14Hxx — 1 articles found.

Morse equi-singular deformation in $\mathbb{C}^2$

C. R. Math. Rep. Acad. Sci. Canada Vol. 32 (4) 2010, pp. 120–126
Vol.32 (4) 2010
Tzee-Char Kuo; Laurentiu Paunescu Details
(Received: 2010-05-28 , Revised: 2010-07-16 )
(Received: 2010-05-28 , Revised: 2010-07-16 )

Tzee-Char Kuo, School of Mathematics, University of Sydney, Sydney, NSW, 2006 Austrial; e-mail: tck@maths.usyd.edu.au

Laurentiu Paunescu, School of Mathematics, University of Sydney, Sydney, NSW, 2006 Austrial; e-mail: laurent@maths.usyd.edu.au

Abstract/Résumé:

The enriched complex line \(\mathbb{C}_*\) is \(\mathbb{C}\) plus a set of infinitesimals. The Morse stability notion is used for an equi-singular deformation theorem in \(\mathbb{C}\{x,y\}\) (\(=\mathcal{O}_2\)).

On appelle la droite complexe enrichie \(C_*\), la réunion de la droite complexe \(\mathbb{C}_*\) avec un ensemble des infinitésimaux. La notion de stabilité de Morse est appliquée au théorème de déformation equisingulière dans \(\mathbb{C}\{x,y\}\) (\(=\mathcal{O}_2\)).

Keywords:

AMS Subject Classification: Curves 14Hxx

PDF(click to download): Morse equi-singular deformation in $mathbb{C}^2$

Full Text Pdfs only available for current year and preceding 5 blackout years when accessing from an IP address registered with a subscription. Historical archives earlier than the 5 year blackout window are open access.