— 1403 articles found.

The Cuntz Semigroup of the Tensor Product of C*-algebras

C. R. Math. Rep. Acad. Sci. Canada Vol. 41 (2) 2019, pp. 32-44
Vol.41 (2) 2019
George A. Elliott; Cristian Ivanescu; Dan Kucerovsky Details
(Received: 2014-12-08 , Revised: 2019-10-24 )
(Received: 2014-12-08 , Revised: 2019-10-24 )

George A. Elliott,Department of Mathematics, University of Toronto, Toronto, Canada M5S 2E4; e-mail: elliott@math.toronto.edu

Cristian Ivanescu.Department of Mathematics and Statistics, MacEwan University, Edmonton, Alberta, Canada T5J 4S2; e-mail: IvanescuC@macewan.ca

Dan Kurcerovsky.Department of Mathematics and Statistics, University of New Brunswick, Fredericton, New Brunswick, Canada E38 5A3; e-mail: dkucerov@unb.ca

Abstract/Résumé:

We calculate the Cuntz semigroup of the tensor product of two C\(^*\)-algebras, restricting attention to the case that the Cuntz semigroup, both for the given algebras and for the tensor product, is given by affine functions. We show that the answer is the universal Cuntz category tensor product of Antoine et al. (2018).

On démontre que, dans certains cas, le semigroupe de Cuntz du produit tensoriel de deux C\(^*\)-algèbres est le produit tensoriel dans la catégorie de Cuntz.

Keywords: C*-algebra tensor product, Cuntz Semigroup, tracial cone

AMS Subject Classification: Convex sets in topological linear spaces; Choquet theory, General theory of $C^*$-algebras 46A55, 46L05

PDF(click to download): The Cuntz Semigroup of the Tensor Product of C*-algebras

Subgroups of the Group of Formal Power Series with the Big Powers Condition

C. R. Math. Rep. Acad. Sci. Canada Vol. 41 (2) 2019, pp. 20-31
Vol.41 (2) 2019
Alexander Brudnyi Details
(Received: 2019-07-17 , Revised: 2019-09-01 )
(Received: 2019-07-17 , Revised: 2019-09-01 )

Alexander Brudnyi,Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4; e-mail: abrudnyi@ucalgary.ca

Abstract/Résumé:

We study the structure of countable subgroups of the group \(G[[r]]\) of complex formal power series under the operation of composition of series. In particular, we prove that every finitely generated fully residually free group is embeddable in \(G[[r]]\)

Nous étudions la structure des sous-groupes dénombrables du groupe \(G[[r]]\)des séries de puissance formelle sous l’opération de la composition des séries. En particulier, nous prouvons que chaque groupe qui est finement engendré et \(\omega\)-résiduellement libre admet un plongement dans \(G[[r]]\)

Keywords: Group of formal power series, free product of groups, fully residually free group, the big powers condition

AMS Subject Classification: Free products; free products with amalgamation; Higman-Neumann-Neumann extensions; and generalizations, Other groups related to topology or analysis 20E06, 20F38

PDF(click to download): Subgroups of the Group of Formal Power Series with the Big Powers Condition

Polynômes chromatiques de certains graphes de la vie réelle

C. R. Math. Rep. Acad. Sci. Canada Vol. 41 (1) 2019, pp. 7-19
Vol.41 (1) 2019
Jasbir S. Chahal; Omar Khadir Details
(Received: 2019-05-05 , Revised: 2019-06-17 )
(Received: 2019-05-05 , Revised: 2019-06-17 )

Jasbir S. Chahal,Department de Mathematiques, Universite de Brigham Young, Provo, UT 84602, USA; email: asbir@math.byu.edu

Omar Khadir,Laboratoire de Mathematiques, cryptographie, mecanique et analyse numerique, Fstm., Universite Hassan II de Casablanca, Maroc; email:
khadir@hotmail.com

Abstract/Résumé:

La conjecture des quatre couleurs affirme que toute carte géographique à bords continus nécessite au plus quatre couleurs pour être proprement colorée. Certains pays comme le Canada exigent en réalité seulement trois couleurs alors que d’autres, comme le Maroc, nécessitent eux quatre couleurs, trois ne suffisant pas. Soit \(k=k(X)\) le plus petit nombre de couleurs nécessaires au coloriage de la carte d’un pays. Aucun calcul n’a été fait pour déterminer de combien de manières \(X\) peut-il être coloré avec les \(k\) couleurs même pour un seul pays pour lequel le problème n’est pas trivial. Dans ce travail, nous le réalisons pour deux pays : le Canada et le Maroc. Nous décrivons tous les outils mathématiques dont nous aurons besoin.

