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Abstract. We report on recent results on the existence of Cubic

and Hexic integral transforms on self-dual locally compact groups (orders 3
and 6 analogues of the classical Fourier transform) and their application in

constructing a canonical continuous section of smooth projections E(t) of

the continuous field of rotation C*-algebras {At}0<t<1 that is invariant
under the noncommutative Hexic transform automorphism. This leads

to invariant matrix (point) projections of the irrational noncommutative

tori Aθ. We also present a quick method for computing the (quantized)
topological invariants of such projections using techniques from classical

Theta function theory.

Résumé. On décrit des résultats récents sur l’existence d’une trans-

formation intégrale d’ordre trois (ou d’ordre six) sur un groupe localement
compact abélien self-dual. On étudie l’application possible à la construction

d’un champs continu de projecteurs invariants sous l’automorphisme associé

du champs de C*-algèbres de rotation. On calcule certains invariants
topologiques de ces projecteurs.

1. Introduction In this announcement paper we discuss recent results on
the existence of Cubic and Hexic integral transforms on self-dual locally compact
Abelian groups [14] (these are, respectively, orders 3 and 6 analogues of the clas-
sical Fourier transform) and their application [15] in constructing a canonical
continuous section E(t) of smooth projections (in fact, analytic projections in
Sakai’s sense [10]) of the continuous field of rotation C*-algebras {At}0<t<1, as
studied by Elliott [5], that is invariant under the noncommutative Hexic trans-
form automorphism, i.e. under the canonical order 6 automorphism ρ = ρt of
At defined by

(1.1) ρ(Ut) = Vt, ρ(Vt) = e−πitU−1t Vt.
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(Which corresponds to the order six SL(2,Z) matrix [ 0 −11 1 ] on the K1-group.)
Here, Ut, Vt are the canonical unitary generators of the rotation C*-algebra At
(noncommutative 2-torus) satisfying the commutation relation VtUt = e2πitUtVt.
The projection section E(t), with trace t, is shown to be the support projection of
the following concrete section of positive C∞-elements that could be interpreted
as a noncommutative (2-dimensional) Theta function:

(1.2) X(t) = t

∞∑
m,n=−∞

e
− πt√

3
(m2+n2)

e
−πt( 1√

3
−i)mn

Unt V
m
t

for 0 < t < 1. It is ρ invariant and has the useful feature that

lim
t→0+

‖X(t)− E(t)‖ = 0.

In addition, in [15] we devise a new and quicker computational technique
(compared with our older and longer methods in [2], [11], [12], [13]) for obtaining
the topological invariants (“quantum numbers”) of the projection E(t) according
to the limit rule

ψt(E(t)) = lim
s→0+

ψs(X(s))

which turns out to exist for each of the noncanonical traces ψt associated to the
automorphism ρ as well as to those associated to the Cubic transform κ = ρ2

given by

(1.3) κ(Ut) = e−πitU−1t Vt, κ(Vt) = U−1t .

(The noncanonical traces are given in Section 3.)1

Using the section E(t) we show that for a certain concrete class of irrationals
θ ∈ G and associated rational approximations p/q, the projections arising from
E according to

(1.4) e = ζq,θ(E(q2θ − pq))

(where the *-homomorphism ζq,θ is given by equations (3.8)) are matrix (point)
projections of trace q2θ − pq, in the sense that they are approximately central
in Aθ and the cut downs eUe, eV e are close (for sufficiently large q) to order
q unitary matrices in a ρ-invariant q × q matrix algebra M contained in eAθe
whose identity is e (see Theorem 3.2 below).

The noncanonical traces, being discontinuous linear functionals defined on
the infinitely differentiable elements A∞t of the rotation C*-algebra field {At},
would constitute the differential topology of C*-algebras and their orbifolds –

1The noncanonical twisted traces are defined in a natural way on the continuous subfield of
smooth noncommutative tori {A∞

t }0<t<1, so that, for instance, if p(t) is a polynomial section
of this field and ψt is such a twisted trace, then ψt(p(t)) is a continuous complex-valued
function of t.
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much as topological invariants related to curvature, Chern characters, and Gauss-
Bonnet Theorem in differential topology and geometry are derived from canonical
analytic structures like covariant differentiation.

