Actions of $({\Bbb Z}/2{\Bbb Z})\times ({\Bbb Z}/2{\Bbb Z})$ on Lattice Ordered Dimension Groups

C. R. Math. Rep. Acad. Sci. Canada Vol. 46 (3) 2024, pp. 105–116
(Received: 2024-09-15 )

Andrew J. Dean, Department of Mathematical Sciences, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, Canada P7B 5E1; e-mail: ajdean@lakeheadu.ca

Sarah K. Lucky , Department of Mathematical Sciences, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, Canada P7B 5E1; e-mail: sklucky@lakeheadu.ca

Abstract/Résumé:

It is shown that if \(G\) is a lattice ordered countable group, then every action of \(({\Bbb Z}/2{\Bbb Z})\times ({\Bbb Z}/2{\Bbb Z})\) on \(G\) arises as an inductive limit of actions of \(({\Bbb Z}/2{\Bbb Z})\times ({\Bbb Z}/2{\Bbb Z})\) on simplicial groups. Some parts of the argument work in greater generality, and are proved for general finite abelian groups. A template is given for proving similar results for other such groups.

On montre que si \(G\) est un groupe dénombrable treillis-ordonné, alors toute action de \(({\Bbb Z}/2{\Bbb Z})\times ({\Bbb Z}/2{\Bbb Z})\) sur \(G\) provient d’une limite inductive d’actions de \(({\Bbb Z}/2{\Bbb Z})\times ({\Bbb Z}/2{\Bbb Z})\) sur des groupes simpliciaux. Des parties de cet argument fonctionnent dans une généralité plus grande et sont prouvées pour des groupes abéliens finis en général. Un modèle est donné pour prouver des résultats similaires pour d’autres groupes de ce type.

Keywords: Dimension groups, K-theory, classification

AMS Subject Classification: Classifications of $C^*$-algebras; factors, Noncommutative dynamical systems 46L35, 46L55

PDF(click to download): Actions of $({Bbb Z}/2{Bbb Z})times ({Bbb Z}/2{Bbb Z})$ on Lattice Ordered Dimension Groups

Full Text Pdfs only available for current year and preceding 5 blackout years when accessing from an IP address registered with a subscription. Historical archives earlier than the 5 year blackout window are open access.