The four color conjecture states that any contiguous geographical entity needs at most four colors to color it properly. Some countries like Canada need actually only three colors whereas for others like Morocco three won’t suffice. Let \(k=k(X)\) be the least number of colors that suffice to color a country \(X\). Someone has yet to compute in how many ways \(X\) can be colored with \(k\) colors, even for a single country \(X\) for which the problem is non-trivial. In this paper, we do it for the two countries Canada and Morocco. We provide all the mathematical tools that are necessary.

Keywords:

AMS Subject Classification: Coloring of graphs and hypergraphs, 05C15, 05C31

PDF(click to download): Polynômes chromatiques de certains graphes de la vie réelle

Transcendence of Zeros of Automorphic Forms for Cuspidal Triangle Groups

C. R. Math. Rep. Acad. Sci. Canada Vol. 41 (1) 2019, pp. 1-6
Vol.41 (1) 2019
Paula Tretkoff Details
(Received: 2018-05-21 , Revised: 2018-09-18 )
(Received: 2018-05-21 , Revised: 2018-09-18 )

Paula Tretkoff,Department of Mathematics, Texas A & M University, College Station, TX 77843-3368 USA; CNRS, UMR 8524, Universite de Lille 1, Cite Scientifique, 59655 Villeneuve d'Ascq, France; e-mail: paulatretkoff@tamu.edu

Abstract/Résumé:

We extend some results of on elliptic modular forms. We take any Fuchsian triangle group with a cusp and look at power series expansions in a natural parameter around that cusp. Consider the automorphic forms for such a triangle group whose power series expansions in the natural parameter have algebraic coefficients. We show that the zeros of such forms are either transcendental, or are “CM.” By “CM,” we mean they correspond to abelian varieties with complex multiplication. This result is the first of its kind in the case of non-arithmetic groups.

Nous étendons certains résultats de sur les formes modulaires elliptiques. Nous prenons un groupe fuchsien triangulaire quelconque avec une pointe et examinons les développements en série de puissance dans un paramètre naturel autour de cette pointe. Considérons les formes automorphes pour un tel groupe triangulaire dont les développements en série de puissance dans le paramètre naturel ont des coefficients algébriques. Nous montrons que les zéros de telles formes sont soient transcendants soient “CM”. Par “CM,” nous voulons dire qu’ils correspondent à des variétés abéliennes à multiplication complexe. Ce résultat est le premier du genre au cas des groupes non-arithmétiques.

Keywords: Transcendence, automorphic forms, modular embedding, non-arithmetic group

AMS Subject Classification: Transcendence (general theory), Transcendence theory of other special functions, Fuchsian groups and their generalizations 11J81, 11J91, 20H10

PDF(click to download): Transcendence of Zeros of Automorphic Forms for Cuspidal Triangle Groups

Certain Properties of Tracial Approximation ${\rm C^*}$-Algebras

C. R. Math. Rep. Acad. Sci. Canada Vol. 40 (4) 2018, pp. 104-133
Vol.40 (4) 2018
George A. Elliott, FRSC; Qingzhai Fan; Xiaochun Fang Details
(Received: 2019-04-07 )
(Received: 2019-04-07 )

George A. Elliott, FRSC,Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 2E4; e-mail: elliott@math.toronto.edu,

Qingzhai Fan,Department of Mathematics, Shanghai Maritime University, Shanghai, China 201306; e-mail: fanqingzhai@fudan.edu.cn,qzfan@shmtu.edu.cn

Xiaochun Fang,Department of Mathematics, Tongji University, Shangha, China 200092; e-mail: xfang@mail.tongji.edu.cn

Abstract/Résumé:

We show that the following properties of the \({\rm C^*}\)-algebras in a class \(\Omega\) are inherited by simple unital \({\rm C^*}\)-algebras in the class \({\rm TA}\Omega\): \((1)\) \(\beta\)-comparison (\(1\leq \beta < \infty\)), \((2)\) \(n\)-comparison, \((3)\) trace \(\mathcal{Z}\)– absorption, \((4)\) \(m\)-almost divisibility, \((5)\) \((n,m) ~(m\neq 0)\) comparison, and \((6)\) tracial approximate divisibility. As an application, every unital simple \({\rm C^*}\)-algebra with tracial topological rank at most \(k\) has the property of \(k\)-comparison. Also as an application, let \(A\) be an infinite-dimensional simple unital \({\rm C^*}\)-algebra such that \(A\) has one of the above-listed properties. Suppose that \(\alpha: G\to {\rm Aut}(A)\) is an action of a finite group \(G\) on \(A\) which has the tracial Rokhlin property. Then the crossed product \({\rm C^*}\)-algebra \({\rm C^*}( G, A,\alpha)\) also has the property under consideration.

