimeromorphic correspondence X̄(x,y) 99K X̄∗ maps L∞ dominantly on to
E∗0 .

• the bimeromorphic correspondence X̄ 99K X̄∗ maps C dominantly on to E∗.

This implies that

(1) X̄∗ is precisely the compactification guaranteed by assertion 1 of Theorem
1.5 in the case that k = 2 and ν2 is the divisorial valuation associated to C.

(2) X̃ is precisely the minimal resolution of singularities of X̄∗.

Moreover, let P ∗ be the point of intersection of E∗0 and E∗. We claim that
E∗ \ {P ∗} ∼= C. Indeed, this is clear if Γ is as in Figure 3(b). On the other
hand, if Γ is as in Figure 3(a), then it suffices to show that E∗ is non-singular at
the point Q∗ to which the curves corresponding to the right-most vertical string
of Γ contracts. But the singularity at Q∗ is a cyclic quotient (or Hirzebruch-
Jung) singularity, and E is transversal to the string of exceptional divisor of
its resolution. It then follows from the well known properties of cyclic-quotient
singularities (see e.g. [3, Section III.5]) that E∗ does not acquire any singularity
at Q∗.

As mentioned in Remark 4.3, the resolution of singularities of X̄ constructed
in Proposition 4.5 may not be minimal. Understanding the minimal resolution
of X̄ requires a more detailed analysis of the change of the initial exponent of a
Puiseux series under blow up. This is the content of the next theorem.

Theorem 4.5. Let the assumptions and notations be as in Proposition 4.2; in
particular the initial exponent of ψ is in the normal form, and Γ is as in Figure
3(a) if pl+1 > 1 and as in Figure 3(b) if pl+1 = 1.

(1) X̄ is non-singular iff ψ(x, ξ) = ξx.
(2) Otherwise if q1/p1 > 1/2, then u0

1 > 2 and Γ is the augmented dual graph
of the minimal resolution of X̄.

(3) Otherwise let q̃1 := p1 − q1. Then we must have p1 = q̃1 + r1 and q̃1 =
m1r1 + r2 for some positive integers r1,m1, r2 with r2 < r1 < q̃1. Moreover,
if t1 is as in Γ (see the ‘leftmost’ string of Figure 2), then t1 ≥ m1 and
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um1
1 ≥ 3 and uj1 = 2 for all j, 1 ≤ j < m1. The augmented dual graph of

the minimal resolution of X̄ is gotten from Γ by deleting all the vertices to
the left of em1

and changing the weight of em1
to −um1

1 + 1.

Proof. The (⇐) implication of the first assertion follows from Proposition
4.2. Now we assume that ψ(x, ξ) 6= ξx and show that either 2nd or the 3rd
assertion of the theorem is true. Note that this will also prove the (⇒) implica-
tion of assertion (1) (since a surface is singular iff the dual graph of the minimal
resolution of singularity is non-empty) and complete the proof of the theorem.

Since the initial exponent of ψ is in the normal form, it follows that degx(ψ) <
1. We now divide our proof based on different possibilities for degx(ψ). For each
case we construct the minimal resolution X̃min of singularities of X̄ and show
that the exceptional divisor of the morphism X̃min → X̄ is of the required form.

Case 1: degx(ψ) = 1/n, n ≥ 2. In this case ψ = ξx1/n. Consequently (5)
implies that a generic curvette γ associated to C has Puiseux expansion near P
of the form

u = ξ′vn/(n−1) + h.o.t.

for a generic ξ′ ∈ C. Let X̄0 = X̄(x,y), X̄1, . . . be the sequence of surfaces con-
structed in the resolution Algorithm 2.14. Then it follows that the strict trans-
form of γ on X̄i has a Puiseux expansion of the form

vi = ξ′un−ii + h.o.t.

where (ui, vi) := (u/v, vi/ui−1). In particular, the bimeromorphic correspon-
dence X̄ 99K X̄i maps C to the point (ui, vi) = 0 for i < n, and dominantly on
to the line un = 0 (which is precisely the exceptional divisor of the last blow up)
for i = n. It follows that X̃ = X̄n is precisely the resolution of singularity of X̄
achieved via Algorithm 2.14 with the augmented dual graph as in Figure 4.

−1

E0

−2

E2

−2

En−1

−1

En

−n
E1

Figure 4 : Augmented dual graph for resolution when degx(ψν) = 1/n, n ≥ 2

Since En is precisely the pre-image of C, it follows that the exceptional divisor
of the resolution σ̃ : X̃ → X̄ is Ẽ := E0 ∪ · · · ∪ En−1. Note that Ẽ has two
connected components: E1 and Ẽ1 := E0 ∪ E2 ∪ · · · ∪ En−1. By Castelnuovo’s
criterion X̃min is formed from X̃ by contracting Ẽ1 to a non-singular point.
In particular, the exceptional divisor of the minimal resolution X̃min → X̄ is
precisely (the isomorphic image of) E1. It is straightforward to check that this
is precisely the form of the exceptional divisor prescribed by assertion 3 of the
theorem.
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Case 2: 1 > degx(ψ) > 1/2. In this case a generic curvette γ associated to C
has Puiseux expansion near P of the form

u = avα + h.o.t.

where a 6= 0 ∈ C and α > 2. It follows that Algorithm 2.14 requires at least 3
blow ups, and strict transforms of L∞ contain the centers of at least the first
three blow ups. In particular, the intersection number of the strict transform
of L∞ on X̃ (which is precisely negative of the label of the vertex e0 in Figure
3) is ≤ −2. This implies that all the irreducible curves with support in the
exceptional divisor of σ̃ : X̃ → X̄ has self intersection ≤ −2. Consequently, σ̃
is precisely the minimal resolution of singularities of X̄ and assertion 2 of the
theorem holds.

