— 1403 articles found.

K-Theory and Traces

C. R. Math. Rep. Acad. Sci. Canada Vol. 44 (1) 2022, pp. 1-15
Vol.44 (1) 2022
George A. Elliott Details
(Received: 2021-09-16 , Revised: 2021-12-19 )
(Received: 2021-09-16 , Revised: 2021-12-19 )

George A. Elliott, Department of Mathematics, University of Toronto, Toronto, Canada M5S 2E4; e-mail: elliott@math.toronto.edu

Abstract/Résumé:

It is shown that for a unital C*-algebra, what is sometimes referred to as the Elliott invariant—loosely speaking, K-theory and traces— i.e., the order-unit K\(_0\)-group, the K\(_1\)-group, and the trace simplex, paired in the natural way with K\(_0\), can be expressed purely in terms of K-theory, with the trace simplex and its pairing with K\(_0\) recoverable in a simple way (using polar decomposition) from algebraic K\(_1\), defined as in the purely algebraic context using invertible elements rather than just unitaries.

L’invariant naïf d’Elliott, qui est à la base de la classification complète récente d’une énorme classe de C*-algèbres simples (celles qui sont de dimension nucléaire finie, qui sont séparables, et qui satisfont à l’UCT), peut s’exprimer entièrement dans le cadre de K-théorie algébrique.

Keywords: Algebraic K1-group of a C*-algebra encodes bounded traces

AMS Subject Classification: None of the above; but in this section, $K_0$ as an ordered group; traces, General theory of $C^*$-algebras, Classifications of $C^*$-algebras; factors, K-theory and operator algebras -including cyclic theory 19B99, 19K14, 46L05, 46L35, 46L80

PDF(click to download): K-Theory and Traces

The Bundle of KMS State Spaces for Flows on a Unital AF C*-algebra

C. R. Math. Rep. Acad. Sci. Canada Vol. 43 (4) 2021, pp. 103-121
Vol.43 (4) 2021
George A. Elliott; Klaus Thomsen Details
(Received: 2021-09-21 )
(Received: 2021-09-21 )

George A. Elliott, Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 2E4; e-mail: elliott@math.toronto.edu

Klaus Thomsen, Department of Mathematics, Aarhus University, Ny Munkegade, 8000 Aarhus C, Denmark; e-mail: matkt@math.au.dk

Abstract/Résumé:

It is shown that, for any unital simple infinite-dimensional AF algebra, the KMS-state bundle for a one-parameter automorphism group is isomorphic to an arbitrary proper simplex bundle over the real line with (as is necessary) fibre at (inverse temperature) zero isomorphic to the trace simplex.

On démontre que, pour toute C*-algèbre AF simple à élément unité et à dimension infinie, le faisceau d’états KMS pour un grouped’automorphismes à un paramètre est isomorphe à un faisceau de simplices propre arbitraire sur la ligne réelle tel que (nécessairement) le fibre sur la température inverse zéro est isomorphe au simplex tracial.

Keywords: One-parameter automorphism group of an AF algebra, bundle of equilibrium (KMS) states arbitrary

AMS Subject Classification: General theory of $C^*$-algebras, Noncommutative dynamical systems 46L05, 46L55

PDF(click to download): The Bundle of KMS State Spaces for Flows on a Unital AF C*-algebra

A Modification of the Effros-Handelman-Shen Theorem with $\mathbb{Z}_2$ actions

C. R. Math. Rep. Acad. Sci. Canada Vol. 43 (3) 2021, pp. 87-102
Vol.43 (3) 2021
Bit Na Choi; Andrew J. Dean Details
(Received: 2021-04-08 )
(Received: 2021-04-08 )

Bit Na Choi, Department of Mathematics and Statistics, University of New Hampshire, Durham, NH 03824, USA; e-mail: Bitna.Choi@unh.edu

Andrew J. Dean, Department of Mathematical Sciences, Lakehead University, Thunder Bay, ON, Canada P7B 5E1; e-mail: ajdean@lakeheadu.ca

Abstract/Résumé:

We show that a \(\mathbb{Z}_2\) action on a lattice-ordered dimension group will arise as an inductive limit of \(\mathbb{Z}_2\) actions on simplicial groups. The motivation for this study is the range of invariant problem in Elliott and Su’s classification of AF type \(\mathbb{Z}_2\) actions. We modify the proof of the Effros-Handelman-Shen theorem to include \(\mathbb{Z}_2\) actions.