On considère plusieurs propriétés d’une C*-algèbre simple à élément unité qui sont héritées par approximation traciale. Comme application on démontre que ces propriétés sont aussi héritées par la C*-algèbre produit croisé associée à une action d’un groupe fini qui possède la propriété de Rokhlin traciale.

Keywords: C*-algebra, Cuntz Semigroup, tracial approximation

AMS Subject Classification: General theory of $C^*$-algebras, Classifications of $C^*$-algebras; factors, K-theory and operator algebras -including cyclic theory 46L05, 46L35, 46L80

PDF(click to download): Certain Properties of Tracial Approximation ${C^*}$-Algebras

Uniqueness of the Index Map in Real K-theory

C. R. Math. Rep. Acad. Sci. Canada Vol. 40 (4) 2018, pp. 101-103
Vol.40 (4) 2018
Ralf Meyer Details
(Received: 2019-03-15 , Revised: 2019-04-01 )
(Received: 2019-03-15 , Revised: 2019-04-01 )

Ralf Meyer,Mathematisches Institut, Georg-August Universitaet Goettingen, Bunsenstrasse 3-5, 37073 Goettingen, Germany; email: rmeyer2@uni-goettingen.de

Abstract/Résumé:

The index map in topological K-theory for real Banach algebra extensions is a natural transformation from the first K-theory of the quotient to the zeroth K-theory of the ideal. We show that any such natural transformation is an integer multiple of the index map.

L’application index dans la K-théorie des extensions d’algèbres de Banach réelles est une transformation naturelle entre le premier K-groupe de l’algèbre quotient et le zéroième K-groupe de l’idéal. On démontre qu’une telle transformation naturelle doit être un multiple intégral de l’application index.

Keywords: Index map, real K-theory

AMS Subject Classification: Index theory, K-theory and operator algebras -including cyclic theory 19K56, 46L80

PDF(click to download): Uniqueness of the Index Map in Real K-theory

Uniqueness of the Index Map in Banach Algebra K-theory, II

C. R. Math. Rep. Acad. Sci. Canada Vol. 40 (3) 2018, pp. 91-100
Vol.40 (3) 2018
George A. Elliott Details
(Received: 2018-09-01 , Revised: 2018-09-01 )
(Received: 2018-09-01 , Revised: 2018-09-01 )

George A. Elliott,Department of Mathematics, University of Toronto, Toronto, Canada M5S 2E4; e-mail: elliott@math.toronto.edu

Abstract/Résumé:

It is shown that the index map in the theory of real Banach algebras is unique as a natural transformation, up to an integral multiple, and modulo a (unique) two-torsion “ghost” map arising from the order-two K\(_1\)-group of the Banach algebra \({\mathbb R}\) (of real numbers). (In the earlier paper this was shown for complex Banach algebras, of course without the “ghost” map, but in way—using Bott periodicity to pass to the opposite parity—that is not available for real Banach algebras. The present approach yields a new proof in the complex case.)

On démontre que l’application index dans la K-théorie des algèbres de Banach réelles (ou complexes) est essentiellment unique.

Keywords: K-theory, index theory

AMS Subject Classification: Index theory, K-theory and operator algebras -including cyclic theory 19K56, 46L80

PDF(click to download): Uniqueness of the Index Map in Banach Algebra K-theory, II

A Survey of the Preservation of Symmetries by the Dual Gromov-Hausdorff Propinquity

C. R. Math. Rep. Acad. Sci. Canada Vol. 40 (3) 2018, pp. 65-90
Vol.40 (3) 2018
Frederic Latremoliere Details
(Received: 2018-05-05 , Revised: 2018-05-05 )
(Received: 2018-05-05 , Revised: 2018-05-05 )

Frederic Latremoliere,Department of Mathematics, University of Denver, Denver CO 80208; e-mail: frederic@math.du.edu

Abstract/Résumé:

We survey the symmetry preserving properties for the dual propinquity, under natural non-degeneracy and equicontinuity conditions. These properties are best formulated using the notion of the covariant propinquity when the symmetries are encoded via the actions of proper monoids and groups. We explore the issue of convergence of Cauchy sequences for the covariant propinquity, which captures, via a compactness result, the fact that proper monoid actions can pass to the limit for the dual propinquity.

Nous étudions les propriétés de conservation des symmétries des espaces quantiques pour la proximité duale, sous des conditions naturelles d’équicontinuité et de non dégénérescence. Ces propriétés sont exprimées naturellement dans le language de la proximité covariante, qui permet de discuter la convergence d’actions de groupes et semigroupes sur les espaces quantiques. Nous explorons le problème de la convergence des suites de Cauchy pour la proximité covariante, qui capture, grâce a un théoreme de compacité, le fait que les actions de monoides propres passent à la limite pour la proximité duale.