Case 3: 0 < degx(ψ) < 1/2, degx(ψ) 6= 1/n for all n ∈ Z. The hypothesis of
this case implies that a generic curvette γ associated to C has Puiseux expansion
near P of the form

u = avα + h.o.t.

where a 6= 0 ∈ C and 1 < α < 2 such that α 6= (n + 1)/n for all n ≥ 1. Note
that α = p1/q̃1 where q̃1 is as in (5). In particular p1, q̃1 are integers with no
common factors. Let us follow the steps of the computation of gcd(p1, q̃1) =
1 via Euclidean algorithm. The assumptions on α translate to the following
observations:

p1 = q̃1 + r1 for some r1 ∈ Z, 1 < r1 < q1, and

q̃1 = m1r1 + r2 for some m1, r2 ∈ Z, 1 ≤ m1, 1 ≤ r2 < r1.

Let the next step of the computation of gcd(p1, q1) be

r1 = m2r2 + r3 for some m2 > 0, and 0 ≤ r3 < r2.

Then straightforward arguments as in Case 1 shows that after m1 +m2 +1 blow-
ups the dual graph of the union of strict transforms of Ei’s for 1 ≤ i ≤ m1+m2+1
on X̄m1+m2+1 is as in Figure 5, and the Puiseux expansion for the strict transform
γm1+m2+1 of γ on X̄m1+m2+1 is given by:

um1+m2+1 = a′(vm1+m2+1)r3/r2 + h.o.t. for some a′ 6= 0 ∈ C.

where (um1+m2+1, vm1+m2+1) = (u1+m1m2/v1+m2+m1m2 , vm1+1/um1). More-
over, um1+m2+1 = 0 and vm1+m2+1 = 0 are respectively the local equations
of the strict transform of Em1+1 and Em1+m2+1 near γm1+m2+1. We divide the
rest of the proof for this case into the following two subcases:



Analytic Compactifications of C2 Part I—Curvettes at Infinity 61

−1

E0

−2

E2

−2

Em1

−(m2 + 1)

Em1+1

−1
Em1+m2+1

−2 Em1+m2

−2 Em1+2

−(m1 + 2) E1

Figure 5 : Dual graph of E0 ∪ · · · ∪ Em1+m2+1 after m1 +m2 + 1 blow-ups

Subcase 3.1: r3 = 0. Since a′ 6= 0, this implies that γm1+m2+1 does not belong
to the strict transform of Em1+1 on X̄m1+m2+1. It follows from Algorithm 2.14
all the remaining blow-ups for the construction of X̃ keep (the strict transforms
of) E0, . . . , Em1+1 unchanged and the dual graph of the exceptional divisor of
the morphism X̃ → X̄ is of the form as in Figure 6(a). Moreover, r3 = 0 implies
that r2 = gcd(p1, q1) = 1, so that m2 = r1 ≥ 2. The same arguments as in
Case 1 then show that the dual graph of the exceptional divisor of the minimal
resolution X̃min → X̄ is of the form as in Figure 6(b). This is precisely the form
of the dual graph prescribed by assertion 3 of the theorem.

Subcase 3.2: r3 > 0. In this case γm1+m2+1 intersects the point Pm1+m2+1

of intersection of Em1+m2+1 and the strict transform of Em1+1 on X̄m1+m2+1.
It follows that the bimeromorphic correspondence X̄ 99K X̄m1+m2+1 maps C
to Pm1+m2+1 and therefore Algorithm 2.14 requires at least one more blow up
to construct X̃. The dual graph of the union of strict transforms of Ei’s for
1 ≤ i ≤ m1 + m2 + 2 on X̄m1+m2+2 is as in Figure 7(a). Also, since r3 < r2, it
follows that the strict transform of γ on X̄m1+m2+2 does not intersect the strict
transform of Em1+1, and the same reasoning as in Subcase 3.1 then implies that
the dual graph of the exceptional divisor of the minimal resolution X̃min → X̄
is of the form as in Figure 7(b). It is straightforward to check that this agrees
with assertion 3, which completes the proof of the theorem. �

Corollary 4.6 ([24]). Up to an (analytic) isomorphism P2 is the only smooth
primitive compactification of C2.