Nous montrons qu’une action de \(\mathbb{Z}_2\) sur un groupe de dimension ordonné par treillis apparaît comme une limite inductive d’actions de \(\mathbb{Z}_2\) sur des groupes simpliciaux. La motivation de cette étude est le problème de la gamme de l’invariant dans la classification d’Elliott et de Su des actions de \(\mathbb{Z}_2\) de type AF. Nous modifions la preuve du théorème d’Effros-Handelman-Shen pour inclure les actions de \(\mathbb{Z}_2\).

Keywords: Dimension groups, K-theory, classification

AMS Subject Classification: Ordered abelian groups; Riesz groups; ordered linear spaces, $K_0$ as an ordered group; traces 06F20, 19K14

PDF(click to download): A Modification of the Effros-Handelman-Shen Theorem with ${Z}_2$ actions

KAM-renormalization and Herman Rings for 2D Maps

C. R. Math. Rep. Acad. Sci. Canada Vol. 43 (2) 2021, pp. 78-86
Vol.43 (2) 2021
Michael Yampolsky Details
(Received: 2021-03-14 , Revised: 2021-04-21 )
(Received: 2021-03-14 , Revised: 2021-04-21 )

Michael Yampolsky, Department of Mathematics, University of Toronto, Toronto, ON, Canada M5S 2E4; e-mail: yampol@math.toronto.edu

Abstract/Résumé:

In this note, we extend the renormalization horseshoe we have recently constructed with N. Goncharuk for analytic diffeomorphisms of the circle to their small two-dimensional perturbations. As one consequence, Herman rings with rotation numbers of bounded type survive on a codimension one set of parameters under small two-dimensional perturbations.

On étend le fer à cheval de renormalisation récemment construit avec N. Goncharuk pour les difféomorphismes analytiques du cercle à leurs petites perturbations à deux dimensions. Il suit que les anneaux de Herman à nombre de rotation de type borné survivent sur un ensemble de paramètres à codimension un sous petites perturbations à deux dimensions.

Keywords: Henon-like maps, Herman rings, rotation domains

AMS Subject Classification: Renormalization, Small divisors; rotation domains and linearization; Fatou and Julia sets, 37F25, 37F50, 37F80

PDF(click to download): KAM-renormalization and Herman Rings for 2D Maps

A Weighted Average of $L$-functions of Modular Forms

C. R. Math. Rep. Acad. Sci. Canada Vol. 43 (2) 2021, pp. 63-77
Vol.43 (2) 2021
M. Manickam; V. Kumar Murty, FRSC; E. M. Sandeep Details
(Received: 2021-03-09 , Revised: 2021-04-14 )
(Received: 2021-03-09 , Revised: 2021-04-14 )

M. Manickam , Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066 INDIA; e-mail: manickam@iiserb.ac.in, murugumanick@gmail.com

V. Kumar Murty, FRSC,Department of Mathematics, University of Toronto, Ontario, Canada, M5S 2E4; e-mail: murty@math.toronto.edu

E. M. Sandeep, Kerala School of Mathematics, Kunnamangalam, Kozhikode-673571, Kerala INDIA; e-mail: sandeep@ksom.res.in, mepeednas@gmail.com

Abstract/Résumé:

We consider a kernel function introduced by Kohnen and prove an asymptotic formula for a weighted sum of \(L\)-functions of modular forms.

On considère une fonction noyau introduite par Kohnen et démontre une formule asymptotique pour une somme pondérée de fonctions L de forms modulaires.

Keywords: Hecke eigenforms, Modular L-function, cusp forms, full modular group, integral weight, lower bound, non-vanishing.

AMS Subject Classification: Modular forms; one variable, Automorphic forms; one variable, Dirichlet series and functional equations in connection with modular forms 11F11, 11F12, 11F66

PDF(click to download): A Weighted Average of L-functions of Modular Forms

A Note on $\mathfrak{su}(2)$ Models and the Biorthogonality of Generating Functions of Krawtchouk Polynomials

C. R. Math. Rep. Acad. Sci. Canada Vol. 43 (2) 2021, pp. 46-62
Vol.43 (2) 2021
Luc Vinet, FRSC; Alexei Zhendanov Details
(Received: 2021-04-03 )
(Received: 2021-04-03 )

Luc Vinet, FRSC ,Centre de Recherches Mathematiques, Universite de Montreal, P.O. Box 6128, Centre-ville Station, Montreal (Quebec), H3C 3J7, Canada and Centre de Recherches Mathematiques, Universite de Montreal, P.O. Box 6128, Centre-ville Station, Montreal (Quebec), H3C 3J7, Canada; e-mail: vinet@CRM.UMontreal.CA

Alexei Zhendanov, School of Mathematics, Renmin University of China, Beijing, 100872, China; e-mail: zhedanov@yahoo.com

Abstract/Résumé:

Eigenvalue problems on irreducible \(\mathfrak{su}(2)\) modules and their adjoints are considered in the Bargmann, Barut-Girardello and finite difference models. The biorthogonality relations that arise between the corresponding generating functions of the Krawtchouk polynomials are sorted out. A link with Padé approximation is made.