Keywords: C*-dynamical systems, Gromov-Hausdor convergence, Gromov-Hausdor distance for proper monoids, Lip-norms, Monge- Kantorovich distance, Noncommutative metric geometry, proper monoids, quantum metric spaces

AMS Subject Classification: K-theory and operator algebras -including cyclic theory, Noncommutative geometry (__ la Connes) 46L80, 58B34

PDF(click to download): A Survey of the Preservation of Symmetries by the Dual Gromov-Hausdorff Propinquity

Lusternik-Schnirelmann Category in Commutative Algebra and The Homotopy Lie Algebra

C. R. Math. Rep. Acad. Sci. Canada Vol. 40 (2) 2018, pp. 61-64
Vol.40 (2) 2018
Benjamin Briggs Details
(Received: 2018-05-30 , Revised: 2018-05-30 )
(Received: 2018-05-30 , Revised: 2018-05-30 )

Benjamin Briggs,Department of Mathematics, University of Toronto, Ontario, Canada M5S 2E4; e-mail: ben.briggs@mail.utoronto.ca

Abstract/Résumé:

Here we continue the development of Lusternik-Schnirelmann category in local commutative algebra. In particular, we present a version of Félix-Halperin’s mapping theorem which is valid in any characteristic. Then we briefly discuss some consequences for the behaviour of the homotopy Lie algebra of a local homomorphism. This is a short announcement of some of the results in the author’s thesis.

Nous continuons le développement de la catégorie deLusternik-Schnirelmann en algèbre commutative locale. En particulier, nous présentons une version du théorème de Félix-Halperin qui est valable pour toute caractéristique. Nous tirerons ensuite brièvement des conséquences sur le comportement de l’algèbre de Lie d’homotopie d’un homomorphisme local. Ceci constitue une courte annonce de certains des résultats contenus dans la thèse de l’auteur.

Keywords: Lusternik-Schnirelmann category, dg algebras, the homotopy Lie algebra

AMS Subject Classification: Syzygies and resolutions, Differential graded algebras and applications, Rational homotopy theory 13D02, 16E45, 55P62

PDF(click to download): Lusternik-Schnirelmann Category in Commutative Algebra and The Homotopy Lie Algebra

The Rieffel Projection Via Groupoids

C. R. Math. Rep. Acad. Sci. Canada Vol. 40 (2) 2018, pp. 55-60
Vol.40 (2) 2018
George A. Elliott; Dickson Wong Details
(Received: 2018-05-05 , Revised: 2018-05-05 )
(Received: 2018-05-05 , Revised: 2018-05-05 )

George A. Elliott,Department of Mathematics, University of Toronto, Toronto, Canada M5S 2E4; e-mail: elliott@math.toronto.edu

Dickson Wong,Department of Mathematics, University of Toronto, Toronto, Canada M5S 2E4; e-mail: dickson.wong@mail.utoronto.ca

Abstract/Résumé:

An elementary groupoid construction is shown to underlie Rieffel’s Hilbert module construction of a non-trivial projection in the irrational rotation C*-algebra.

Une construction élémentaire de groupoïde se révèle à la base de la construction de Rieffel à module de Hilbert d’un projecteur non-trivial dans la C*-algèbre d’une rotation irrationnelle.

Keywords: Irrational rotation algebra, Rieffel projection, groupoid construction

AMS Subject Classification: General theory of $C^*$-algebras, K-theory and operator algebras -including cyclic theory, Noncommutative topology 46L05, 46L80, 46L85

PDF(click to download): The Rieffel Projection Via Groupoids

A Positive-Definite Energy Functional for Axially Symmetric Maxwell’s Equations on Kerr-de Sitter Black Hole Spacetimes

C. R. Math. Rep. Acad. Sci. Canada Vol. 40 (2) 2018, pp. 39-54
Vol.40 (2) 2018
Nishanth Gudapati Details
(Received: 2017-11-04 , Revised: 2018-04-06 )
(Received: 2017-11-04 , Revised: 2018-04-06 )

Nishanth Gudapati,Department of Mathematics, Yale University, 10 Hillhouse Avenue, New Haven, CT-06511, USA; e-mail: nishanth.gudapati@yale.edu

Abstract/Résumé:

We prove that there exists a phase space of canonical variables, for the initial value problem for axially symmetric Maxwell fields with compactly supported initial data and propagating in Kerr-de Sitter black hole spacetimes, such that their motion is restricted to the level sets of a positive-definite Hamiltonian, despite the ergo-region.