Proof. This follows from combining the first assertions of Theorem 4.5 and
Proposition 4.2. �

Remark 4.7. In [24] Remmert and Van de Ven essentially proved that com-
pactifications of C2 are algebraic spaces, i.e. Theorem 2.15 (which is essentially
the point of departure of this article), and then used it to prove the result of
Corollary 4.6 by arguments different from ours. Our proof of Corollary 4.6 there-
fore is in fact a new proof of the implication “Theorem 2.15 ⇒ Corollary 4.6.”
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−1

E0

−2

E2

−2

Em1

−(m2 + 1)

Em1+1

rest of
the graph

−2 Em1+m2

−2 Em1+2

−(m1 + 2) E1

(a) Non-minimal resolution

−m2

Em1+1

rest of
the graph

−2 Em1+m2

−2 Em1+2

−(m1 + 2) E1

(b) Minimal resolution

Figure 6: Dual graphs of the exceptional divisor of the resolution of singularities
of X̄ for the case r3 = 0
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E0

−2

E2

−2

Em1

−(m2 + 2)

Em1+1

−1

Em1+m2+2

−2
Em1+m2+1

−2 Em1+m2

−2 Em1+2

−(m1 + 2) E1

(a) E0 ∪ · · · ∪ Em1+m2+2 after m1 + m2 + 2 blow-ups

−(m2 + 1)

Em1+1

rest of
the graph

−2 Em1+m2

−2 Em1+2

−(m1 + 2) E1

(b) Exceptional divisor of the mini-
mal resolution

Figure 7 : Dual graphs for the case r3 > 0
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Corollary 4.8 ([13]). The group of C-algebra automorphisms of the ring of
complex polynomials in two variables is generated by linear automorphisms and
triangular automorphisms (i.e. Type II automorphisms of Lemma 3.11).

Proof. Let ∆ be the group of C-algebra automorphisms of C[x′, y′] and Σ
be the subgroup of ∆ generated by linear and triangular automorphisms. Pick
F = (F1, F2) ∈ ∆. Set (u, v) := (F1(x′, y′), F2(x′, y′)). Let X̄ ∼= P2 be the
compactification of X := SpecC[x′, y′] ∼= C2 via the embedding (x′, y′) 7→ [1 :
F1(x′, y′) : F2(x′, y′)]. Lemma 3.11 implies that there exists G = (G1, G2) ∈ ∆
such that initial exponent of the generic descending Puiseux series ψ(x, ξ) of
C with respect to (x, y) := (G1(x′, y′), G2(x′, y′)) coordinates is in the normal
form. Since X̄ is non-singular, first assertions of Theorem 4.5 and Proposition
4.2 imply that ψ(x, ξ) = ξx and G ◦ F−1 : X̄ → X̄(x,y) is an isomorphism.
It follows that F ◦ G−1 is a non-invertible linear map in (x, y)-coordinates; in
particular, F ◦G−1 ∈ Σ. Therefore F ∈ Σ, as required. �

The following result is immediate from the arguments of the proof of Theorem
4.5. We will use it in the proof of Theorem 1.1.

Corollary 4.9. Let X̄ be a primitive compactification of X. Choose coordi-
nates (x, y) on X such that the initial exponent of the generic descending Puiseux
series ψ(x, ξ) of the curve C at infinity is in the normal form. Then one of the
following must hold:

(1) X̄ ∼= P2, C ∼= P1.
(2) σ−1

(x,y) : X̄(x,y) 99K X̄ contracts L∞ to a point P ∈ C. In this case

(a) either P is a singular point of X̄,
(b) or X̄ is isomorphic to the weighted projective space P2(1, 1, n) for some

n ≥ 1, and P is a non-singular point of both X̄ and C. �

5. Singularities and Curves at Infinity

Definition 5.1. Let X̄ be a compactification of C2. We say that X̄ is a mini-
mal compactification (of C2) if none of the curves at infinity can be (analytically)
contracted.

Example 5.2. Note that a minimal compactification of C2 may not be a
minimal surface. Indeed, let X̄0 = P2. Pick a line L0 on X̄0 and a point Q ∈ L0.
Fix k ≥ 1. Choose points P1, . . . , Pk ∈ X̄0 \ L0 such that the lines Li joining
Pi and Q, 1 ≤ i ≤ k, are pairwise distinct. Let X̄k be the blow up of X̄0

at P1, . . . , Pk. Let Ci ⊆ X̄k be the strict transform of Li, 0 ≤ i ≤ k, and
Xk := X̄k \

⋃k
i=0 Ci. Note that X0

∼= C2. It then follows by induction that
Xk
∼= C2 (indeed, we need only the following observation: if Y is the blow up

of C2 at a point P and L is a line through P on C2, then the complement in
Y of the strict transform of L is also isomorphic to C2). We claim that X̄k is
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a minimal compactification of Xk. Indeed, the matrix of intersection numbers
(Ci, Cj) is:

I =



1 1 1 1 · · · 1 1
1 0 1 1 · · · 1 1
1 1 0 1 · · · 1 1
...

...
...

... · · ·
...

...
1 1 1 1 · · · 0 1
1 1 1 1 · · · 1 0


It then follows from Theorem 2.12 that no Ci can be contracted, i.e. X̄k is a
minimal compactification of Xk. Also note that the configuration of the curves
at infinity is as in Figure 1.