The toroidal orbifolds associated to the symmetry groups Z3 and Z6 are the
fixed point C*-subalgebras Aκθ := {x ∈ Aθ|κ(x) = x} and Aρθ of Aθ. When θ
is rational these orbifold algebras take the concrete form of a 2-sphere with 3
or 4 singularities (see [1] for the Flip case, and [7] [6] [8] for the orders 3, 4, 6
cases) each of which takes the form of multiple non-Hausdorff points. When θ is
irrational, it was proved in [4] that these fixed point algebras and their respec-
tive (strongly Morita equivalent) C*-crossed products Aθ oκ Z3 and Aθ oρ Z6

are approximately finite-dimensional. Such orbifolds associated to the Flip and
Fourier transform have been used in the work of Konechny and Schwarz [9] in
studies of compactification of M(atrix) theory – e.g., the topological invariants
being related to number of D-branes associated to noncommutative orbifold sin-
gularities (see, for example, Section 9.3 of [9]). It would be interesting to see if
their results extend to the symmetries discussed here. It would also be interest-
ing to see what these results look like for higher dimensional noncommutative
tori.

It will be convenient to use the notation e(t) := e2πit.

2. The Integral Transforms In this section we summarize results from
[14], the main result of which is Theorem 2.2. This theorem was used in obtaining
the results stated in Section 3.

Theorem 2.1. Let G be a locally compact, compactly generated self-dual
Abelian group with symmetric pairing 〈 , 〉 . There exists a continuous (in fact,
C∞ if G is a Lie group) map α : G→ T such that

α(x+ y) = α(x)α(y)〈x, y〉 , α(−x) = α(x), α(0) = 1

for all x, y ∈ G.

The condition α(−x) = α(x) ensures that the Cubic integral transform f → f c

(given by the following theorem) commutes with the flip unitary f → f̃ , where

f̃(x) = f(−x), for the groups concerned. The image shown below on the left is
a rough graph of α in the cyclic group case Zq

1 //
bb

DD
DD

DD
DD

D K
√
qδnq

zzuuu
uuu

uuu

K2α(n)

whose elements are represented by the qth roots of unity in the unit circle - it
cycles around the circle in a quadratic manner since it has the form α(m) =
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(−1)me(m
2

2q ) (see [14], Section 2). And the triangular diagram shows what hap-
pens to the constant function 1 on the group Zq under two iterations of the
Cubic transform (reflecting an interesting contrast with how the Fourier trans-
form treats it, which is essentially just the first row). (The divisor δ-function δnq
is defined in Section 3.)

Theorem 2.2. ([14]) Let G be a locally compact, compactly generated self-
dual Abelian group. Then the linear transform

f c(t) := K α(t)f̂(−t) = K α(t)

∫
G

f(x)〈t, x〉dx

for f ∈ S(G) (the Schwartz space of G) and for some constant K, |K| = 1, defines

a unitary operator of order 3 on L2(G) which commutes with the flip f → f̃ , and

therefore gives an order 6 unitary operator H by Hf = f̃ cc. Further, H3f = f̃
and H2f = f c.

The transforms f c and Hf are directly related to the Cubic and Hexic au-
tomorphisms κ, ρ by means of C*-module actions and C*-inner products (see
[15]).

3. Continuous Field of Projections and Matix Projections in Z3,Z6

Orbifolds In order to discuss our next results from [15], we need to state the
noncanonical traces that give the topological invariants mentioned in the next
theorem.

Given a (finite order) automorphism β of an algebra A, a (twisted) β-trace is
a complex linear map ψ : A→ C such that

ψ(xy) = ψ(β(y)x)

for x, y ∈ A. The restriction of ψ to the β-orbifold Aβ = {x ∈ A |β(x) = x}
(fixed point subalgebra) defines a trace, and therefore induces a morphism on
K-theory ψ∗ : K0(Aβ) → C that gives a topological invariant for projections
and modules (“bundles”) over the orbifold Aβ . (Invariably, A will be a dense
*-subalgebra of a C*-algebra that is closed under the holomorphic functional
calculus.)