Des problèmes aux valeurs propres sur les modulesirréductibles de \(\mathfrak{su}(2)\) et leurs adjoints sont examinés dans les modèles de Bargmann, Barut–Girardello et aux différences finies. Les relations de biorthogonalité qui apparaissent entre les fonctions génératrices correspondantes des polynômes de Krawtchouk sont identifiées. Un lien avec l’approximation de Padé est fait.

Keywords: Krawtchouk polynomials, Pade approximation., biorthogonality, generating functions, su(2) models

AMS Subject Classification: Representations; algebraic theory (weights), Orthogonal polynomials and functions of hypergeometric type (Jacobi; Laguerre; Hermite; Askey scheme; etc.), Pad_¸ approximation 17B10, 33C45, 41A21

PDF(click to download): A Note on su(2) Models and the Biorthogonality of Generating Functions of Krawtchouk Polynomials

A Remark on the Functoriality of the Connes-Takesaki Flow of Weights

C. R. Math. Rep. Acad. Sci. Canada Vol. 43 (1) 2021, pp. 28-44
Vol.43 (1) 2021
George A. Elliott Details
(Received: 2020-09-16 , Revised: 2021-02-23 )
(Received: 2020-09-16 , Revised: 2021-02-23 )

George A. Elliott, Department of Mathematics, University of Toronto, Toronto, Canada M5S 2E4; e-mail: elliott@math.toronto.edu

Abstract/Résumé:

The flow of weights was introduced by Connes and Takesaki as a functor on the category of von Neumann algebras with isomorphisms as maps. While it is easy to see that this functor cannot be extended to the category of all von Neumann algebra homomorphisms, it is in fact possible to extend it to a certain extent. This can also be done, fairly extensively, for the Falcone and Takesaki non-commutative flow of weights.

Le flot des poids a été introduit par Connes et Takesaki comme foncteur sur la catégorie des algèbres de von Neumann avec isomorphismes comme flèches. On peut étendre ce foncteur jusqu’à un certain point dans les directions et covariante et contravariante. Le foncteur flot des poids non-commutatif peut aussi s’étendre, bien entendant pas aux homomorphismes arbitraires.

Keywords: Connes-Takesaki flow of weights, functoriality, non-commutative flow of weights

AMS Subject Classification: , Categories; functors 46L36, 46M15

PDF(click to download): A Remark on the Functoriality of the Connes-Takesaki Flow of Weights

$C^0$ Symplectic Topology

C. R. Math. Rep. Acad. Sci. Canada Vol. 43 (1) 2021, pp. 1-27
Vol.43 (1) 2021
Francois Lalonde Details
(Received: 2020-10-30 , Revised: 2020-11-04 )
(Received: 2020-10-30 , Revised: 2020-11-04 )

Francois Lalonde, Département de mathématiques et de statistique, Université de Montréal, Montréal, Québec, Canada; e-mail: lalonde@dms.umontreal.ca

Abstract/Résumé:

In this paper, I explain the emergence of Symplectic geometry and Symplectic topology, as it occurred historically, from three sources: classical and quantum physics, complex Algebraic geometry, and String theory. Symplectic topology is nowadays one of the most fascinating subjects in mathematics, and has reached since the 1980’s a maturity that deserves the attention of all mathematicians and physicists. It combines topology, geometry, non-linear partial differential equations or relations, \(A^{\infty}\) algebras, and String theory in a powerful setting that addresses some of the most elusive questions of our times. It is made of soft \(h\)-principles coupled with hard transcendental, rigid, moduli spaces of solutions to PDE’s on manifolds. I will end the paper with some conjectures in Symplectic topology, after explaining the difference between smooth and \(C^0\) Symplectic topology.

