Explicit proof of Poincaré inequality for differential forms on manifolds

C. R. Math. Rep. Acad. Sci. Canada Vol. 33 (1) 2011, pp. 21–32
(Received: 2010-05-28 )

Leonid Shartser, Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, ON M5S 2E4; e-mail: shartl@math.toronto.edu

Abstract/Résumé:

We prove a Poincaré type inequality for differential forms on compact manifolds by means of a constructive ‘globalization’ of a local Poincaré inequality on convex sets.

On prouve une inégalité de Poincaré pour les formes différentielles sur les variétés compactes à l’aide d’une ‘globalisation’ constructive d’une inégalité de Poincaré locale pour les ensembles convexes.

Keywords:

AMS Subject Classification: Differential forms 58A10

PDF(click to download): Explicit proof of Poincaré inequality for differential forms on manifolds

Leave a Comment

Full Text Pdfs only available for current year and preceding 5 blackout years when accessing from an IP address registered with a subscription. Historical archives earlier than the 5 year blackout window are open access.