In the case of noncommutative tori Aθ, such maps are defined on the canon-
ical dense *-subalgebra A∞θ of differentiable elements – namely, Schwartz series∑
amnU

mV n where {amn} is rapidly decreasing.
In joint work with Julian Buck [2], we computed such twisted traces for the

Cubic transform κ and showed ([2], Theorem 3.3) that they form a 3-dimensional
complex vector space with basis given by the following basic κ-traces

(3.1) ψθj (UmV n) = e( θ6 (m− n)2) δm−n−j3

where j = 0, 1, 2 and δmd is the divisor delta function given by δmd = 1 if d divides
m, and δmd = 0 otherwise. (Here, V U = e2πiθUV .) These three noncanonical
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traces, together with the usual canonical trace state τ, give rise to its Connes-
Chern character invariant for the Cubic orbifold:

T3 : K0(Aκθ )→ C4, T3(x) = (τ(x);ψ0(x), ψ1(x), ψ2(x)).

For the identity element, for example, we have T3(1) = (1; 1, 0, 0). Recall that
the canonical trace is defined by τ(

∑
amnU

mV n) = a00.
For the Hexic transform (Theorem 3.1 in [2]) there is a unique ρ-trace ϕθ1 (up

to scalar multiples) defined on A∞θ , a pair of ρ-invariant ρ2-traces ϕθ2j , and a

pair of ρ-invariant ρ3-traces ϕθ3j given by

ϕθ1(UmV n) = e( θ2 (m2 + n2))(3.2)

ϕθ20(UmV n) = e( θ6 (m− n)2)δm−n3 , ϕθ21(UmV n) = e( θ6 (m− n)2),(3.3)

ϕθ30(UmV n) = e(− θ2mn)δm2 δ
n
2 , ϕθ31(UmV n) = e(− θ2mn).(3.4)

When no confusion arises we simply write ϕθjk = ϕjk. The Connes-Chern char-

acter invariant for the Hexic orbifold Aρθ consists of these together with the
canonical trace:

T6 : K0(Aρθ)→ C6, T6(x) = (τ(x);ϕ1(x), ϕ20(x), ϕ21(x), ϕ30(x), ϕ31(x))

When θ is irrational the Connes-Chern characters T3, T6 are one-to-one, therefore
giving complete invariants for projections and modules over the orbifolds2. (See
[3].)

We have the following results.

Theorem 3.1. ([15]) There is a continuous section E : (0, 1) → {At} of C∞-
projections of the continuous field {At} of rotation C*-algebras such that

(1) ρ(E(t)) = E(t), κ(E(t)) = E(t);
(2) E(t) has κ-topological numbers

(3.5) ψ0 = ψ1 = ψ2 = ω :=
1

2
(1 +

i√
3

);

(3) E(t) has ρ-topological numbers

(3.6) ϕ1 = 3ω − 1, ϕ20 = ω, ϕ21 = 3ω, ϕ30 =
1

2
, ϕ31 = 2

(4) E(t) is the support projection of the noncommutative 2D “Theta function”
C∞ positive element

(3.7) X(t) = t
∑
m,n

e
− πt√

3
(m2+n2)

e
−πt( 1√

3
−i)mn

Unt V
m
t

for 0 < t < 1; further, one has lim
t→0+

‖E(t)− X(t)‖ = 0.

2When θ is rational one would have to include Connes’ cyclic 2-cocycle which “picks out
the label of the trace.”
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In the next theorem we use the homomorphism ζq,θ : Aθq → Aθ, where θq :=
q2θ − pq, defined by

(3.8) ζq,θ(Uθq ) = Uqθ , ζq,θ(Vθq ) = V qθ .

Theorem 3.2. ([15]) Let θ be any irrational number such that there are in-
finitely many rational approximations p/q (in reduced form, with p ≥ 0, q ≥ 1)
such that

0 < θ − p

q
<

0.995

q2

where p an even perfect square. Then the projection

(3.9) e = ζq,θ(E(q2θ − pq))

in Aθ (with trace q2θ − pq) is ρ invariant, is approximately central, and there
exists a ρ-invariant q × q matrix algebra M ⊂ eAθe with unit e such that: for
any finite subset F ⊂ Aθ and each ε > 0, there exists large enough q such that
exe has distance less than ε from M for each x ∈ F . (The same conclusions hold
for the Cubic transform κ.)

We remark that the class of irrationals in this theorem contains dense Gδ
sets, and that in the matrix approximation of this theorem, the cut downs of the
canonical unitaries eUe, eV e are close to order q unitary matrices of M. (This
is borne out in the proof of this theorem in [15] if not explicitly stated in the
theorem.) Recall that e = eq is approximately central in Aθ if for any finite subset
F ⊂ Aθ and ε > 0 there exists large enough q such that ‖xe− ex‖ < ε, ∀x ∈ F .
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