On démontre qu’il existe un espace de phase de variables canoniques, pour le problème des valeurs initials pour les champs de Maxwell symétriques à donneés initiales de support compact et à propagation dans les espaces-temps de trou noir Kerr-de Sitter, tel que leur motion est restrainte aux ensembles de niveau d’une hamiltonienne de type positif, en dépit de l’ergo-région.

Keywords: Kerr-de Sitter Black Holes, Stability of Black Holes, Wave Maps

AMS Subject Classification: Conservation laws, Electromagnetic fields 35L65, 83C50

PDF(click to download): A Positive-Definite Energy Functional for Axially Symmetric Maxwell's Equations on Kerr-de Sitter Black Hole Spacetimes

Perfect Powers that are Sums of Consecutive Squares

C. R. Math. Rep. Acad. Sci. Canada Vol. 40 (2) 2018, pp. 33-38
Vol.40 (2) 2018
Vandita Patel Details
(Received: 2017-08-08 , Revised: 2017-09-11 )
(Received: 2017-08-08 , Revised: 2017-09-11 )

Vandita Patel,Department of Mathematics, University of Toronto, Bahen Centre, 40 St. George St., Room 6290, Toronto, Ontario, Canada M5S 2E4; e-mail: vandita@math.utoronto.ca

Abstract/Résumé:

We determine all perfect powers that can be written as the sum of at most 10 consecutive squares.

Nous déterminons toutes les puisances \(n\)-ièmes qui peuvent être écrits comme la somme d’au plus 10 carrés consécutifs.

Keywords: Exponential equation

AMS Subject Classification: Exponential equations 11D61

PDF(click to download): Perfect Powers that are Sums of Consecutive Squares

A Note on the Lipschitz Selection

C. R. Math. Rep. Acad. Sci. Canada Vol. 40 (1) 2018, pp. 29-32
Vol.40 (1) 2018
Alexander Brudnyi Details
(Received: 2018-01-02 , Revised: 2018-01-10 )
(Received: 2018-01-02 , Revised: 2018-01-10 )

Alexander Brudnyi,Department of Mathematics and Statistics, University of Calgary, Alberta, Canada
T2N 1N4; e-mail: abrudnyi@ucalgary.ca

Abstract/Résumé:

We present an alternate proof of the passage from the finiteness principle for metric trees to the construction of the core in the C. Fefferman and Shvartsman finiteness theorem for Lipschitz selection problems.

On présente une preuve alternative du passage du principe de la finitude pour les arbres métriques jusqu’à la construction du noyau dans le théorème de finitude de C. Fefferman et Shvartsman pour la sélection des problèmes Lipschitz.

Keywords: Lipschitz selection, length space, metric tree, regular covering

AMS Subject Classification: Sobolev spaces and other spaces of ``smooth'' functions; embedding theorems; trace theorems 46E35

PDF(click to download): A Note on the Lipschitz Selection

Almost Periodicity in Time of Solutions of the Toda Lattice

C. R. Math. Rep. Acad. Sci. Canada Vol. 40 (1) 2018, pp. 1-28
Vol.40 (1) 2018
Ilia Binder; David Damanik; Milivoje Lukic; Tom VandenBoom Details
(Received: 2017-11-11 , Revised: 2017-12-21 )
(Received: 2017-11-11 , Revised: 2017-12-21 )

Ilia Binder,Department of Mathematics, University of Toronto, Bahen Centre, 40 St. George St., Toronto, Ontario, Canada M5S 2E4;
e-mail: ilia@math.toronto.edu

David Damanik,Department of Mathematics, Rice University, Houston, TX 77005, USA; e-mail: damanik@rice.edu

Milivoje Lukic,Department of Mathematics, Rice University, Houston, TX 77005, USA; e-mail: milivoje.lukic@rice.edu

Tom VandenBoom,Department of Mathematics, Rice University, Houston, TX 77005, USA; e-mail: tvandenboom@rice.edu

Abstract/Résumé:

We study an initial value problem for the Toda lattice with almost periodic initial data. We consider initial data for which the associated Jacobi operator is absolutely continuous and has a spectrum satisfying a Craig-type condition, and show the boundedness and almost periodicity in time and space of solutions.

On étudie un problème de Cauchy pour le système Toda avec des conditions initiales presque périodiques. On considère des conditions initiales pour lesquelles l’opérateur de Jacobi associé est absolument continu et a un spectre qui satisfait à une condition à la façon de Craig, afin de montrer que les solutions sont bornées et presque périodiques dans la variable spatiale aussi que temporelle.

