53C22 — 2 articles found.

Bounded Circles on a Complex Hyperbolic Space are Expressed by Trajectories on Geodesic Spheres

C. R. Math. Rep. Acad. Sci. Canada Vol. 46 (1) 2024, pp. 1–10
Vol.46 (1) 2024
Yusei Aoki; Toshiaki Adachi Details
(Received: 2023-12-06 , Revised: 2023-12-27 )
(Received: 2023-12-06 , Revised: 2023-12-27 )

Yusei Aoki , Division of Mathematics and Mathematical Science, Nagoya Institute of Technology, Nagoya 466-8555, Japan; e-mail: yusei11291@outlook.jp

Toshiaki Adachi , Department of Mathematics, Nagoya Institute of Technology, Nagoya 466-8555, Japan; e-mail: adachi@nitech.ac.jp

Abstract/Résumé:

We take a bounded circle on a complex hyperbolic space. We show that if it has complex torsion either \(\pm 1\) or \(0\) then it is expressed by a geodesic on some geodesic sphere, and show that if it has complex torsion \(\tau\) with \(0 < |\tau| < 1\) then it is uniquely expressed by a non-geodesic trajectory on a geodesic sphere up to congruency.

Nous prenous un cercle borné en l’espace hyperbolique complexe. Nous montrons que il est exprimé par une géodésique sur une sphère géodésique si sa torsion complexe est \(0\) ou \(\pm 1\), et montrons que il est uniquement exprimé par une trajectoire sur une sphère géodésique qui n’est pas une géodésique si sa torsion complexe est \(0 < |\tau| < 1\).

Keywords: Geodesic spheres, circles, complex torsions, congruent, extrinsic shapes

AMS Subject Classification: Hermitian and K_õhlerian structures, Sub-Riemannian geometry, Geodesics 53B35, 53C17, 53C22

PDF(click to download): Bounded Circles on a Complex Hyperbolic Space are Expressed by Trajectories on Geodesic Spheres

The Parallelism of a Certain Tensor of Real Hypersurfaces in a Nonflat Complex Space Form

C. R. Math. Rep. Acad. Sci. Canada Vol. 37 (3) 2015, pp. 81-88
Vol.37 (3) 2015
Tatsuyoshi Hamada; Katsufumi Yamashita Details
(Received: 2014-10-15 , Revised: 2014-11-04 )
(Received: 2014-10-15 , Revised: 2014-11-04 )

Tatsuyoshi Hamada,Department of Applied Mathematics, Fukuoka University, Fukuoka, 814-0180, Japan; e-mail: hamada@fukuoka-u.ac.jp

Katsufumi Yamashita,Department of Mathematics, Saga University, Saga, 840-8502, Japan; e-mail: ky-karatsucity@sgr.bbiq.jp

Abstract/Résumé:

In Theorem 1, we show a new condition for a real hypersurface \(M\) isometrically immersed into a nonflat complex space form to be a hypersurface of type (A). This condition is expressed by the parallelism of a certain tensor of type (1, 1) on \(M\) . Furthermore, using the discussion in the proof of Theorem 1, we can give a condition for a Kähler manifold to be a complex space form (see Theorem 2).

Dans le théorème 1, nous donnons une nouvelle condition pour qu’une hypersurface réelle \(M\) immergée dans une “space form” complexe non plate soit une hypersurface de type (A). Cette condition est exprimée par le parallélisme d’un certain tenseur de type (1, 1) sur \(M\) . De plus, en utilisant la discussion dans la démonstration du théorème 1, nous donnons une condition pour qu’une variété de Kähler soit une “space form” complexe (voir le théorème 2).

Keywords: Kahler manifold, complex space form, real hypersurfaces of type (A), structure tensor

AMS Subject Classification: Local submanifolds, Geodesics, Global submanifolds 53B25, 53C22, 53C40

PDF(click to download): The Parallelism of a Certain Tensor of Real Hypersurfaces in a Nonflat Complex Space Form

Full Text Pdfs only available for current year and preceding 5 blackout years when accessing from an IP address registered with a subscription. Historical archives earlier than the 5 year blackout window are open access.