Proof of Theorem 1.1. Let σ : X̄ 99K X̄0
∼= P2 be the bimeromorphic

correspondence induced by identification of X with C2. Algorithm 2.14 shows
that a resolution of singularities σ̃ : X̃ → X̄ can be constructed from X̄0 via a
sequence of blow-ups X̄i+1 → X̄i, with X̃ = X̄s for some s ≥ 1. Let E0 be the
line at infinity on X̄0, and for each i ≥ 1, let Ei be the exceptional divisor of
the i-th blow-up. Finally, for each i ≥ 0, let Γi be the augmented dual graph at
the i-th step, i.e. Γi is the dual graph for the union of strict transforms on X̄i

of E0, . . . , Ei. Then it is straightforward to see (see, e.g., [27, Remark 5.5]) that
for each i, there are only two possibilities for the transformation from Γi to Γi+1

which are described in Figure 8. In particular, it follows that for all i ≥ 1,

(i) Γi is a tree (i.e. every pair of vertices is connected by a unique minimal
path).

(ii) Ei is connected to at most two distinct Ej ’s in Γi; denote them as Eti and
Et′i (ti = t′i in the case of Figure 8(a)). (Here we used i > 0.)

(iii) Let Γ̃i (resp. Γ̃′i) be the connected component of Γs \ {Ei} which contains
Eti (resp. Et′i). Then the vertex corresponding to E0 is in Γ̃i ∪ Γ̃′i (from

now we will abuse the notation and simply write E0 ∈ Γ̃i ∪ Γ̃′i). W.l.o.g. we
assume that E0 ∈ Γ̃i.

(iv) Let Γ̃ be a connected component of Γs \ {Ei} which does not contain Eti or
Et′i and let Ẽ :=

⋃
{Ej : Ej ∈ Γ̃}. Then there is a point Q ∈ Ei such that

Ẽ is precisely the union of exceptional curves arising from blow-up of Q and
points infinitely close to Q. In particular, Ẽ can be (analytically) contracted
to a non-singular point and the image of Ei under this contraction is also
non-singular.

Proof of assertion (1): X̄ is constructed from X̃ by contracting some of the
Ei’s. Let Ei1 , . . . , Eik be the non-contracted curves; w.l.o.g. we may assume
Cj = σ̃(Eij ), 1 ≤ j ≤ k. Observation (iv) can be reformulated as:
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Eti
Γi

Eti Ei+1

Γi+1

(a) Possibility 1

Eti
Γi

Et′i Eti Ei+1

Γi+1

Et′i

(b) Possibility 2

Figure 8 : Change of the augmented dual graph in (i+ 1)-th step

(v) Fix j, 1 ≤ j ≤ k. Let P ∈ Sing(X̄) ∩ Cj . Then one of the following folds:

(a) P ∈ Cj ∩ Cj′ for some j′ 6= j,

(b) ij ≥ 1, σ̃ contracts Γ̃ij 3 E0, and P = σ̃(E0) = σ̃(Γ̃ij ).

(c) ij ≥ 1, tij 6= t′ij , σ̃ contracts Γ̃′ij , and P = σ̃(Γ̃′ij ).

Define

Σ := {ij : σ̃ contracts Γ̃ij ∪ Γ̃′ij}(6)

S =
⋃

1≤j<j′≤k

Cj ∩ Cj′(7)

Observation (i) implies that |S| ≤ k − 1. If Σ = ∅, then observation (v) implies
that for all j, 1 ≤ j ≤ k, |Sing(X̄) ∩ Cj \ S| ≤ 1. It follows that |Sing(X̄)| ≤
k + |S| + 1 ≤ 2k. On the other hand, if Σ 6= ∅, then observations (iii) and
(i) imply that σ̃ contracts E0 to some point P0 ∈ X̄ and P0 is the unique
point of intersection of all Cj such that ij ∈ Σ. Observation (v) then implies
that for all j, 1 ≤ j ≤ k, |Sing(X̄) ∩ Cj \ (S ∪ {P0}) | ≤ 1. It follows that
|Sing(X̄)| ≤ k + |S ∪ {P0}| ≤ 2k. This completes the proof of assertion (1).

Proof of assertion (4): Since X̄ is minimal, it follows from Theorem 2.12
that either σ̃ contracts E0 or X̄ ∼= X̄0. W.l.o.g. we may assume the former.
Consider the surface X̄ ′ obtained from X̃ by contracting all curves at infinity
other than the strict transforms of C1, . . . , Ck and the line E0 at infinity on X̄0

(which is possible e.g. by Theorem 2.12). The bimeromorphic correspondences
π′ : X̄ ′ 99K X̄ and π0 : X̄ ′ 99K X̄0 extend to holomorphic maps. In particular,
for each j, 1 ≤ j ≤ k, the strict transform C ′j of Cj on X̄ ′ is contractible, so

that (C ′j , C
′
j) < 0. On the other hand, the minimality assumption on X̄ and

Theorem 2.12 imply that (Cj , Cj) ≥ 0 for all j, 1 ≤ j ≤ k. Since π′|X̄′\E′0 (where

E′0 is the strict transform of E0 on X̄ ′) is an isomorphism, it follows that E′0
intersects each C ′j , 1 ≤ j ≤ k, so that P := π′(E′0) ∈

⋂k
j=1 Cj . This, together
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with observation (i) above, implies that π′−1(P ) ∩ C ′j consists of a single point
P ′j . In particular this proves assertion (4a) and implies that S ∪ σ̃(E0) = {P},
where S is as in (7). Observation (v) then implies that

∣∣Sing(X̄) \ {P}
∣∣ ≤ k,

which is precisely assertion (4c). Now fix j, 1 ≤ j ≤ k, and let π′j : X̄ ′ → X̄∗j
be the contraction of all C ′i, i 6= j. Then X̄∗j is precisely the compactification

X̄∗ of Remark 4.4 for C = Cj . Since π′j is an isomorphism on a neighborhood
of C ′j \ {P ′j}, assertions (4b) and (4d) follows from Remark 4.4.