Keywords: Toda lattice, almost periodic Jacobi operators

AMS Subject Classification: Almost periodic solutions, Completely integrable systems; integrability tests; bi-Hamiltonian structures; hierarchies (KdV; KP; Toda; etc.), Jacobi (tridiagonal) operators (matrices) and generalizations 35B15, 37K10, 47B36

PDF(click to download): Almost Periodicity in Time of Solutions of the Toda Lattice

The Structure of Deitmar Schemes, II. Zeta Functions and Automorphism Groups

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (4) 2017, pp. 142-152
Vol.39 (4) 2017
Manuel Mérida-Angulo; Koen Thas Details
(Received: 2017-08-01 , Revised: 2017-09-01 )
(Received: 2017-08-01 , Revised: 2017-09-01 )

Manuel Mérida-Angulo,Ghent University, Department of Mathematics, Krijgslaan 281, S22 and S25, B-9000 Ghent, Belgium; e-mail: manmerang@gmail.com

Koen Thas,Ghent University, Department of Mathematics, Krijgslaan 281, S22 and S25, B-9000 Ghent, Belgium; e-mail: koen.thas@gmail.com

Abstract/Résumé:

We provide a coherent overview of a number of recent results obtained by the authors in the theory of schemes defined over the field with one element. Essentially, this theory encompasses the study of a functor which maps certain geometries including graphs to Deitmar constructible sets with additional structure, as such introducing a new zeta function for graphs. The functor is then used to determine the automorphism groups of the Deitmar constructible sets and their base extensions to fields.

Nous donnons une vue d’ensemble d’une nombre de résultats récents qui ont été obtenus par les auteurs dans le domaine de la théorie des schémas sur le corps à un élément. Principalement, cette théorie concerne l’étude d’un foncteur qui envoie certaines géométries (y compris les graphes) sur un ensemble constructible de Deitmar avec une structure additionnelle. De cette manière on introduit aussi une nouvelle fonction zeta pour les graphes. Le foncteur est ensuite utilisé pour déterminer les groupes d’automorphismes des ensembles constructibles de Deitmar et de ceux obtenus après une extension de base à d’autres corps.

Keywords: Deitmar scheme, Field with one element, Grothendieck ring, automorphism group, functoriality, loose graph, zeta function

AMS Subject Classification: Trees, , Varieties over finite and local fields, Grothendieck groups; $K$-theory, Schemes and morphisms, Generalizations (algebraic spaces; stacks), Zeta-functions and related questions(Birch-Swinnerton-Dyer conjecture), Finite ground fields 05C05, 05E40, 11G25, 13D15, 14A15, 14A20, 14G10, 14G15

PDF(click to download): The Structure of Deitmar Schemes, II. Zeta Functions and Automorphism Groups

On Properties of Geometric Preduals of ${\mathbf C^{k,\omega}}$ Spaces

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (4) 2017, pp. 133-141
Vol.39 (4) 2017
Alexander Brudnyi Details
(Received: 2017-07-13 , Revised: 2017-07-14 )
(Received: 2017-07-13 , Revised: 2017-07-14 )

Alexander Brudnyi,Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4; e-mail: abrudnyi@ucalgary.ca

Abstract/Résumé:

Let \(C_b^{k,\omega}({\mathbb R}^n)\) be the Banach space of \(C^k\) functions on \({\mathbb R}^n\) bounded together with all derivatives of order \(\le k\) and with derivatives of order \(k\) having moduli of continuity majorated by \(c\cdot\omega\), \(c\in{\mathbb R}_+\), for some \(\omega\in C({\mathbb R}_+)\). Let \(C_b^{k,\omega}(S):=C_b^{k,\omega}({\mathbb R}^n)|_S\) be the trace space to a closed subset \(S\subset{\mathbb R}^n\). The geometric predual \(G_b^{k,\omega}(S)\) of \(C_b^{k,\omega}(S)\) is the minimal closed subspace of the dual \(\bigl(C_b^{k,\omega}({\mathbb R}^n)\bigr)^*\) containing evaluation functionals of points in \(S\). We study geometric properties of spaces \(G_b^{k,\omega}(S)\) and their relations to the classical Whitney problems on the characterization of trace spaces of \(C^k\) functions on \({\mathbb R}^n\).