Dans cet article, j’explique l’émergence de la géométrie symplectique et de la topologie symplectique, en suivant leur naissance et leur évolution au cours des siècles, à partir de trois sources: la physique classique et quantique, la géométrie algébrique complexe, et la théorie des cordes. La topologie symplectique est aujourd’hui l’un des domaines les plus fascinants de la recherche mathématique mondiale et a atteint, depuis les années 1980 une maturité qui mérite l’attention de tous les mathématiciens et physiciens. Elle rassemble la topologie, la géométrie, les équations aux dérivées partielles non-linéaires, les \(A^{\infty}\)-algèbres et la théorie des cordes dans une théorie puissante qui s’adresse aux problèmes les plus subtils de notre époque. Elle est faite du \(h\)-principe topologique, une théorie “soft”, couplée à un vaste ensemble d’espaces de modules d’EDP sur les variétés, que l’on peut qualifier de “hard” ou transcendental. Je conclurai cet article avec quelques conjectures en topologie symplectique après avoir expliqué la différence entre les topologies symplectiques lisse et \(C^0\).

Keywords: $C^0$-Symplectic topology, Capacities, Gromov-Witten invariants, Hamiltonian dynamics, Lagrangian submanifolds, String theory, Symplectic topology

AMS Subject Classification: Global theory of symplectic and contact manifolds, Spectral sequences and homology of fiber spaces, Symplectic and contact topology, Topological properties of groups of homeomorphisms or diffeomorphisms 53D35, 55R20, 57R17, 57S05

PDF(click to download): $C^0$ Symplectic Topology

A Classification of Finite Simple Amenable Z-stable C*-algebras, II: C*-algebras with Rational Generalized Tracial Rank One

C. R. Math. Rep. Acad. Sci. Canada Vol. 42 (4) 2020, pp. 451-539
Vol.42 (4) 2020
Guihua Gong; Huaxin Lin; Zhuang Niu Details
(Received: 2020-09-20 , Revised: 2021-01-31 )
(Received: 2020-09-20 , Revised: 2021-01-31 )

Guihua Gong, Department of Mathematics, Hebei Normal University, Shijiazhuang, Hebei 050016, China
and Department of Mathematics, University of Puerto Rico, Rio Piedras, PR 00936, USA; e-mail: ghgong@gmail.com

Huaxin Lin, Department of Mathematics, East China Normal University, Shanghai 200062, China and
(Current) Department of Mathematics, University of Oregon, Eugene, Oregon, 97402, USA; e-mail: hlin@uoregon.edu

Zhuang Niu, Department of Mathematics, University of Wyoming, Laramie, WY, USA, 82071; e-mail: zniu@uwyo.edu,

Abstract/Résumé:

A classification theorem is obtained for a class of unital simple separable amenable \({\cal Z}\)-stable C*-algebras which exhausts all possible values of the Elliott invariant for unital stably finite simple separable amenable \({\cal Z}\)-stable C*-algebras. Moreover, it contains all unital simple separable amenable C*-algebras which satisfy the UCT and have finite rational tracial rank.

Dans cet article et le précédent on donne une classification complète, au moyen de l’invariant d’Elliott, d’une sous-classe de la classe des C*-algèbres simples, moyennables, séparables, à élément unité, absorbant l’algèbre de Jiang-Su, et satisfaisant au UCT, qui épuise l’ensemble des valeurs possibles de l’invariant pour cette class. La partie I réalise une grande partie de ce projet, et la partie II l’achève.

Keywords: Classication of Simple C*-algebras

AMS Subject Classification: General theory of $C^*$-algebras, Classifications of $C^*$-algebras; factors, K-theory and operator algebras -including cyclic theory 46L05, 46L35, 46L80

PDF(click to download): A Classification of Finite Simple Amenable Z-stable C*-algebras, II: C*-algebras with Rational Generalized Tracial Rank One

A Classification of Finite Simple Amenable Z-stable C*-algebras, I: C*-algebras with Generalized Tracial Rank One

C. R. Math. Rep. Acad. Sci. Canada Vol. 42 (3) 2020, pp. 63-450
Vol.42 (3) 2020
Guihua Gong; Huaxin Lin; Zhuang Niu Details
(Received: 2020-09-20 , Revised: 2021-01-31 )
(Received: 2020-09-20 , Revised: 2021-01-31 )

Guihua Gong, Department of Mathematics, Hebei Normal University, Shijiazhuang, Hebei 050016, China and Department of Mathematics, University of Puerto Rico, Rio Piedras, PR 00936, USA; e-mail: ghgong@gmail.com

Huaxin Lin, Department of Mathematics, East China Normal University, Shanghai 200062, China and (Current) Department of Mathematics, University of Oregon, Eugene, Oregon, 97402, USA; e-mail: hlin@uoregon.edu