Proof of assertion (2): At first note that if σ̃ does not contract E0, then X̄
dominates X̄0, and therefore all singularities of X̄ are sandwiched. So assume σ̄
contracts Ẽ0 to a point P ∈ X̄. Let X̄ ′ be as in the preceding paragraph. Then
X̄ ′ dominates X̄0, and therefore all the singularities of X̄ ′ are sandwiched. Since
X̄ \ {P} ∼= X̄ ′ \ E′0, this implies assertion (2).

Proof of assertion (3): At first note that if Cj is the image of E0, then
Cj ∼= P1 (since then the birational map X̄ → X̄0 maps Cj on to L∞). So assume
that E0 does not map on to Cj . Let X̄∗j be as in the proof of assertion (4) and

π̃∗j : X̃ → X̄∗j be the corresponding map. Recall that Eij is the strict transform

of Cj on X̃. Let Q̃j be the point of intersection of Eij and Γ̃ij (where Γ̃i’s are as

in observation (iii)). Then π̃∗j (Q̃j) is precisely the point of intersection of the two

curves at infinity on X̄∗j . Since the bimeromorphic correspondence X̄ 99K X̄∗j
restricts to a holomorphic map on a neighborhood of Cj \ σ̃(Q̃j), assertion (3a)
follows from Remark 4.4.

It remains to prove assertion (3b). Let Q be a singular point of Cj such that
Q ∈ Cj \

⋃
i 6=j Ci. Recall that our proof of Theorem 1.1 started with the choice of

an arbitrary compactification X̄0 of X which is isomorphic to P2. Now we choose
coordinates (x, y) on X such that the initial exponent of the generic descending
Puiseux series associated to Cj is in the normal form, and set X̄0 = X̄(x,y) and

σ0 = σ(x,y). The arguments in the preceding paragraph imply that Q = σ̃(Q̃j)
and σ̃ contracts E0 to Q. Since Q ∈ X̄ \

⋃
i 6=j Ci, this in turn implies that the

bimeromorphic correspondence X̄ 99K X̄∗j restricts to a holomorphic map on a
neighborhood of E∗0 := π̃∗j (E0). In particular, this implies that E∗0 is analytically

contractible. Let µ∗j : X̄∗j → Z be the contraction of E∗0 . Then Z is a primitive

compactification of X, and µ∗j induces a holomorphic map µj : X̄ → Z such that
Z \X = µj(Cj) and µj is an isomorphism near Q. Assertion (3b) now follows
from Corollary 4.9. �

Example 5.3 (Compactifications with maximal number of singular points).
Pick relatively prime integers p, q > 1 and let X̄0 be the weighted projective
surface P2(1, p, q), so that X̄0 is a compactification of C2 with two singular
points at infinity. Pick P ∈ C := X̄0 \ X such that X̄0 is non-singular at P .
Then perform a sequence of 3 blow-ups as follows: at first blow up X̄0 at P , then
blow up the resulting surface at a point on the exceptional divisor E1 which is
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not on the strict transform of C, and then blow up the point of intersection of
the new exceptional divisor E2 and the strict transform of E1. This produces a
compactification of C2 with the dual graph of the union of the curves at infinity
as in Figure 9.

C E1

−3

E3

−1

E2

−2

Figure 9 : Construction of X̄ such that |Sing(X̄)| is maximal

It follows that blowing down E1 and E2 produces a compactification of C2 with
2 irreducible curves and 4 singular points at infinity. For each k ≥ 1, applying
this procedure to k distinct points on C \ (Sing X̄0) produces a compactification
of C2 with k + 1 irreducible curves and 2(k + 1) singular points at infinity.

6. Intersection Numbers of Curves at Infinity

Proof of Theorem 1.5. Since each νj is centered at infinity, it follows that
there exists a compactification X̄j of X such that νj is the order of vanishing
along a curve C ′j at infinity on X̄j . By assumption we can assume X̄1

∼= P2.

Let X̃ be the simultaneous resolution of singularities of X̄j , 1 ≤ j ≤ k. Let

C̃j be the strict transform of C ′j on X̃. Let Ẽ1 be the union of the exceptional

curves of the map σ̃1 : X̃ → X̄1 and let Ẽ be the union of all curves in Ẽ1 which
are different from C̃2, . . . , C̃k. Since Ẽ1 is contractible, it follows that Ẽ is also
contractible. Let σ̃ : X̃ → X̄ be the contraction of Ẽ. Then X̄ is precisely the
compactification Question 1.3 asks for. Since σ̃1 factors through σ̃, it follows
that every singularity of X̄ is sandwiched, and therefore rational [26, Remark
1.15]. A criterion of Artin [1, Theorem 2.3] then shows that X̄ is projective.
This completes the proof of assertions (1) and (2) of Theorem 1.5.