Soit \(C_b^{k, \omega} ({\mathbb R}^n)\) l’espace de Banach des fonctions \(C^k\) sur \({\mathbb R}^n\) bornées avec toutes leurs dérivées d’ordre jusqu’à \(k\) et avec les dérivées d’ordre \(k\) ayant des modules de continuité majorés par \(c \cdot \omega\), \(c \in {\mathbb R}_+\), pour quelque \(\omega \in C ({\mathbb R}_+)\). Soit \(C_b ^ {k, \omega} (S): = C_b^{k, \omega} ({\mathbb R}^n) |_S\) l’espace de trace à un fermé \(S\subset{\mathbb R} ^ n\). Le predual géométrique \(G_b^{k, \omega}(S)\) de \(C_b^{k, \omega} (S)\) est le sous-espace minimal fermé du dual \(\bigl (C_b^ {k, \omega} ({\mathbb R}^n) \bigr)^*\) contenant les fonctionnelles d’évaluation aux points de \(S\). Nous étudions les propriétés géométriques des espaces \(G_b^{k, \omega} (S)\) et leur relation avec les problèmes classiques de Whitney sur la caractérisation des espaces de trace des fonctions \(C^k\) sur \({\mathbb R}^n\).

Keywords: Finiteness Principle, Predual space, Weak Markov set, Whitney problems, approximation property, dual space, linear extension operator, weak$^*$ topology

AMS Subject Classification: Geometry and structure of normed linear spaces, Banach spaces of continuous; differentiable or analytic functions 46B20, 46E15

PDF(click to download): On Properties of Geometric Preduals of ${mathbf C^{k,omega}}$ Spaces

Grauert and Ramspott Type Theorems on the Maximal Ideal Space of ${\mathbf H^\infty}$

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (4) 2017, pp. 116-132
Vol.39 (4) 2017
Alexander Brudnyi Details
(Received: 2017-07-03 , Revised: 2017-07-06 )
(Received: 2017-07-03 , Revised: 2017-07-06 )

Alexander Brudnyi,Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4;
e-mail: abrudnyi@ucalgary.ca

Abstract/Résumé:

The classical Grauert and Ramspott theorems constitute the foundation of the Oka principle on Stein spaces. In this paper we establish analogous results on the maximal ideal space \(M(H^\infty)\) of the Banach algebra \(H^\infty\) of bounded holomorphic functions on the open unit disk \({\mathbb D}\subset{\mathbb C}\). We illustrate our results by some examples and applications to the theory of operator-valued \(H^\infty\) functions.

Les théorèmes classiques de Grauert et Ramspott constituent la base du principe d’Oka par rapport aux espaces Stein. Dans cet article, nous démontrons des résultats analogues sur l’espace idéal maximal \(M(H^\infty)\) de l’algèbre de Banach \(H^\infty\) des fonctions holomorphes bornées sur une disque d’unité ouverte \({\mathbb D} \subset{\mathbb C}\). Nous présentons nos résultats avec des exemples et des applications à la théorie des fonctions \(H^\infty\) évaluées par l’opérateur.

Keywords: Grauert theorem, Oka principle, Ramspott theorem, maximal ideal space of $H^\infty$

AMS Subject Classification: Spaces and algebras of analytic functions, Holomorphic bundles and generalizations 30H05, 32L05

PDF(click to download): Grauert and Ramspott Type Theorems on the Maximal Ideal Space of ${mathbf H^infty}$

Tilings Defined by Root Systems of Kac-Moody Algebras

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (3) 2017, pp. 103-115
Vol.39 (3) 2017
Yuan Yao Details
(Received: 2017-06-06 , Revised: 2017-06-07 )
(Received: 2017-06-06 , Revised: 2017-06-07 )

Yuan Yao,University of Toronto, Department of Mathematics, 40 St George Street, Toronto, Ontario, Canada M4S 2E4; e-mail: yy.yao@mail.utoronto.ca

Abstract/Résumé:

For root systems of symmetrizable Kac-Moody algebras, we study a tiling of the positive root cone of the form \(\bigcup_{w\in W} (1-w) C ^+\), where \(W\) is the Weyl group and \(C^+\) is the fundamental chamber. We show for general symmetrizable Kac-Moody algebras the tiles are disjoint, and the gaps between top dimensional tiles have codimension \(\geq2\). For affine Kac-Moody algebras we completely describe the closure \(\bigcup_{w\in W} \overline{(1-w) C ^+}\).

Pour les systèmes des racines d’algèbres de Kac-Moody symétriques, nous étudions un carrelage du cône des racines positifs de la forme \(\bigcup_{w\in W} (1-w) C ^+\), où \(W\) est le groupe de Weyl et \( C^+ \) est la chambre fondamentale. Nous montrons que les carreaux sont disjoints pour les algèbres de Kac-Moody symétriques, et les lacunes entre les carreaux de dimension supérieure ont codimension \(\geq 2\). Pour les algèbres de Kac-Moody affines, nous décrivons complètement \(\bigcup_{w\in W} \overline{(1-w) C ^+}\).