Zhuang Niu, Department of Mathematics, University of Wyoming, Laramie, WY, USA, 82071; e-mail: zniu@uwyo.edu

Abstract/Résumé:

A class of C*-algebras, to be called those of generalized tracial rank one, is introduced. A second class of unital simple separable amenable C*-algebras, those whose tensor products with UHF-algebras of infinite type are in the first class, to be referred to as those of rational generalized tracial rank one, is proved to exhaust all possible values of the Elliott invariant for unital finite simple separable amenable \({\cal Z}\)-stable C*-algebras. A number of results toward the classification of the second class are presented including an isomorphism theorem for a special sub-class of the first class, leading to the general classification of all unital simple s with rational generalized tracial rank one in Part II.

Dans cet article et le prochain, on donne une classification complète, au moyen de l’invariant d’Elliott, d’une sous-classe de la classe des C*-algèbres simples, moyennables, séparables, à élément unité, absorbant l’algèbre de Jiang-Su, et satisfaisant au UCT, qui épuise l’ensemble des valeurs possibles de l’invariant pour cette class. La partie I réalise une grande partie de ce projet, et la partie II l’achève.

Keywords: Classification of simple C*-algebras

AMS Subject Classification: General theory of $C^*$-algebras, Classifications of $C^*$-algebras; factors, K-theory and operator algebras -including cyclic theory 46L05, 46L35, 46L80

PDF(click to download): A Classification of Finite Simple Amenable Z-stable C*-algebras, I: C*-algebras with Generalized Tracial Rank One

The Atiyah-Bott Lefschetz Formula Applied to the Based Loops on SU(2)

C. R. Math. Rep. Acad. Sci. Canada Vol. 42 (3) 2020, pp. 42-62
Vol.42 (3) 2020
Jack Ding Details
(Received: 2020-07-23 , Revised: 2020-10-01 )
(Received: 2020-07-23 , Revised: 2020-10-01 )

Jack Ding, Department of Mathematics, University of Toronto, Toronto, Canada M5S 2E4; e-mail: jding@math.toronto.edu

Abstract/Résumé:

The Atiyah-Bott-Lefschetz Formula is a well-known formula for computing the equivariant index of an elliptic operator on a compact smooth manifold. We provide an analogue of this formula for the based loop group \(\Omega SU(2)\) with respect to the natural \((T \times S^1)\)-action. From this result we also derive an effective formula for computing characters of certain Demazure modules.

La formule d’Atiyah-Bott-Lefschetz est une formule bien connue pour l’indice équivariante d’un opérateur elliptique sur une variété lisse compacte. Nous donnons une analogue de cette formule pour le groupe de lacets basés \(\Omega SU(2)\) par rapport à l’action naturelle de \(T \times S^1\). Avec ce résultat nous démontrons aussi une formule effective pour les caractères de certains modules de Demazure.

Keywords: Atiyah-Bott, Loop groups, character formula, fixed point theorem, localization

AMS Subject Classification: Infinite-dimensional Lie groups and their Lie algebras, Geometric quantization 22E65, 53D50

PDF(click to download): The Atiyah-Bott Lefschetz Formula Applied to the Based Loops on SU(2)

The Surprising Power of Averaging over Groups

C. R. Math. Rep. Acad. Sci. Canada Vol. 42 (3) 2020, pp. 38-41
Vol.42 (3) 2020
James Hogan; Samuel Li Details
(Received: 2020-09-20 )
(Received: 2020-09-20 )

James Hogan Department of Mathematics, University of Toronto, 40 St George St, Toronto, ON M5S 2E4
e-mail: james.hogan@mail.utoronto.ca

Samuel Li Department of Mathematics, University of Toronto, 40 St George St, Toronto, ON M5S 2E4
e-mail: samuelj.li@mail.utoronto.ca

Abstract/Résumé:

We highlight the surprising power of averaging via a few illuminating examples. Two of these problems involve characterizations of Hilbert space, and the third is a fundamental result in noncommutative geometry.

Nous soulignons le pouvoir surprenant de la moyenne par quelques exemples éclairants. Deux de ces problèmes concernent la caractérisation de l’espace de Hilbert, et le troisième est un résultat fondamental en géométrie non commutative.