We now prove assertion (3). Remark 1.6 shows that mij = −νi(gνj (x, y, ξ̃))
for generic ξ̃ ∈ C, where gνj is the generic key form of νj . For all ξ̃ ∈ C, let

D1,ξ̃ be the closure in X̄ of the curve gν1(x, y, ξ̃) = 0. Recall (from Example

3.8) that D1,ξ̃ is a line with ‘slope’ ξ̃. Therefore for generic ξ̃, D1,ξ̃ intersects C0

transversally at one point and does not intersect any Cj for j ≥ 1. Since the

Weil divisor on X̄ of gν1(x, y, ξ̃) is D1,ξ̃ +
∑k
l=1 νl(gν1(x, y, ξ̃))Cl, it follows that

k∑
l=1

ml1(Cl, Cj) = δ1j for all j, 1 ≤ j ≤ k,(8)

where δij is the usual Kronecker delta. Now fix i, 2 ≤ i ≤ k and pick n ≥ 0

such that xngνi ∈ C[x, y, ξ]. For all ξ̃ ∈ C, let Di,ξ̃ be the closure in X̄ of the
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curve {xngνi(x, y, ξ̃) = 0} ⊆ X. Let Zi,ξ̃ be the image of Di,ξ̃ under the natural

birational morphism σ1 : X̄ → X̄1. Note that

(1) X̄1 = X̄(x,y) and σ1 = σ(x,y) in the notation of Section 3.

(2) Zi,ξ̃ is precisely the curve Zξ̃ from Proposition 3.7 when applied to ν = νi.

(3) σ−1
1 (Qy) ∈ C1 \

(⋃k
j=2 Ck

)
.

Proposition 3.7 then implies that for generic ξ̃ ∈ C,

(Di,ξ̃, Cj) = −n
k∑
l=1

νl(x)(Cl, Cj) +

k∑
l=1

mli(Cl, Cj)(9)

=

{
n if j = 1

δij if 1 < j ≤ k.
= nδ1j + δij

Now recall that by our assumption νl(x) ≤ νl(y) for all l, 1 ≤ l ≤ k. It follows
that

ml1 = −νl(y − ξ̃x) (where ξ̃ ∈ C is generic) = −νl(x),

which, together with identities (8) and (9) imply that

k∑
l=1

mli(Cl, Cj) = δij for all j, 1 ≤ j ≤ k.(10)

The theorem now follows from identities (8) and (10). �

Example 6.1 (Minimal compactifications with maximal number of singular
points). We apply Theorem 1.5 to construct, for each k ≥ 1, minimal compact-
ifications X̄k of X with k irreducible curves at infinity and |Sing(X̄k)| = k + 1.
Choose relatively prime positive integers p, q. For k = 1, the weighted projec-
tive space P2(1, p, q) satisfies the requirement, provided both p and q are ≥ 2.
So assume k ≥ 2. Pick distinct complex numbers α2, . . . , αk+1 and for each j,
2 ≤ j ≤ k + 1, let νj be the divisorial valuation on C(x, y) corresponding to

generic descending Puiseux series ψ̃j(x, ξ) := αjx + ξx−q/p; in other words, νj
is the negative of the weighted degree on C(x, y) with respect to coordinates
(x, y− αjx) such that the weight of x is p and the weight of y− αjx is −q. The
key forms of νj are x, y, y − αjx, and the generic key form of νj is

gνj = (y − αjx)p − ξx−q, 2 ≤ j ≤ k + 1.
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Let ν1 = −deg and X̄ be the surface obtained by applying Theorem 1.5 to
ν1, . . . , νk+1. Since gν1 = y − ξx, it follows that

M =


1 p p · · · p p
p −pq p2 · · · p2 p2

p p2 −pq · · · p2 p2

...
...

... · · ·
...

...
p p2 p2 · · · p2 −pq



I =M−1 =


1− kp

p+q
1
p+q

1
p+q · · · 1

p+q
1
p+q

1
p+q − 1

p(p+q) 0 · · · 0 0
...

...
... · · ·

...
...

1
p+q 0 0 · · · 0 − 1

p(p+q)


Now assume (k − 1)p > q. Then (C1, C1) < 0 and therefore C1 is analytically
contractible (Theorem 2.12); let X̄p,q be the surface formed from X̄ via con-
tracting C1. We claim that for a suitable choice of parameters p and q, X̄p,q is
a minimal compactification of X and |Sing(X̄p,q)| = k+ 1. Let C ′j be the image

of Cj on X̄p,q via the morphism π′ : X̄ → X̄p,q. For the minimality of X̄p,q it
suffices to show that (C ′j , C

′
j) ≥ 0 for each j, 2 ≤ j ≤ k + 1. But (C ′j , C

′
j) =

(π′∗(C ′j), π
′∗(C ′j)) = (Cj + cjC1, Cj + cjC1), where cj = −(C1, Cj)/(C1, C1).