Keywords: Kac-Moody Algebras, Root System, Tiling

AMS Subject Classification: , Kac-Moody (super)algebras (structure and representation theory) 17B22, 17B67

PDF(click to download): Tilings Defined by Root Systems of Kac-Moody Algebras

Discrete Invariants of Generically Inconsistent Systems of Laurent Polynomials

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (3) 2017, pp. 90-102
Vol.39 (3) 2017
Leonid Monin Details
(Received: 2017-03-17 , Revised: 2017-04-17 )
(Received: 2017-03-17 , Revised: 2017-04-17 )

Leonid Monin,Department of Mathematics, University of Toronto, 40 St. George St., Toronto, Ontario, Canada M5S 2E4; e-mail: lmonin@math.toronto.edu

Abstract/Résumé:

Let \( \mathcal{A}_1, \ldots, \mathcal{A}_k \) be finite sets in \( \mathbb{Z}^n \) and let \( Y \subset (\mathbb{C}^*)^n \) be an algebraic variety defined by a system of equations \[f_1 = \ldots = f_k = 0,\] where \( f_1, \ldots, f_k \) are Laurent polynomials with supports in \(\mathcal{A}_1, \ldots, \mathcal{A}_k\). Assuming that \( f_1, \ldots, f_k \) are sufficiently generic, the Newton polyhedron theory computes discrete invariants of \( Y \) in terms of the Newton polyhedra of \( f_1, \ldots, f_k \). It may appear that the generic system with fixed supports \( \mathcal{A}_1, \ldots, \mathcal{A}_k \) is inconsistent. In this paper, we compute discrete invariants of algebraic varieties defined by systems of equations which are generic in the set of consistent system with support in \( \mathcal{A}_1, \ldots, \mathcal{A}_k\) by reducing the question to the Newton polyhedra theory. Unlike the classical situation, not only the Newton polyhedra of \(f_1,\dots,f_k\), but also the supports \(\mathcal{A}_1,\dots,\mathcal{A}_k\) themselves appear in the answers.

Soit \( \mathcal{A}_1, \ldots, \mathcal{A}_k \) un ensemble fini dans \( \mathbb{Z}^n \) et soit \( Y \subset (\mathbb{C}^*)^n \) une variété algébrique définie par un système d’équations \[f_1 = \ldots = f_k = 0,\]\( f_1, \ldots, f_k \) sont les polynômes de Laurent avec support dans \(\mathcal{A}_1, \ldots, \mathcal{A}_k\). Supposant que \( f_1, \ldots, f_k \) soient suffisamment génériques, la théorie du polyèdre de Newton calcule les invariants discrets de \( Y \) en fonction du polyèdre de Newton de \( f_1, \ldots, f_k \). Il peut sembler que le système avec support fixe \( \mathcal{A}_1, \ldots, \mathcal{A}_k \) est inconsistent. Dans ce papier, nous calculons les invariants discrets des variétés algébriques définies par des systèmes d’équations qui sont génériques dans l’ensemble des systèmes cohérents avec support dans \( \mathcal{A}_1, \ldots, \mathcal{A}_k\) en réduisant la question à la théorie du polyèdre de Newton. Contrairement à la situation classique, non seulement le polyèdre de Newton de \(f_1,\dots,f_k\), mais aussi les supports \(\mathcal{A}_1,\dots,\mathcal{A}_k\) eux-mêmes apparaissent dans la solution.

Keywords: Laurent polynomials, Newton polyhedra, generically inconsistent systems, resultants

AMS Subject Classification: Toric varieties; Newton polyhedra 14M25

PDF(click to download): Discrete Invariants of Generically Inconsistent Systems of Laurent Polynomials

Renormalization of Unicritical Analytic Circle Maps

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (3) 2017, pp. 77-89
Vol.39 (3) 2017
Michael Yampolsky Details
(Received: 2016-09-26 , Revised: 2016-12-23 )
(Received: 2016-09-26 , Revised: 2016-12-23 )

Michael Yampolsky,Department of Mathematics, University of Toronto, Toronto, ON, Canada M5S 2E4; e-mail: yampol@math.toronto.edu

Abstract/Résumé:

In this paper we generalize renormalization theory for analytic critical circle maps with a cubic critical point to the case of maps with an arbitrary odd critical exponent by proving a quasiconformal rigidity statement for renormalizations of such maps.

Dans cet article on généralise la théorie de la renormalisation pour les transformations criticales analytiques du circle à point critical cubique au cas de transformations à exposant critical impair arbitraire, en démontrant une affirmation de rigidité quasi-conforme.

Keywords: Blaschke fractions, Renormalization, critical circle maps, rigidity

AMS Subject Classification: Maps of the circle, Universality; renormalization, Renormalization 37E10, 37E20, 37F25

PDF(click to download): Renormalization of Unicritical Analytic Circle Maps