Keywords: Averaging, Hilbert space, Irrational rotation algebra, noncommutative geometry

AMS Subject Classification: Instructional exposition (textbooks; tutorial papers; etc.), Characterizations of Hilbert spaces, Noncommutative geometry (__ la Connes) 00-01, 46C15, 58B34

PDF(click to download): The Surprising Power of Averaging over Groups

Gaussian Primes

C. R. Math. Rep. Acad. Sci. Canada Vol. 42 (3) 2020, pp. 30-37
Vol.42 (3) 2020
J. B. Friedlander Details
(Received: 2020-09-30 )
(Received: 2020-09-30 )

J. B. Friedlander, Department of Mathematics, University of Toronto, Toronto, Canada M5S 2E4; e-mail: frdlndr@math.toronto.edu

Abstract/Résumé:

We survey some of the many interesting questions and results that accrue to the prime numbers which are the sum of two squares.

On survole quelques-uns des plusieurs questions et résultats intéressants qui s’accroissent aux nombres premiers qui sont la somme de deux carrés.

Keywords:

AMS Subject Classification: Distribution of primes, Primes represented by polynomials; other multiplicative structure of polynomial values 11N05, 11N32

PDF(click to download): Gaussian Primes

Retraction Notice – Generalizing Stein’s Lemma

C. R. Math. Rep. Acad. Sci. Canada Vol. 42 (2) 2020, p. 29
Vol.42 (2) 2020
Details
(Received: )
(Received: )

Abstract/Résumé:

Moawia Alghalith, Generalizing Stein’s Lemma, C. R. Math. Rep. Acad. Sci. Canada 42 (2020), pp. 21–24.

This article has been retracted on the request of the author.

The author is indebted to the author of the article immediately preceding this notice,

Christian Genest, On an extension of Stein’s Lemma, C. R. Math. Rep. Acad. Sci. Canada 42 (2020), pp. 25–28,

for pointing out the erroneous nature of the article in question.

Keywords:

AMS Subject Classification:

PDF(click to download): Retraction Notice – Generalizing Stein’s Lemma

On an Extension of Stein’s Lemma

C. R. Math. Rep. Acad. Sci. Canada Vol. 42 (2) 2020, pp. 25-28
Vol.42 (2) 2020
Christian Genest Details
(Received: 2020-06-15 , Revised: 2020-06-15 )
(Received: 2020-06-15 , Revised: 2020-06-15 )

Christian Genest, Department of Mathematics and Statistics, McGill University, 805, rue Sherbrooke ouest, Montreal (Quebec) Canada H3A 0B9; e-mail: christian.genest@mcgill.ca

Abstract/Résumé:

An extension of Stein’s lemma to arbitrary random pairs was recently proposed in the preceding article. It is shown that this generalization is valid only for linear functions and hence trivial.

Une généralisation du lemme de Stein à toute paire d’aléas a récemment été proposée dans l’article précédent. On montre que cette extension n’est valable que pour les fonctions affines et qu’elle est donc triviale.

[Note: By special arrangement this article is open access]

Keywords: Stein's lemma, covariance

AMS Subject Classification: Characterization and structure theory of statistical distributions, Characterization and structure theory for multivariate probability distributions; copulas 62E10, 62H05

PDF(click to download): On an Extension of Stein's Lemma

Generalizing Stein’s Lemma

C. R. Math. Rep. Acad. Sci. Canada Vol. 42 (2) 2020, pp. 21-24
Vol.42 (2) 2020
Moawia Alghalith Details
(Received: 2020-02-19 , Revised: 2020-04-28 )
(Received: 2020-02-19 , Revised: 2020-04-28 )

Moawia Alghalith,Department of Economics, University of the West Indies, St. Augustine, Trinidad; e-mail: malghalith@gmail.com

Abstract/Résumé:

We generalize Stein’s lemma. That is, we do not assume a specific probability distribution. We also provide new additional results for the covariance and the variance.

Nous généralisons le lemme de Stein. Autrement dit, nous ne supposons pas une distribution de probabilité spécifique. Nous fournissons également de nouveaux résultats supplémentaires pour la covariance et la variance.

Keywords: Stein's lemma, covariance, exact Taylor expansion, probability distribution, variance

AMS Subject Classification: Exact distribution theory 62E15

PDF(click to download): Generalizing Stein's Lemma

On Geometric Preduals of Jet Spaces on Closed Subsets of ${\mathbb R}^n$

C. R. Math. Rep. Acad. Sci. Canada Vol. 42 (1) 2020, pp. 10-20
Vol.42 (1) 2020
Alexander Brudnyi; Almaz Butaev Details
(Received: 2020-03-18 , Revised: 2020-04-02 )
(Received: 2020-03-18 , Revised: 2020-04-02 )

Alexander Brudnyi,Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; e-mail: abrudnyi@ucalgary.ca