Consequently,

(C ′j , C
′
j) = (Cj + cjC1, Cj) =

(C1, C1)(Cj , Cj)− (C1, Cj)
2

(C1, C1)

=
1

p(p+ q)

q − (k − 2)p

(k − 1)p− q

Since (k−1)p > q, it follows that (C ′j , C
′
j) ≥ 0 iff (k−2)p ≤ q, i.e. X̄p,q is indeed

a minimal compactification of X if k ≥ 2 and (k − 2)p ≤ q < (k − 1)p.
Now we compute |Sing(X̄p,q)|. First note that for 2 ≤ i < j ≤ k + 1,

(C ′i, C
′
j) = (Ci + ciC1, Cj + cjC1) = (Ci + ciC1, Cj) = ci(C1, Cj)

=
1

(p+ q)((k − 1)p− q)
;

in particular, (C ′i, C
′
j) is not an integer, which implies that the (unique) point

P ′ of intersection of C ′i and C ′j (which is also the point of intersection of all C ′l ,
2 ≤ l ≤ k + 1, due to assertion (4a) of Theorem 1.1) is singular. To see other
singular points of X̄p,q, note that for each j, 1 ≤ j ≤ k, there is a morphism
πj : X̄ → X̄p,q,j , where X̄p,q,j is the surface obtained from X̄ by contracting all
curves at infinity other than C1 and Cj . Since −ν1 and −νj are weighted degrees
in (x, y−αjx)-coordinates, it follows that X̄p,q,j is the toric surface corresponding
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to the polygon of Figure 10. It follows from basic toric geometry that if p ≥ 2,
then X̄p,q,j has a singular point Qj on πj(Cj) \ πj(C1). Since πj is invertible
near Pj , it then follows that Pj := π−1

j (Qj) is a singular point on Cj \ C1 and

consequently the image P ′j of Pj on X̄p,q is a singular point on C ′j \
⋃
i 6=j Ci.

slope p/q

slope −1

Figure 10 : Polygon corresponding to X̄p,q,j

Proof of Theorem 1.4. W.l.o.g. we may (and will) assume that no two νj ’s
are mutually proportional. We divide the proof in two cases:

Case 1: there exists j, 1 ≤ j ≤ k, such that νj = −deg. In this case
w.l.o.g. we may assume j = 1 and Theorem 1.5 shows that the answer is af-
firmative. So we only have to show that det(−M) < 0. Indeed, let I be the
intersection matrix of the curves at infinity on X̄ and Ĩ be the (k− 1)× (k− 1)
submatrix of I with (i, j)-th entry being (Ci, Cj), 2 ≤ j ≤ k. Since C2 ∪ · · · ∪Ck
is contractible, Grauert’s theorem (Theorem 2.12) implies that Ĩ is negative
definite. Similarly, since C1 ∪ · · · ∪ Ck is not contractible, it follows that I is
not negative definite. Since det(I) 6= 0, it then follows from the standard test
of negative-definiteness via the sign of principal minors that (−1)k det I < 0.
Consequently, (−1)k detM = det(−M) < 0, as required.

Case 2: there is no j, 1 ≤ j ≤ k, such that νj = − deg. In this case, let
ν0 = − deg and apply Theorem 1.5 to the collection ν0, . . . , νk. Let X̄ ′ be the
resulting compactification of C2 and I ′ be the matrix of intersection numbers
of curves (C ′i, C

′
j), where C ′i is the curve at infinity on X̄ ′ corresponding to νi,

0 ≤ i ≤ k. Theorem 1.5 implies that detM is precisely the (1, 1)-minor of
M′ := I ′−1. Cramer’s rule then implies that (C ′0, C

′
0) = detM/ detM′. On

the other hand, applying Case 1 to ν0, . . . , νk yields that sign(detM′) = (−1)k.
Consequently, sign((C ′0, C

′
0)) = sign((−1)k detM) = sign(det(−M)). Now the

result follows from Grauert’s theorem. �

As an application of Theorem 1.4, we give an interpretation of skewness of
valuations - an invariant of valuations defined by Favre and Jonsson in order to
study the valuative tree (see [8] for details).
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Definition 6.2 (see [9, Appendix A]). Let ν be a divisorial discrete valuation
on C[x, y] centered at infinity such that ν(x) < 0 and ν(x) ≤ ν(y). Assume that
ν 6= −deg, where deg is the degree in (x, y)-coordinates. Let P be the center of ν
on X̄(x,y)

∼= P2. For every f ∈ OX̄(x,y),P
, let m̃(f) be the intersection multiplicity

at P of the curve {f = 0} with the line at infinity. Note that u := 1/x is a regular
function at P and u = 0 is precisely the equation of the line at infinity near P .
Let ν̃ := ν/ν(u) be the normalized version of ν (in the sense that ν̃(u) = 1).
Then the relative skewness of ν is α̃(ν) := sup{ν̃(f)/m̃(f) : f ∈ OX̄(x,y),P

} and

the skewness of ν is α(ν) := 1− α̃(ν).5

Corollary 6.3. Let ν be a divisorial discrete valuation on C(x, y) centered at
infinity such that ν(x) < 0 and ν(x) ≤ ν(y). Let gν be the generic key form of ν
with respect to (x, y)-coordinates. Then the following are equivalent:

1. ν determines a compactification of X (i.e. there is a (unique) compactification
X̄ of X such that the curve C at infinity on X̄ is irreducible and ν is the order
of vanishing along C).

