20F38 — 1 articles found.

Subgroups of the Group of Formal Power Series with the Big Powers Condition

C. R. Math. Rep. Acad. Sci. Canada Vol. 41 (2) 2019, pp. 20-31
Vol.41 (2) 2019
Alexander Brudnyi Details
(Received: 2019-07-17 , Revised: 2019-09-01 )
(Received: 2019-07-17 , Revised: 2019-09-01 )

Alexander Brudnyi,Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4; e-mail: abrudnyi@ucalgary.ca


We study the structure of countable subgroups of the group \(G[[r]]\) of complex formal power series under the operation of composition of series. In particular, we prove that every finitely generated fully residually free group is embeddable in \(G[[r]]\)

Nous étudions la structure des sous-groupes dénombrables du groupe \(G[[r]]\)des séries de puissance formelle sous l’opération de la composition des séries. En particulier, nous prouvons que chaque groupe qui est finement engendré et \(\omega\)-résiduellement libre admet un plongement dans \(G[[r]]\)

Keywords: Group of formal power series, free product of groups, fully residually free group, the big powers condition

AMS Subject Classification: Free products; free products with amalgamation; Higman-Neumann-Neumann extensions; and generalizations, Other groups related to topology or analysis 20E06, 20F38

PDF(click to download): Subgroups of the Group of Formal Power Series with the Big Powers Condition

Full Text Pdfs only available for current year and preceding 5 blackout years when accessing from an IP address registered with a subscription. Historical archives earlier than the 5 year blackout window are open access.