Almaz Buraev, Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; e-mail: butaev@ucalgary.ca

Abstract/Résumé:

Let \(C_b^{k,\omega}({\mathbb R}^n)\) be the Banach space of \(C^k\) functions on \({\mathbb R}^n\) bounded together with all derivatives of order \(\le k\) , where the derivatives of order \(k\) have moduli of continuity majorization by \(c\,\omega\) , \(c\in\mathbb R_+\) , for some \(\omega\in C(\mathbb R_+)\) . For a closed set \(S\subset{\mathbb R}^n\) the jet space \(J_b^{k,\omega}(S)\) is the Banach space of vector functions whose components are partial derivatives of functions in \(C_b^{k,\omega}({\mathbb R}^n)\) evaluated at points of \(S\) equipped with the corresponding quotient norm. The geometric predual \(G_J^{k,\omega}(S)\) of \(J_b^{k,\omega}(S)\) is the minimal closed subspace of the dual \(\bigl(C_b^{k,\omega}({\mathbb R}^n)\bigr)^*\) containing the evaluation functionals of all partial derivatives of order \(\le k\) at points in \(S\) . In the paper we study some geometric properties of spaces \(G_J^{k,\omega}(S)\) related to the classical Whitney problems.

Soit \(C_b^{k,\omega}({\mathbb R}^n)\) l’espace de Banach des fonctions \(C^k\) sur \({\mathbb R}^n\) bornées avec toutes les dérivées d’ordre \(k\) , où les dérivés d’ordre \(k\) ont des modules de continuités majorés par \(c\,\omega\) , \(c\in\mathbb R_+\) , pour quelques \(\omega\in C(\mathbb R_+)\) . Pour un ensemble fermé \(S\subset{\mathbb R}^n\) l’espace de jet \(J_b^{k,\omega}(S)\) est l’espace de Banach des fonctions vectorielles dont les composantes sont des dérivées partielles des fonctions en \(C_b^{k,\omega}({\mathbb R}^n)\) évaluées aux points de \(S\) équipés de la norme du quotient correspondante. Le prédual géométrique \(G_J^{k,\omega}(S)\) de \(J_b^{k,\omega}(S)\) est le sous-espace minimal fermé du dual \(\bigl(C_b^{k,\omega}({\mathbb R}^n)\bigr)^*\) contenant les fonctionnelles d’évaluation de toutes les dérivées partielles d’ordre \(\le k\) aux points de \(S\) . Dans cet article, nous étudions certaines propriétés géométriques des espaces \(G_J^{k,\omega}(S)\) liées aux problèmes classiques de Whitney.

Keywords: Predual space, Whitney problems, approximation property, second dual space, trace space

AMS Subject Classification: Geometry and structure of normed linear spaces, Banach spaces of continuous; differentiable or analytic functions 46B20, 46E15

PDF(click to download): On Geometric Preduals of Jet Spaces on Closed Subsets of ${mathbb R}^n$

Piecewise Contractions and $b$-adic Expansions

C. R. Math. Rep. Acad. Sci. Canada Vol. 42 (1) 2020, pp. 1-9
Vol.42 (1) 2020
Benito Pires Details
(Received: 2019-11-20 , Revised: 2020-02-10 )
(Received: 2019-11-20 , Revised: 2020-02-10 )

Benito Pires,Departamento de Computacao e Matematica, Faculdade de Filosoa, Ciencias e Letras, Universidade de Sao Paulo, 14040-901, Ribeirao Preto - SP, Brazil; e-mail: benito@usp.br

Abstract/Résumé:

Let \(I=[0,1)\), \(b\in \{2,3,\ldots\}\) and \(f:I\to I\) be an injective piecewise \(\frac{1}{b}\)-affine map, that is, assume that there exists a partition of \(I\) into intervals \(I_1,\ldots,I_n\) such that \(f(x)-f(y)=\frac1b ( x-y)\) for all \(x,y\in I_i\) and \(1\le i\le n\). In this note, we study the \(\delta\)-parameter family of maps \(f_{\delta}=R_{\delta}\circ f\), where \(R_\delta:x\mapsto \{x+\delta\}\). More precisely, we show that the set \(\mathcal{N}\) of parameters \(\delta\) for which \(f_{\delta}\) has only natural \(f_{\delta}\)-codings with maximal complexity is a non-empty set with Hausdorff dimension \(0\). We also show that for all \(\delta\in\mathcal{N}\), the map \(f_{\delta}\) is topologically semiconjugate to a minimal \(n\)-interval exchange transformation satisfying Keane’s i.d.o.c. condition.