2. ν(gν(x, y, ξ̃)) < 0 for some (and hence every!) ξ̃ ∈ C.
3. α(ν) > 0.

Proof. Let p := degy(gν). Recall (from Definition 3.6) that gν = g̃ν/u
p =

1
up (g̃nll −ξ

∏l−1
j=0 g̃

nj
j ), where g̃j ’s are key polynomials of ν with respect to (u, v) :=

(1/x, y/x)-coordinates. The defining properties of key polynomials then imply
that

p = nl degv(g̃l) = ν(u), and for all ξ̃ ∈ C,(11)

ν(gν(x, y, ξ̃)) = nlν(g̃l)− ν(up) = nlν(g̃l)− pν(u) = nl(ν(g̃l)− ν(u) degv(g̃l)).

(12)

In particular, ν(gν(x, y, ξ̃)) does not depend on ξ̃. The equivalence of assertions
1 and 2 then immediately follows from the k = 1 case of Theorem 1.4. On the
other hand, [8, Lemma 3.32] implies that

α̃(ν) =
ν̃(g̃l)

m̃(g̃l)
=

ν(g̃l)

ν(u) degv(g̃l)

It follows that

α(ν) = 1− α̃(ν) =
ν(u) degv(g̃l)− ν(g̃l)

ν(u) degv(g̃l)
= −ν(gν(x, y, ξ̃))

pν(u)
= −ν(gν(x, y, ξ̃))

p2

which shows the equivalence of assertions 2 and 3, and completes the proof of
the corollary. �

5In [9, Appendix A] skewness was defined only for normalized valuations centered at infinity.
We simply defined the skewness of a valuation centered at infinity to be the skewness of its
normalized version.
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Remark 6.4. The term ν(gν(x, y, ξ̃)) from assertion (2) of Corollary 6.3, or
equivalently the skewness α(ν) can be calculated in a straightforward way in
terms of formal Puiseux pairs of the generic descending Puiseux series ψν(x, ξ) of
ν. We present the formula for the sake of completion: let (q1, p1), . . . , (ql+1, pl+1)
be the formal Puiseux pairs of ψν . Set p := p1 · · · pl+1. Then for every ξ̃ ∈ C,

ν(gν(x, y, ξ̃)) =−p
(

(p1 · · · pl+1 − p2 · · · pl+1)
q1

p1
+ (p2 · · · pl+1 − p3 · · · pl+1)

q2

p1p2

+ · · ·+ (plpl+1 − pl+1)
ql

p1 · · · pl
+ pl+1

ql+1

p1 · · · pl+1

)
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13. Heinrich W. E. Jung. Über ganze birationale Transformationen der Ebene. J. Reine
Angew. Math., 184:161–174, 1942.

14. Hideo Kojima. Minimal singular compactifications of the affine plane. Nihonkai
Math. J., 12(2):165–195, 2001.

15. Hideo Kojima and Takeshi Takahashi. Notes on minimal compactifications of the
affine plane. Ann. Mat. Pura Appl. (4), 188(1):153–169, 2009.

16. Joseph Lipman. Rational singularities, with applications to algebraic surfaces and

unique factorization. Inst. Hautes Études Sci. Publ. Math., (36):195–279, 1969.
17. Saunders MacLane. A construction for absolute values in polynomial rings. Trans.

Amer. Math. Soc., 40(3):363–395, 1936.



74 Pinaki Mondal

18. Robert Mendris and András Némethi. The link of {f(x, y) + zn = 0} and Zariski’s
conjecture. Compos. Math., 141(2):502–524, 2005.

19. Pinaki Mondal. Compactifications of C2 via pencils of jets of curves. C. R. Math.
Acad. Sci. Soc. R. Can., 34(3):79–96, 2012.

20. Pinaki Mondal. Analytic compactifications of C2 II: one irreducible curve at infinity.
http://arxiv.org/abs/1307.5577, 2013.

21. James A. Morrow. Compactifications of C2. Bull. Amer. Math. Soc., 78:813–816,
1972.

22. Masayoshi Miyanishi and De-Qi Zhang. Gorenstein log del Pezzo surfaces of rank
one. J. Algebra, 118(1):63–84, 1988.

23. Tomoaki Ohta. Normal hypersurfaces as a compactification of C2. Kyushu J. Math.,
55(1):165–181, 2001.

24. Reinhold Remmert and Ton van de Ven. Zwei Sätze über die komplex-projektive
Ebene. Nieuw. Arch. Wisk. (3), 8:147–157, 1960.
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26. Mark Spivakovsky. Sandwiched singularities and desingularization of surfaces by
normalized Nash transformations. Ann. of Math. (2), 131(3):411–491, 1990.

27. Mark Spivakovsky. Valuations in function fields of surfaces. Amer. J. Math.,
112(1):107–156, 1990.

The School of Mathematics, Physics & Technology, College of The Bahamas, Nassau,
Bahamas
e-mail: pinakio@gmail.com