Soit \(I=[0,1)\), \(b\in \{2,3,\ldots\}\) et \(f:I\to I\) une fonction injective \(\frac{1}{b}\)-affine par morceaux, c’est-à-dire, supposons qu’il existe une partition de \(I\) en intervalles \(I_1,\ldots,I_n\) telle que \(f(x)-f(y)=\frac1b ( x-y)\) pour tous \(x,y\in I_i\) et \(1\le i\le n\). Dans cette note, nous étudions la famille de fonctions \(f_{\delta}=R_{\delta}\circ f\), où \(R_\delta:x\mapsto \{x+\delta\}\). Plus précisément, nous montrons que l’ensemble \(\mathcal{N}\) de paramètres \(\delta\) pour lesquels \(f_{\delta}\) a seulement \(f_{\delta}\)-codages naturelles avec complexité maximale est un ensemble non-vide de dimension de Hausdorff \(0\). Nous montrons aussi que pour tous \(\delta\in\mathcal{N}\), la fonction \(f_{\delta}\) est topologiquement semi-conjugué à un échange de \(n\) intervalles minimal satisfaisant à la condition i.d.o.c. de Keane.

Keywords: Piecewise contraction, b-adic expansion, interval maps, symbolic dynamics

AMS Subject Classification: , Symbolic dynamics, Dimension theory of dynamical systems 11Zxx, 37B10, 37C45

PDF(click to download): Piecewise Contractions and $b$-adic Expansions

Renormalization of Bi-cubic Circle Maps

C. R. Math. Rep. Acad. Sci. Canada Vol. 41 (4) 2019, pp. 57-83
Vol.41 (4) 2019
Michael Yampolsky Details
(Received: 2019-09-03 , Revised: 2019-12-19 )
(Received: 2019-09-03 , Revised: 2019-12-19 )

Michael Yampolsky,Department of Mathematics, University of Toronto, Toronto, ON, Canada M5S 2E4; e-mail: yampol@math.toronto.edu

Abstract/Résumé:

We develop a renormalization theory for analytic homeomorphisms of the circle with two cubic critical points. We prove a renormalization hyperbolicity theorem. As a basis for the proofs, we develop complex a priori bounds for multi-critical circle maps.

On développe une théorie de renormalisation pour les homéomorphismes analytiques du cercle à deux points critiques cubiques. On démontre un théorème d’hyperbolicité dans le cadre de renormalisation. Comme base des démonstrations, on développe des bornes complexes a priori pour les applications du cercle dans lui-même aux points critiques multiples

Keywords: Critical circle map, Renormalization, complex bounds

AMS Subject Classification: Maps of the circle, Universality; renormalization, Renormalization 37E10, 37E20, 37F25

PDF(click to download): Renormalization of Bi-cubic Circle Maps

On the Initial Value Problem for the Electromagnetic Wave Equation in Friedmann-Robertson-Walker Space-times

C. R. Math. Rep. Acad. Sci. Canada Vol. 41 (3) 2019, pp. 45-56
Vol.41 (3) 2019
Walter Craig; Mikale Reddy Details
(Received: 2019-10-13 , Revised: 2019-10-15 )
(Received: 2019-10-13 , Revised: 2019-10-15 )

Walter Craig

Mikale Reddy,Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario L8S 4K1, Canada; e-mail: reddymikale@gmail.com

Abstract/Résumé:

We solve the source free electromagnetic wave equation in Friedmann-Robertson-Walker space-times for curvature \(K=0\) and \(K=-1\). Deriving a solution expression in the form of spherical means we deduce and compare two properties of the Maxwell propagator, namely, decay rates and continuity through the space-time singularity to that of the scalar wave equation presented by Abbasi and Craig (2014).

On résout l’équation des ondes électromagnétiques dans l’espace-temps de Friedmann-Robertson-Walker pour les courbures \(K = 0\) et \(K = -1\). En obtenant une expression de la solution en termes de moyennes sphériques, on déduit et compare deux propriétés du propagateur de Maxwell, à savoir le taux de décroissance et la continuité à travers la singularité, à celles de l’équation des ondes scalaires présentée par Abbasi et Craig (2014).

Keywords: electromagnetic wave equation, general relativity, space-time singularity

AMS Subject Classification: PDE in relativity, 35Q75, 85F08

PDF(click to download): On the Initial Value Problem for the Electromagnetic Wave Equation in Friedmann-Robertson-Walker Space-times